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Nuclear stopping power at high energies
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Recent p+ A —+p +X data are analyzed within the context of the multichain and additive quark
models. %'e deduce the average energy loss of a baryon as a function of d.istance traversed in nu-
clear matter. Consistency of the multichain model is checked by comparing the predictions for
p+A ~m —+X with data. %'e discuss the space-time development of baryon stopping and show
how longitudinal growth limits the energy deposition per unit length. Predictions are made for the
proton spectra to be measured in nucleus-nucleus collisions at CERN and BNL. Finally, we con-
clude that the stopping domain for central collisions of heavy ions extends up to center-of-mass ki-
netic energies E, =(3+1)A GeV.

I. INTRODUCTION

Initial interest in hadron-nucleus collisions focused on
the space-time development of multiparticle production. '

The main role of the nucleus was to act simply as a mi-
croscopic detector sensitive to distance scales (10 fm.
The most important qualitative feature that emerged from
those studies is the validity of the formation-zone con-
cept. That concept follows from time dilation and the
uncertainty principle and states that the formation of a
secondary particle with rapidity y and transverse mass
m~ cannot be localized within a distance l(y,pt )=e~/mq
of the interaction point. This exponential growth of
length scales is also referred to as longitudinal growth and
explains why naive intranuclear-cascade models sys-
tematically overpredict the charged-particle multiplicities
in proton-nucleus reactions at high energies.

Renewed interest in hadron-nucleus reactions has been
stimulated by new data on p+A~p+Xat 100 GeV. In
addition to providing new tests for competing multiparti-
cle production models, ' these data may have important
consequences for quark-gluon-plasma (QGP) production
in nucleus-nucleus collisions. ' In particular, the first
analysis' of that data indicated that the stopping power
of a nucleus could be much greater than first expected.
This may imply that energy and baryon densities much
higher than previously thought' could be achieved in cen-
tral nuclear collisions. Understanding nuclear stopping
power is therefore essential in assessing whether high-
baryon-density QGP could be produced in nuclear col-
lisions in the energy range 10—100 GeV per nucleon
( A GeV). Since that pioneering paper' several other
works' have addressed the nuclear stopping problem.
In this paper we apply the multichain model and the ad-
ditive quark model' ' to gain further insight into this
problem.

The primary aim of this paper is to deduce the stopping
power of nuclear matter to high-energy protons. We
evaluate several quantitative measures of that stopping
power. One is the average energy fraction the leading
proton retains after traversing a thickness z of nuclear
matter. Another measure is the average rapidity loss of a

baryon, (by)„as a function of nuclear thickness. In
contrast to previous works, we can test the consistency of
our methods by comparing our calculations for
p +A ~m—+ +X as well as p +3~p +X with the data.
Furthermore, our method treats pp reactions on the same
footing as pA and AB reactions. A fit to the available
data determines the one physical parameter, a=3+1, of
our model that controls the inelasticity in multiple col-
lisions. In the terminology of Ref. 20 this parameter im-
plies a momentum-degradation length A~=8+2 fm at
100 GeV.

The second aim of this paper is to clarify the space-
time development of the stopping process. In particular,
we find that longitudinal growth limits the energy deposi-
tion per unit length and is the main factor, not the stop-
ping power, that determines the boundaries of the stop-
ping domain for nuclear collisions. We show that the
length scales associated with secondary-particle produc-
tion and baryon stopping need not coincide. We find that
baryon stopping and secondary-particle production can
occur within a Lorentz-contracted nuclear volume in the
c.m. frame only up to center-of-mass kinetic energies
-(3+1)A GeV. However, by that energy, baryon and en-

ergy densities in excess of one order of magnitude above
their ground-state values can be achieved in central col-
lisions of heavy nuclei. Therefore, production of baryon-
rich quark-gluon plasmas with nuclear colli'sions at rela-
tively low energies is consistent with our stopping power
analysis.

The organization of this paper is as follows: In Sec'. II
the assumptions, physical picture, and equations that de-
fine the multichain model are reviewed. In Sec. III we ap-

lM model to fit the p4 rr
+— and p4 +p da

Thereby we determine the one physical parameter of the
model. In Sec. IV we analyze the space-time development
of stopping and estimate the boundary of the stopping
domain for nuclear collisions. In Sec. V, we predict the
leading-proton rapidity density for nuclear collisions that
may eventually be Ineasured' at CERN and BNL. In
Sec. VI, an independent determination of nuclear stopping
power obtained from fitting the data with the additive-
quark model gives additional confidence in the extrapolat-
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ed stopping power to nuclear depths on the order of 14
fm. Concluding remarks are then presented in Sec. VI.

II. THE MULTICHAIN MODEL

A. Assumptions

There is much uncertainty about the low-transverse-
momentum processes that lead to n1ultiparticle produc-
tion in high-energy hadron-nucleus collisions. That un-
certainty obviously is deeply rooted in the unsolved non-
perturbative problems associated with large distance scales
in QCD. It is therefore not surprising that there exists
such a large number of phenomenological models in the
literature. The main virtue of the present model is that is
cleanly separates geometrical effects from dynamical ones,
and the dynamics is characterized by one physical param-
eter. Since geometrical effects are separated, this model
treats hadron-hadron, hadron-nucleus collisions on the
same footing. Furthermore, it provides a convenient ex-
trapolation tool to predict nucleus-nucleus reactions.

The simplifying assumptions of the multichain model
are as follows.

(1) The transverse-momentum distribution is indepen-
dent of incident energy, nuclear size, and longitudinal
momentum.

(2) The probability that a hadron undergoes exactly n

interactions is given by Glauber theory.
(3) The reaction involves two stages that determine the

longitudinal-momentum distributions of the particles: a
fast multiple-interaction stage and a time-dilated frag-
mentation stage leading to secondary-hadron production.

(4) The fragmentation stage is independent of the num-
ber of interactions involved in the first stage.

(5) The multiple-collision dynamics scales with energy.
In particular, the longitudinal-momentum distribution de-
pends only on the scaling light-cone variable

(&+p, ) y y,„
(E+p, ) .. (2.1)

where

y,„=yo+1n(m&/mq )

is the maximum rapidity that a particle with transverse
nlass

m, =(m'+p, ')'"
can have.

(6) Projectile and target fragmentation processes are in-
dependent.

The above assumptions are surely too strong but are
consistent with present phenomenology ' ' and con-
siderably simplify the formalism.

A physical picture consistent with the above assump-
tions can be formulated in terms of partons and color
strings. The incon1ing proton is regarded as a composite
object with many partons sharing the incident momen-
tum. As that proton passes through a target nucleon one
of its partons may change color due to an interaction with
a parton of the target. The color exchange can be viewed

8. Formalism

We translate now the above assumptions into the equa-
tions that define the model. First, we consider the invari-
ant proton inclusive cross section. Assumption 1 on
transverse factorization implies that

3 pA ~pX
E

3 =cr,b,(A)kg(pj ) (A), (2.2)

where O.,b, is the absorption cross section, rp is the final
proton-to-baryon ratio, g (p j ) is the normalized
transverse-momentum distribution, and dN/dy is the nor-
malized rapidity density. We note that the present data
shows that r~g (pz ) is independent of atomic number and
rapidity for x & 0.3 and pj -0.3 CxeV/c within 20% accu-
racy.

Assumption 2 allows us to decompose d%/dy into a
standard multiple-collision series

as a string flip whereby the color string connecting the
target parton to the spectator target partons and the string
connecting the projectile parton to the spectator projectile
partons interchange so that the spectator target partons
now connect to the projectile parton and the spectator
projectile partons now connect to the target parton. In
this picture an interaction creates two strings which
stretch with time. " We refer to the string connecting
the spectator target partons with the interacting projectile
parton as a target chain.

In proton-nucleus collisions, we regard the nucleus as a
parton filter that sifts out a certain number of partons
from the projectile. That sifting occurs by promoting vir-
tual partons to their mass shell and creating independent
target chains. Because of time dilation the color fields in
each chain neutralize via pair production over a distance
scale proportional to the energy of the projectile parton
that formed that chain (see Sec. IV). The spectator par-
tons also drag a string behind them that, neutralizes over
a large distance scale. That neutralization and recombina-
tion process is assumed to produce the leading secon-
daries, including the leading proton.

The crux of the problem is to specify how the parton
filter works, i e , w.h.at is the distribution of energy frac-
tions of the partons that interact in the target. That dis-
tribution specifies the stopping power of high-energy pro-
tons, the information that we want to extract from the pA
data. In order to characterize that distribution in terms of
as few parameters as possible we adopt the simple algo-
rithm proposed in Ref. 9. That algorithm specifies that
the energy fraction of interacting partons falls off accord-
ing to a geometrical progression,

X; =a' '/(1+ a)',
where u) 1 is the phenomenological parameter of the
model. We adopt this algorithm mainly because of the
simplicity of the resulting formalism in the next subsec-
tion and because it can adequately account for the 2
dependence of the current data. In Sec. VI we check that
our conclusions about nuclear stopping power are relative-
ly model independent by refitting the data in terms of a
model with different assumptions.
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dh = g P„(n)Q„(x,xp),
n=1

(2.3)

where P~(n) is the Glauber probability that n target nu-
cleons interacted with the incident proton:

db A!
P~ (n) =f, , [Xg (b)/A]"

o ~b~ nn—..

Consequently, for the rapidity range of interest, y )4,
there is less than a five percent contribution to dN/dy
from target recoil nucleons. Baryon pair production is
also negligible for the energies considered here.

The dynamical information in this model is contained
in the dependence of F„on n. For simplicity we adopt
the scaling algorithm of Ref. 9:

X [1—N, (b)/2]" (2A)
I

F (x xp)=,K(x /x', xp/x')F $(x', xp)
X

(2.12)

with Nz(b) being the average number of interacting target
nucleons at impact parameter b as given by

X~(b)=&„ f dz pz(z, b) . (2.S)

Note that realistic nuclear densities, pz, lead to rather
large values of the single collision probability ( )0.2) even
for the heaviest nuclei due to their diffuse surfaces. In
terms of Nz(b) we can also express

o.,b,(A)= f d bI1 —[1—N„(b)/A]"j . (2.6)

Assumptions 3 and 4, concerning the separation of the re-
action into two stages, imply that the probability density,
Q„(x,xp), of finding a proton with light-cone fraction x
after n target nucleons have been struck can be written as

Q (x,xp) = f dx'F ](x',xp)fp(x/x' xp/x'), (2.7)

where F„(x,xp) is interpreted as the probability density
that the spectator projectile partons retain a hght-cone
fraction x after n projectile partons have interacted in the
target. With the definition

F,(x,x, ) =5(x —1),
the function fz(x, xp) must correspond to the invariant
distribution of protons in pN collisions at incident rapidi-
ty yp ——ln(1/xp). A convenient parametrization of the

p +%~p +X data is

f~(x,xp ) =x /(1 —xp) . (2.8)

We emphasize that our model says nothing about the
fragmentation function fz(x). Our model only specifies
the A dependence of pA reactions using pp reactions as
input.

Since xp is the minimum light-cone fraction in the tar-
get frame, these functions are normalized as

X,xo =1' dx'

' dx'
X,xo —1

1f dx'F„(x', xp) = 1 .

(2.9)

(2.10)

(2.11)

Note that the scaling assumption 5 holds strictly only at
asymptotic energies where xp —+0. For finite energies we
include only the minimal dependence of these functions
on xo required by overall energy conservation as in Ref.
21.

Note that Eq. (2.7) neglects the contribution from tar-
get fragmentation. To motivate this, recall that empiri-
cally the recoil proton in pp collisions is distributed as

1 cxxF„(x,xp)= ln
(n —1)t 1 —xp

1 —xp

X —Xp

(2.1S)

We can now compare our model to others in the litera-
ture. In Ref. 21 only the case a= 1 was considered. That
corresponds to the incoherent cascade limit where each in-
teraction in the target is treated as if it were a pX collision
in free space. In Ref. 22 the same ansatz for K(z,0) was
used, but in that model the two stages of the reaction in
assumption 3 were not considered. Therefore, their for-
malism could not be directly applied to pA —+cX, where x
is any other fragment than a proton. In Refs. 19 and 20 a
different parametrization,

(z,o) =1—2+15(1—z),

was used but in a formalism that treats pp and p& on dif-
ferent footings and pion and proton production on dif-
ferent footings.

It is also instructive to compare the geometrical algo-
rithm in Eq. (2.12) with one corresponding to a perhaps
more intuitive "arithmetic" filter. The arithmetic filter is

where K(z,zp) is a scattering kernel that specifies the
probability density that a projectile proton carrying a
light-cone fraction 1 —z of the available light-cone energy
E+=mz /zp interacts with a target parton.

Following Ref. 9 we parametrize K as

az —'
K(z, zp) = (2.13)

1 ZO

which is obviously normalized as
1f dz K(z,zp)=1 . (2.14)

All the dynamical information in this model is therefore
contained in the one parameter cx. As we show in the next
subsection in terms of a the fractional energy loss per in-
teraction is 1/(1+ a), and the final baryon rapidity loss
per interaction is 1/a. Since Eq. (2.12) leads to a geome-
trically decreasing fractional energy left in the spectator
parton cloud as a function of the interaction number, we
refer to it as a "geometrical" filter. It is important to em-
phasize that Eq. (2.12) says nothing about the space-time
points of the n interactions. It is a purely momentum
space equation. In Sec. IV we will consider possible ex-
tensions of this model to coordinate space. However, for
the analysis of the pA data we do not yet need to specify
the space-time picture behind (2.12).

With Eq. (2.13), the solution to Eq. (2.12) for n & 1 is
n —1



S. DATE, M. GYULASSY, AND H. SUMIYOSHI 32

one where the probability that n partons interact with en-

ergy fractions x ~, . . . , x„can be expressed as an uncorre-
lated product

Since Fo(x) =5(1—x), we see that f corresponds to the
rapidity density of pions in pp~mX. For simplicity we
parametrize that data as

~ W(x~) . W(x„)5(1—x~ —. . —x„) . (2.16) f (x)=c,(1—x) '+c2(1—x) '. (2.20)

With Eq. (2.16), all n interacting partons carry the same
average energy fraction, x„. Only energy conservation
forces x„ to decrease with increasing n T.his corresponds
to the equipartition model 1 in Ref. 9. In terms of W(x),
F„(x)would then be given by

F„(x)=~„f dx& . dx„W(x&) W(x„)

X5(1—x —x~ — —x„) . (2.17)

We refer to this as an arithmetic filter because the average
energy fraction retained by the spectator partons after n
interactions decreases approximately linearly with n rath-
er than geometrically. However, because of the awkward-
ness of the delta function constraint above, analytic for-
mulas for the arithmetic filter are rather cumbersome.
The geometric filter has the advantage of incorporating
energy conservation in a simple manner analytically.
Otherwise, there is no deep reason to prefer the geometri-
cal filter over the arithmetical one.

An important advantage of the present formalism is
that by incorporating assumption 3 into Eq. (2.7) we treat
p +A ~c +X for any fragment c and any nucleus 3 ) 1

on the same footing and that one parameter a fixes all
those reactions. The basic inputs to this model are the
measured p +p —+c +X distributions and the known nu-
clear geometries. The multi-chain model is then a con-
venient extrapolation tool for pA and AB collisions with
the absolute minimum of parameters. That at least one
parameter is needed was shown by Wong ' by the inability
of the incoherent cascade model (a=1) to fit the new
data. As we show in Sec. III one parameter, a=3, is in
fact enough to fit the 100-CreV data.

Unlike the leading proton which is assumed to emerge
only from the recombination of the projectile spectator
partons, energetic pions can emerge not only from that
fragmentation process but also from the hadronization of
target chains. This is because pair production near the
end of target chains can easily lead to meson formation
and only much less frequently to baryon formation. In
analogy to Eqs. (2.2), (2.3), and (2.7) we therefore have

d3 PA +xE, = ba, (A)g (p&)
dp

A + n —1 +
X g P~(n) Q„(x)+ g T, (x)

Again we emphasize that our model says nothing about
the fragmentation functions f, (x). Those must be taken
directly from pp —&cX data. Only the F„(x) are specified
in our model.

With the above parametrization, the first term with
a~-3 represents the contributions from projectile frag-
mentation, and the second term with a2-9 represents the
contribution from the hadronization of the target chain.
With this interpretation, T; in Eq. (2.18) is given by

1

Tg(x)= f dx'F;, (x')c, (1—x/x')" . (2.21)

' dx(g(x))D= I g(x)D(x) . (2.22)

The average of that function as a function of atomic
weight is then

A

(g(x)) = y & (n)(g(x)), ,
n=1

(2.23)

where (g (x) )„ is given by Eq. (2.22) with D (x)
=Q„(x)/x. In order to evaluate averages as a function of
nuclear thickness z, we use the Poisson limit of the bino-
mial distribution to specify fluctuations of the collision
number to get

(g(x)), =e '~" g(1)+ g, (g(x))„(zu)"
n! (2.24)

in terms of the proton mean free path A, .
We consider here only the high-energy limit x0~0. In

that limit we have

n

C. Measures of stopping power

We can now apply the above formalism to evaluate
several measures of nuclear stopping power. One impor-
tant measure is the mean rapidity loss (by ), suffered by
a baryon after having traversed a thickness z of nuclear
matter at saturation density, po

——0.145 fm . Another
important measure is the average fractional energy, (x )„
retained by the projectile spectator partons after travers-
ing a thickness z.

We denote the average of a function of x over a nor-
malized distribution D (x) by

n=1

(2.18)
(x )~ =(x )x(x )~

'n —1

(2.25)

+ 1

Q„(x)= dx'F„i(x')f +(x/x') . (2.19)

where Q„ includes the fragmentation of the projectile as
well as the hadronization of the last chain, and T; de-
scribes the hadronization of the ith target chain.
Suppressing the xo dependences of all functions we can
write

(x )„= (2.26)

We see from Eq. (2.26) that the case a= 1 indeed corre-
sponds to the incoherent cascade limit where in particular
(x)„=(—, )". This relation also shows that the fractional
energy loss of the projectile parton cloud per collision is
just 1/(1+ a). Applying Eq. (2.25) for n =m=1, we see
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'/(1+ )'. (2.27)

Calculating next the average rapidity-loss moments, we
find that in the x0~0 hmit

that the spectator partons retain a fraction a/(1+a) of
the incident energy. The final baryon after recombina-
tion, however, is observed in pp collisions on the average
with (x ),= —,

' . Therefore, the recombination process
must leave the final baryon with a fraction

m~/m*—:(1+a)/(2a)
of the energy of the spectator partons. This shows how
the effective mass m* of the spectator parton cloud must
depend on u in our model.

Equation (2.25) also shows that the average energy frac-
tion x; of the ith chain in this model falls off according
to

proton inclusive cross section is directly proportional to
P„(1):

lim x =Pz(1) .d&
x —+1 dx

(3.1)

p„(r)=p„ I 1+exp[(r —R„)/d] J (3.2)

where pz is determined by normalization, and the param-
eters R and d are chosen as

Therefore, the nondiffractive component to the leading-
proton rapidity density near the kinematic limit is fixed
by geometry alone and is independent of the dynamics.
Since sharp sphere approximations to nuclear densities
grossly underestimate the probability that only one in-
teraction occurs in heavy nuclei, simplified treatments of
nuclear geometry could lead to erroneous dynamical in-
formation from x )0.3 data.

A sufficiently accurate approximation to nuclear densi-
ties is given by the Wood Saxon form

(by)„= —ln R„=1.192' —1.61M ' fm,

d =0.54 fm .

(3.3)

(3.4)
(n 1)(by)x+(b'y)f

=(n —1)/a+1, (2.28)

(by )„=n(n —1)/a +2(n —1)/a+2, (2.29)

(by), = ——+ (1 —e '~ ),1 z cx —1

n A, a
2

&~y ).= — +——+ 2(1—1 z 2 z a —1

a2 ~ ok e

(2.30)

(2.31)

These relations show that 1/a is the mean rapidity loss
per interaction.

Finally, we note that the average fractional momentum
carried by the spectator projectile partons after traversing
a nuclear thickness z is given by

where we neglected terms of order 1n(m/m~). The aver-
age rapidity-loss moments for impact-parameter-averaged
pA collisions is then just given by the above expressions
with n and n replaced by their averages, (n )z =—vz and
(n )~ over P~(n), respectively.

The average rapidity loss as a function of nuclear thick-
ness is given by

We compared Pz(n) computed with the above density to
those computed by Sato using density-dependent
Hartree-Fock theory and found agreement within 10%

yN
accuracy. We chose o;„=32mb as the inelastic pN cross
section. Furthermore, Table I shows that this density
leads via Eq. (2.6) to satisfactory agreement between the
calculated and measured reaction cross sections. Also
listed in the table are values of P~ (1), Pq (2), and
vz —= (n ) z for various nuclei. In practice, we terminated
the series in Eq. (2.3) at n= 15.

For comparison, we note that the densities employed in
Ref. 21 lead to 10% larger values of Pz(l) and o,b,(pA).
This led to invariant cross sections that are 20% larger
than ours at high x. In the calculations of Ref. 19 only
the term n =(n)z was considered in Eq. (2.3). The
neglect of surface and Auctuation effects is partially re-
sponsible for the large (17-fm) momentum-degradation
length that was obtained in Ref. 19. In Ref. 20 diffuse
surface effects were neglected, but since their method
treated pp and pA collisions differently, they were able to
fit the data by introducing a normalization factor. Final-
ly, we note that in the pioneering work of Ref. 17 only a
very crude treatment of geometry was considered. An im-
portant object of the present work is to reduce the uncer-
tainties associated with such trivial geometrical effects.

z(x ),=exp
(1+a)A,

'

The leading baryon ends up with only a fraction

(2.32)

B. Implications of 100-GeV proton spectra

m~/m* = (1+a)/(2a)

of that energy because of the effective mass of the specta-
tor parton cloud.

III. EMPIRICAL STOPPING POWER OF NUCLEI
A. Nuclear geometry

The use of accurate nuclear densities to compute Pz(n)
in Eq. (2.4) is important because the x~1 limit of the

In Fig. 1 we compare our calculated invariant proton
. inclusive cross sections to the data at 100 GeV. For these

calculations we used the parametrization of the
transverse-momentum distribution of Ref. 9 and took the
proton-to-baryon ratio rz ——0.53. This gives kg (p z )
=0.8876 for the pj =0.3 GeV/c relevant to the data.

In Fig. 1 the case a=1 verifies the finding of Wong '

that the incoherent cascading cannot account for the A
dependence of the data. The data indicate that the proba-
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TABLE I. Reaction cross sections and Glauber probabilities.

12
27
64

108
207

(expt)
(mb)

222
409
764

1101
1730

o.~ (theo)
{mb)

225
411
765

1105
1726

0.57
0.45
0.34
0.28
0.22

0.25
0.24
0.22
0.19
0.15

1.7
2.1

2.7
3.1
3.8

bility of small energy loss is greater than predicted by in-
coherent cascade. The partial transparency of nuclei can
be parametrized in Our model by setting +~1. Taking
into account the uncertainties associated with our model
assumptions and those of the data, we see that

(3.&)

leads to a satisfactory fit to the A dependence of the data
over the measured x region. Note that the x= 1 intercept
is independent of u in accord with Eq. (3.1). This value
of a is in agreement with the value deduced in Refs. 20
and 22 using a less general formalism.

To emphasize the limited kinematic domain covered by
the present data, we show in Fig. 2 the normalized rapidi-
ty distributions for a=3. We also calculated d%/dy for
collisions with the outer (dashed) and inner (dashed-dot)

IOOGeY pA —pX p& =0.56eV/c
I I 1 1

Q=2

~Pb
IOO ~Ag

/c

» ..=&»&. i« =25+o5 (3.6)

This rapidity shift may occur when a proton traverses the
entire diameter of a heavy nucleus. It is important to
keep in mind, however, that the above extrapolation has

halves of the nucleus for comparison to the extrapolations
by Busza and Goldhaber. ' This separation into inner and
outer half is accomplished by restricting the range of
impact-parameter integration below and above the impact
parameter b, corresponding to one half of the reaction
cross section. Comparing the dashed-dot curve in Fig.
2(b) with the corresponding one in Fig. 3 of Ref. 17 we
find a substantial difference. The peak of our curve is
shifted by one unit of rapidity less than their extrapola-
tion. This is a consequence of their cruder treatment of
geometry and their constraint that dN/dy vanish at x= 1.
It would be very useful to measure the multiplicity depen-
dence of the proton distributions to test more severely
these geometrical effects.

Having determined the range of a compatible with the
proton yields, we show the average rapidity loss, (by )„
as a function of nuclear depth in Fig. 3. While we differ
with the extrapolated distributions of Ref. 17 for the
inner-half impact parameters, we find in agreement with
Ref. 17 that the maximum rapidity shift induced by heavy
nuclei is

IO

E
I

b
IOO

l.o ~ I ~ ~ ~

p+ C —p+X

0.8 - (0)

0.6 "
'U

04-

I I I I

p+Pb —p+X

(b)
I

I
I

I
I

IO 0.2-

I0.0 0.4 0.8 0.4 0.8
X X

FIG. 1. Invariant proton inclusive cross sections (Ref. 7) for
p+A~p+X at 100 GeV as a function of light-cone x for
fixed p& ——0.3 GeV/c. Solid curves are calculated using the

multichain model. The incoherent cascade (Ref. 21) corre-

sponds to the curves for ca=1. The effect of increasing nuclear

transparency is shown by cases a=2, 3, and 4. Note that pp
and pA are treated on the same footing.

0.0' -6 -4 -2 -2 0
~-~max Y- Ymax

FIG. 2. Leading-proton rapidity density as a function of ra-

pidity measured in projectile frame. All curves correspond to
+=3 and the C and Pb target data are deduced from Ref. 7 as-
suming r~g(0. 3)=0.8876. Solid curves are for impact-
parameter-averaged results, while dashed and dashed-dot curves
correspond to outer-half (b &b, ) and inner-half (b &b, ) col-
lisions, respectively. Here b, is chosen to be the impact-
parameter cut leading to 2 of the reaction cross section as in

Ref. 17.
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FIG. 3. Stopping power of nuclear matter as measured by the
mean baryon rapidity shift as a function of nuclear thickness.
This is the asymptotic rapidity shift (see Sec. IV). Curves for
a=i —4 are shown. Symbols indicate the impact-parameter-
averaged mean rapidity shifts for the case a =3 for finite nuclei
as a function of the average nuclear thickness, v&A, .

yet to be tested experimentally by more detailed measure-
ments involving associated multiplicity triggers. The
impact-parameter-averaged data yield (by )~ as indicated
by the symbols in Fig. 3. For finite nuclei we took the
average nuclear depth to be z=vz X2.08 fm. The Pb
data thus only tests nuclear stopping to average depths of
-8 fm.

+18(1—x) . ] mb/CxeV

crag (0.3)f (z) =[31.8(1—x)

(3.7)

+4.59(l —x) j mb/CxeV . (3.8)

The pp~m data were fit with this functional form to al-
low for a simple calculation of the target-chain contribu-
tions T;(x) in Eqs. (2.18) and (2.21).

In Fig. 4 we see that the A dependence of the n. is well
accounted for in the measured x region. However, we see
that while the A dependence of the m+ spectra is repro-
duced for A & 12, the pp~m+X data are systematically
lower than the solid curve which is obtained in this case
by demanding the best overall fit to the nuclear data.
Conversely, if we insisted on fitting the pp data by reduc-
ing the normalization in Eq. (3.7) by a factor ——,, then
all the calculated nuc1ear curves would be systematically
below the data. Private communication with W. Busza

C. Consistency with pion spectra

To check the consistency of our model we compare next
the calculated invariant pion inclusive cross sections with
data. For these calculations we used the following fit to
the pp —+m —+X data:

H„g~(0.3)f (x)=[35(1—x)
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FIG. 4. Inclusive p+A~m —+X cross sections (Ref. 7) at
100 GeV for p&.——0.3 GeV/c. A11 calculated curves correspond
to a=3.

indicated that it is possible that for the reaction
p+p~m++X certain experimental systematic effects
could' lead to underestimating the normalization in this
channel. Another reason why pA ~a+ data may require
a larger pN~m+ is the apparent isospin dependence of
~+ production. It was noted in Ref. 21 that in the region
x &0.3 the pn ~n+ cross section is about a factor of two
greater than the pp —+~+ cross sections. While those data
are also suspect, such an isospin effect could account for
the difference between the pp~m. + data and the solid
curve. On the other hand, it appears ' that the pp —+m.

and pnsm cross sections are approximately the same.
Thus, no isospin effect is expected in that channel.

Finally, we note that the pA~m+ data at x =0.9 are
systematically higher than the calculations. This is likely
to be due to the neglect of diffractive contributions in our
model. ' Such diffractive contributions would be expect-
ed also in p+A~n+X.

The successful reproduction of both the normalization
and the shapes of the pion yields should be contrasted
with the incoherent cascade model ' that overpredicted
those yields by a factor of 7. This is due to the neglect of
longitudinal growth in the cascade model. Our starting
point via Eq.(2.18) implicitly incorporates that effect by
including only one projectile fragmentation process ac-
cording to assumption 3 in Sec. IIA. Unfortunately, this
high-x kinematical domain is not very sensitive to the
multichain aspect of our model. Target chains produce
pions mostly in the x ~0.3 region. On the plus side, the
data are, however, sensitive to the energy-loss mechanism
since the ratio of pion cross sections for Pb and p targets
varies by a factor of three in the measured x region for

The agreement of our calculations with the pion data
shows that the energy loss of a proton deduced by fitting
the proton data with o.=3 is consistent with both the
leading pion and proton spectra.

D. Deviations from scaling

While we have seen that the 100-CTeV/c data on leading
protons and pions could be well reproduced in our model
by one fixed parameter, +=3, the scaling assumption
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must break down at sufficiently low energy. In Fig. 5 we
compare our calculations for p + A ~p +X with data
taken at 24 GeV. For that calculation we took rz ——0.75
and g(p~) from a fit to the 24-CseV pp~pX data of Blo-
bel et al. The data and calculations correspond to fixed
angle 0=17 mr. The three curves show cases &x=1
(solid), 3 (dashed), and 6 (dot-dashed). While none of the
curves provides a good fit, the data seem to indicate a
bigger energy loss than expected from the a=3 curve (i.e.,
the integral of the measured distributions between
0.1 ~ x & 1 is less than the integral of the calculated distri-
butions). Further support for this conclusion has come
from preliminary pA —+pX data at 17 CreV, where the
normalization of the high-x proton density seems to be in
fact a factor of two smaller than that of the data
displayed in Fig. 5.

These data therefore indicate that the stopping power
of nuclei at -20 GeV is greater than at 100 GeV. In
terms of our phenomenological parameter a, a value
closer to unity may be necessary at these lower energies.
For the purposes of the present paper, we shall not try to
incorporate such scaling violations by modifying the
model but only note their existence. Fortunately, we find
in the next section that our conclusions about stopping
domain of nuclear collisions are not especially sensitive to
such violations.

ness of nuclear matter. Our analysis confirms earlier esti-
mates ' that about 90% of the incident energy of a
proton could be lost after traversing 14 fm of nuclear
matter. However, until now the question of where that
energy is deposited has not been seriously addressed. Ob-
viously, the data provide constraints only on the momen-
tum space aspects of models, which in our case is the
value of a. The space-time development of stopping and
energy deposition is largely unconstrained by the available
data. However, for applications to nuclear collisions it is
necessary to know not only how much energy is lost but
also where that energy is deposited. In this section we
consider the space-time picture of energy loss and deposi-
tion in the context of the multichain model. We pay par-
ticular attention to the effect of time dilation and longitu-
dinal growth on the space-time development of parti-
cle production. We show below that this basic
phenomenon, neglected in previous studies on stopping
power, limits the maximum energy that can be deposited
into a nucleus. Furthermore, that maximum energy depo-
sition is relatively insensitive to dynamical assumptions.

Taking fluctuations of the number of interactions into
account, we found in Eq. (2.32) that the average energy
fraction retained by the spectator projectile partons de-
creases exponentially with nuclear thickness traversed.
This implies that

IV. SPACE-TIME DEVELOPMENT OF STOPPING
dE E
dz Ap

(4.1)

A. Momentum-degradation length

From the pA data we could deduce how much energy is
lost by the leading baryon after traversing a certain thick-

where E(z) is the energy left in the projectile spectator
cloud at depth z in the matter, and Ap is
"momentum-degradation length" as given by

Aq ——(1+a)i,=8+2 fm . (4.2)
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FIG. 5. Invariant proton inclusive distributions {Ref. 27) at

24 GeV for fixed angle, 0=17 mr. Calculations for o.= 1, 3,
and 6 are shown by solid, dashed, and dashed-dot curves,
respectively. The pp data are from Ref. 28.

If we ignore fluctuations as in Ref. 20, then 1 + a above
is replaced by 1/ln(1 +. I/a ). For a =3 fluctuations
enhance Az by only 15%.

While Eq. (2.32) relies on the assumption that the stop-
ping dynamics scales with energy, Eq. (4.1) is more gen-
eral if we let A~ depend on energy. The value of Az in
Eq. (4.2) has been deduced from data at laboratory ener-
gies —100 GeV. For lower energies we expect according
to Fig. 5 that Az decreases as a decreases. For compar-
ison, our value of A& is a factor of two larger than if in-
coherent cascading were valid. ' It is also 60% larger
than deduced in Ref. 20 because they neglected fluctua-
tions and used the total rather than the inelastic pp cross
section for estimating A, (their revised results, to be pub-
lished, are in accord with ours). On the other hand, our
value is a factor of two smaller than deduced by Hwa, '

where only the roughest geometrical considerations and
dynamical approximations were considered.

Stopping the baryon in a frame that moves with rapidi-
ty y with respect to the laboratory means that E in the
laboratory is reduced to m* cosh(y), where m* is an effec-
tive mass. Recall from Sec. IIC that in our model the
fraction of the energy of the spectator partons that is car-
ried away ultimately by a baryon is
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By defining m'=m~/f, we thus guarantee that on the
average the projectile nucleon ends up at rest in that—s/A
frame. Since E(z)=Epe ~ from Eq. (4.1), the thick-
ness of nuclear rnatter required to reduce the rapidity of a
nucleon from y0 to y is

L (y) =A, (yp —y —5y), (4.3)

where 5y =ln(1/f)=0. 4. For y=0 the approximation
E=mie /2 used in Eq. (4.3) is not good enough. The
stopping distance in the laboratory frame is given rather
by

L (0) =A& ln(Ep/m*) . (4.4)

L*=L (yp/2) =A~(yp/2 —5y) . (4.5)

B. Effect of longitudinal growth

We now turn to the problem of how to reconcile the
slow (lnEp) increase of these stopping distances with the
concept of longitudinal growth. Because of Lorentz time
dilation, the formation time of a secondary particle in-
creases linearly with the energy of that particle. There-
fore, at a distance z into the matter only particles with ra-
pidities '

y (in(2z/rp), (4.6)

could have come on shell. The proper time for formation
of hadrons is estimated to be ~p- I fm. Recall that Eq.
(4.6) also follows from the uncertainty principle in terms
of light-cone variables (x+ t+z, q+ E+q,)—— ——

(4.7)

Therefore the production of a particle with rapidity y and
transverse mass mz cannot be localized on the average
within a distance M-e~/mj of the interaction point.
Note that this is in spite of the fact that at any fixed time
the z coordinate of a high-energy particle with a rapidity
wave packet of width Ay can be measured with great ac-
curacy, i.e.,

Solving for by =yp —y from Eq. (4.3), we note that
hy =L/ Az +5 yincreases slower with L than if we used
(by)1. from Eq. (2.30). This is because the distribution
of energy loss is so wide that the average rapidity loss
tends to overestimate the average energy loss for a given

Within the large uncertainties in the present deter-
mination of a, however, this distinction is not so crucial.
To be on the conservative side we use Eq. (4.3) in applica-
tions to nuclear collisions.

For application to collisions of symmetric nuclei
( A +A), we are interested in reducing the incident rapidi-
ty by only —, since such a rapidity shift applied to both
target and projectile nucleons would lead to stopping of
all baryons in the center-of-mass system. The thickness
of nuclear matter required to stop baryons in the c.m. sys-
tem is thus estimated to be

as y~ oo. What we cannot localize well is the production
point of the particle, not its wave packet once it has been
formed. This exponential growth with rapidity of the un-
certainty in the production point is referred to as longitu-
dinal growth. We see that rp 2/mi 1 fm even for
pointlike partons due to limited pz distributions. For
pointlike particles the transverse Compton wavelength
sets the minimum uncertainty in the proper time for its
formation. Time dilation then increases the uncertainty
in the formation time in any other frame.

To see what limitations longitudinal growth places on
the energy deposited per unit length, let Pf(z;y)5z be the
formation probability of a secondary with rapidity y at
some point between z and z +5z downstream from the in-
teraction point. A simple form of Pf that incorporates
Eq. (4.6) is

Pf(z;y) = . 8(z —(1—X)l(y))8((1+X)l(y) —z)1

2X& (y)
X~0~ 5(z —I(y)), (4.8)

dE dX
dy Pf(z —zp,y)mi cosh(y)

dz
(4.9)

where dN/dy is the final rapidity density of secondaries.
Since the empirical dX/dy is only a slowly varying func-
tion of y in the central region, we see that longitudinal
growth implies that dE /dz is approximately a con-
stant given by

dX 1
1

1 +X
0 dp 2g 1

(4.10)

Note that fluctuations around the average production
point enhance dE /dz.

The approximate constancy of dE /dz also follows
naturally from the string model. A string produced in a
collision corresponds to a color flux tube that stretches
out with time. The constant color-electric field 8' in that
tube leads to a constant energy per unit length cr cc 8' . In
the color fields of that tube the Schwinger mechanism
produces pairs that neutralize the field. Since a particle
with energy e cannot be emitted from the string before the
kinetic-energy loss o.z exceeds e, longitudinal growth is
automatically satisfied. Furthermore, the empirical string
tension, o = 1 GeV/fm, gives an energy loss similar to Eq.
(4.10).

The energy deposition per unit length can be approxi-
mately constant, of course, only over a finite range. That
range is' fixed simply by energy conservation. For a target
chain carrying an energy fraction x, energy conservation
fixes its "length, " /(x), to be

where l (y ) =~p sinh(y ) =e~/m i is the average production
point of a particle with rapidity y, and Xl(y)/v 3 is rms
width of the production region. The parameter X & 1 con-
trols the magnitude of fluctuations about the average pro-
duction point.

For an interaction at point z0, the energy deposited at z
in the form of on-shell secondaries is

b, z )2A/(mie~by) 1 (x) =xEplcr, (4.11)
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dE =cr0(z —z0 )8(z0+ l (x ) —z ) . (4.12)

Summing over all target chains leads then to the estimate

(4.13)

where ED is the incident energy. At the point where the
string is stretched to length l(x) all the kinetic energy of
the leading parton has been converted into potential ener-
gy. That potential energy is in turn converted via the
Schwinger mechanism into energy of ' pairs that are
formed in the color neutralization process. A target chain
formed at depth zo therefore leads to an approximately
constant energy deposition per unit length over a finite
range za &z &z0+l(x), so that

the nucleus [term i=0 in (4.13)]. On the other hand, the
energy deposition could be significantly smaller than the
energy loss because the lengths of several chains could
exceed the nuclear thickness. To estimate the energy
deposition we consider two extreme models for the distri-
bution of production points, z;.

The first model for that distribution follows naturally
from multiple collision theory. In such a framework in-
teractions occur sequentially involving successively small-
er and smaller energies. Therefore, the first chain, carry-
ing on the average the highest energy fraction
x& ——1/(1+a), would be produced first (z&-A, ). Then
the second chain would be created after another mean free
path, etc S.uch a time-ordered sequence of interaction
points corresponds to a distribution

where the average denoted by angular brackets is over the
multiplicity of target chains, their production points z;,
and their energy fractions x;.

To Eq. (4.13) we must still add the contribution to the
energy deposition due to the recombination and neutrali-
zation of the projectile chain. We do this formally by ex-
tending the sum from i =0 to i =%, where i =0 refers to
the contribution of the projectile chain. Thus, zo is the
point from which fragments from the projectile chain
start to materialize, and l(xa)—:(1—x, —. —x~) is the
distance over which the projectile string neutralizes. With
this convention, note that the total length of all chains is
just the naive longitudinal length scale

S~(z~, . . . , z~, 2R) = ~ 0(z2 —z~ ) 0(z~ —z~ ~),
(2R )

(4.16)

where 2R is again the thickness of the nuclear slab and
0& z; &2R for all i Wit. h Eq. (4.16) the average produc-
tion point of chain i is (z; ) =2Ri /(X+ 1).

A second possibility for the distribution of interaction
points is suggested by the parton model. In that model
partons are assumed to have very large mean free paths.
Only because there are so many of them can a few
nevertheless interact inside a finite nucleus. In that pic-
ture the z; are thus uniformly distributed over the nuclear
thickness. Such a distribution thus corresponds to

N

g 1(x;)=E()/o. . (4.14) S~(z), . . . , zjv, 2R) =(2R) (4.17)
i=0

From this it is clear that an important feature of multi-
string models is the occurrence of multiple length scales
that are smaller than the naive length scale, ED/o.

What we must next specify is the distribution of
za, . . . , z& and x &, . . . , x& as well as of X. The distribu-

, tion over X is given by a Poisson from Glauber theory,
such that (X)=2R/A, , where 2R is the thickness of nu-
clear matter. The distribution of the fractional energies,
x &, . . . ,xN, carried by the N target chains is completely
specified in our model as

K(1—x~) K((1—xq)/(1 —x) ))
D~(x), . . . , x~)=

( 1 —xi

(4.15)

This distribution leads to the average fractional energies
x; of target chains given by Eq. (2.27).

The distribution of interaction points, z;, on the other
hand, is not specified by the model as formulated thus far.
Fitting the momentum space data does not require
knowledge about the z;. Again we emphasize that those
data provide information only on energy loss and not on
energy deposition. Thus, strictly speaking the pA data are
not enough to determine the energy deposition that is cru-
cial to applications to nuclear collisions. Note that the
maximum energy deposition in a finite nucleus is not even
bounded by the energy loss because some of the energy
carried by the spectator partons can also end up within

l(z) =I e (4.18)

where l =ED/[(1+a)o]. Figure 6 illustrates the range
of nuclear depths over which different target chains neu-
tralize in this case. A given target chain n neutralizes on
the average between nA&z&nA, +,l(nA, ). Note that the
length of all chains increases linearly with the incident en-
ergy and that those lengths are twice as long for the case
n= j. as for a=3 because the average energy lost forming
target chains is twice as large in the former case. The
peculiar shape of the solid curves results from the inter-
play between the linear growing and exponentially de-

On the average, there is an interaction every 2R/(X+ 1)
as with the time-ordered distribution (4.16). However,
with (4.17) there is no correlation between the interaction
point and the energy of the chain.

Clearly, (4.16) leads to an upper bound on the estimate
for energy deposition, because the first few chains that
carry the largest fractional energies have the longest range
within the nuclear matter to neutrahze. Conversely, (4.17)
leads to a lower bound since some of the time the shorter
chains are allowed to be produced before the longer ones.
Comparing the energy deposition resulting from (4.16)
with that resulting from (4.17) will give an indication of
the theoretical uncertainty in those estimates.

Consider first the time-ordered case corresponding to
(4.16). On the average, the energy of a chain produced at
depth z is given by E(z)/(1+ a). Therefore, its length is
approximately
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FIG. 6. Top graphs show the color-neutralization region of
different target chains in the laboratory frame. Chain n is
formed at depth z =n k {dashed line) and is neutralized between
nA, (z &z, (nA. ),. where z, (z) (solid curves) is given by Eq. {4.13).
The curves are labeled by the incident laboratory energy in GeV.
The bottom two graphs show the energy deposition per unit
length, Eq. {4.20) in the form of on-shell secondaries as a func-
tion of nuclear depth. The linear increase of dE" /dz up to
some depth z* given by Eq. (4.19) is a consequence of longitudi-
nal growth and the approximate constancy of the rapidity densi-

ty dX/dy of secondaries produced in the neutralization process.
Comparing cases +=1 (left side) and o.=3 (right side) shows
that dE" /dz is not very sensitive to uncertainties in 0..
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creasing contributions to the end point of the neutraliza-
tion range for different chains. For a fixed energy and a
there exists a minimum depth z' below which none of the
chains have yet neutralized. That depth, as given by

z*=Ap 1+ln 1+a os (4.19)

grows only logarithmically with incident energy.
Since each chain contributes approximately a constant

o. to dE /dz, we can estimate the total energy deposition
per unit length by noting that a new chain is created on
the average every mean free path A, and summing over all
contributing chains via

z dzo=o f 9[zo+l(zo) —zj . (4.20)

For z &z* the total energy deposited per unit length sim-
ply increases linearly,

dE /dz=, z &z (4.21)

This linear growth is illustrated in the bottom part of Fig.
6. For z &z, dE /dz decreases rapidly as fewer chains
contribute. Note the little kink in the curves that occurs
at

z =L (0)=A~ 1n(EO/m*)

corresponding to the stopping distance in the laboratory
frame as given by Eq. (4.4). For z &L(0) the integration
over zo in Eq. (4.20) terminates at L(0). Nevertheless,
dE /dz continues to be finite because not all target

chains can neutralize so fast. For Eo ——50 GeV and a= 1,
for example, the baryon stops on the average at a depth
L(0)=17.5 fm while target chains continue to produce
secondaries until the first chain is neutralized at depth
=25 fm. In this example linear growth of dE /dz ceases
at z*=12 fm.

The most striking feature to note in Fig. 6 is the insen
sitiuity of dE /dz to the value of a. Even though the
hadronization range of any particular chain is sensitive to
a, the net sum of all chains is rather stable with respect to
changing a. It is also obvious from the dE /dz curves
that the energy deposited per unit length eventually satu-
rates as the incident energy increases. At a fixed depth z,
dE /dz saturates at crz/A, for incident energies satisfying
z* &z. Therefore, the total energy deposited within a fin-
ite nucleus of thickness 2R saturates at

E (2R)(2oR /k, (4.22)

with the upper bound being reached at incident energy

(1+a)o.2R if 2R &Az,
Esatsat

(2R —A )/A
(I+a)cree ~ ~ if 2R &A~ .

(4.23)

The maximum energy that a proton can deposit in nuclear
matter of thickness 2R=14 fm is thus E =45 GeV
which is reached for incident energies Eo &E"'=60—80
GeV for a = 1—3.

Consider now the alternate possibility, Eq. (4.17), where
the assumption about the time ordering of the production
point z; is removed. In this case, each z; is uniformly dis-
tributed between 0& z; &2R. Consequently, chain i con-
tributes to the energy deposition per unit length an
amount

dZ

2R de=o J — 0(z —z;)0(z;+l(x;)—z) . (4.24)

This integral leads to a trapezoid shape in the range
0 & z & 2R +l(x;). Of more interest, however, is the total
energy deposition into nuclear matter of thickness 2R.
That is given by

oR, l(x;) &2R

ol(x;)[1—l(x;)/(4R)j, l(x;) &2R .

We see from (4.25) that at sufficiently high energies,
when the l(x;) generally exceed 2R for every chain, the
sum over the =2R/A, chains gives the same total energy
deposition as in Eq. (4.22). Therefore, we draw the im-
portant conclusion that the maximum energy deposition
in a finite nucleus neither depends on the distribution of
the x; nor on the distribution of the z;. For a nuclear
thickness of 14 fm, that maximum energy deposition is
-45 GeV. &e note, however, that this estimate depends
on the effective string tension o =1 GeV/fm and the as-
sumption that the strings add incoherently. The assump-
tion that strings add incoherently is justified only if the
color electric charge at the end of the strings is random.
Clearly, a random walk in color space leads to an average
color electric field squared, ( 5' ), that grows only linear-
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ly with the number of interactions. Hence, the effective
number of strings grows only linearly with nuclear depth
although large fluctuations about the average can be ex-
pected.

While the maximum energy deposition asymptotically
does not depend on the details of those distributions, the
maximum energy deposition in the baryon stopping region
does. That is because in the baryon stopping region, some
of the chains have lengths less than 2R, and therefore the
energy deposition from those chains depends on their pro-
duction points, z;. The maximum energy deposition in
the baryon stopping region is estimated in the next sec-
tion.

y, ~ m~ (m~ cosh(2R/A~+5y) . (4.26)

Of course, the same condition is obtained by requiring
that the stopping distance in the center-of-mass system be
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FIG. 7. The laboratory distance scales involved in stopping

baryons and producing secondaries are shown as a function of
center-of-mass kinetic energy for a=1 and 3. Curve B gives the
depth of nuclear matter, Eq. (4.5), required to halve the rapidity
of the incident baryon. Curve 1 shows the extent of the hadron-
ization region of the first target chain via Eq. (4.27). The had-
ronization of the last target chain occurs between curve B and
curve 2 as given by Eq. (4.28). The crossing of the shaded re-
gion by any curve locates the end of the stopping domain of nu-
clear collisions. Below that point not only do most of the
baryons stop but also most of the energetic secondary particles
are produced within the Lorentz-contracted nuclear volume in
the center-of-mass frame.

C. The stopping domain of nuclear collisions

In the context of nuclear collisions we are interested in
stopping baryons in the midrapidity or nucleon-nucleon
center-of-mass system. The condition for stopping a nu-
cleon in the midrapidity frame due to a zero impact-
parameter collision with a nucleus of radius R is I * ~ 2R,
where L is given by Eq. (4.5). This limits the energy per
nucleon in the center of mass to be

smaller than the Lorentz-contracted radius, R/y, . For
a finite impact parameter b, 2R is replaced by
2(R2 b2)1/2

In Fig. 7 the thickness L of nuclear matter required to
reduce the incident laboratory rapidity 2y, to y, is
shown by the solid curves labeled 8 for both a= 1 and 3.
For a=3, the c.m. stopping distance exceeds the diameter
of the heaviest nuclei for y, ~ )4. For a=2, L & 14 fm
for y, ~ 6. If we could extrapolate the a= 1 curve in-
definitely, then L*&14 fm only for y, ~14. Recall
that y, =6 corresponds to the extrapolated upper bound
on the stopping energy in Ref. 17,

While there is considerable sensitivity of the value of
y, for which L*~ 14 fm, something striking occurs at
y, -4 regardless of the value of a. In addition to
showing L*, Fig. 7 shows the boundaries of the target-
chain hadronization regions for the first and last chain in
the case that the interactions are time ordered such that
z; =i A.. Curves labeled 1 show the end point

z)(y, ) =k+ e (4.27)2o(1+a)
of hadronization of the first target chain. Curves labeled
2 show the end point of the last target string formed at
L* as given by

z, (y, ) =L*+I(L') . (4.28)

The energy lost by the incident hadron is deposited into
the target in the form of secondary particles over a region
extending to the larger of curves 1 and 2. For lower ener-
gies the hadronization of the last string defines that boun-
dary. For higher energies the first string extends further
than the last string. This is simply a consequence of long-
itudinal growth since the length of the first chain is pro-
portional to the incident laboratory energy while the last
chain is proportional to the center-of-mass energy. On
the other hand, L' only grows logarithmically with ener-

gy.
When either curve 1 or 2 exceeds the diameter of the

nucleus, a fraction of the available energy in the c.m. is
lost to secondaries produced outside the nuclei. We define
the stopping domain of nuclear collisions as that energy
range where not only the baryons come to rest in the c.m.
but also where most of secondary particles can be reab-
sorbed within the Lorentz-contracted nuclear volume.
Only if the secondaries resulting from the color-
neutralization processes are produced within the nuclear
volume can they contribute to heating the high baryon
density fireball in the c.m. frame. We see from Fig. 7 that
the stopping domain for the heaviest nuclei therefore ex-
tends only up to c.m. kinetic energies

E, /2 (3+1 GeV, (4.29)

E*„,z Eo —m * cosh(yo /2)——

relatively independent of the precise value of o;.
The total energy deposited within nuclear matter of

thickness z is shown in Fig. 8 for the time-ordered case.
That energy, E (z), as obtained by integrating Eq. (4.20)
up to a given depth z, is shown in units of the energy loss
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0.8—

CL

0.6—

N
8 0.4—
LU

0.2—

]0 20 30
Z (fm)

FIG. 8. Total energy deposition as a function of nuclear
depth in units of the energy E*„,„=ED—m* cosh(yo/2), neces-
sary to reduce the rapidity of an incident proton by one half, i.e.,
stop the proton in the midrapidity frame. Dashed and solid
curves correspond to cases a=1 and 3, respectively, and are ob-
tained by integrating dE" /dz in Fig. 6 from 0 to z. Curves are
labeled by incident laboratory energy Eo in GeV. The stopping
domain of nuclear collisions is limited to energies such that the
ratio reaches unity before 14 fm.

TABLE II. Average energy loss and deposition (see text).
Energies in GeV.

cx =3 E]oss

Edep

Eioss
jVd

30

24
22—26

27
16—22

50

40
29—33

47
20—26

100

80
38—42

95
25—31

necessary to stop a baryon in the c.m. system. For a max-
imum nuclear thickness 12—14 fm, indicated by the shad-
ed region, all the energy loss necessary to reduce the in-
cident rapidity by one half can be deposited within the nu-
clear volume as long as the incident laboratory energy is
below -(20—50)A GeV. By 1002 GeV only ——,

' of the
necessary energy can be deposited within the heaviest nu-
clei found in nature. Once again note the remarkable in-
sensitivity of these curves to variations of a between 1 and
3.

The relative insensitivity of the stopping domain to
dynamical assumptions is a consequence of longitudinal
growth In th.e case a= 1 the energy lost forming target
chains is twice as large as in the case a =3. Therefore, the
rapidity of the baryon is reduced in only a fraction of the
distance that is necessary in the +=3 case. However, the
catch is that the hadronization region of target chains ex-
tends then twice as far as in the a=3 case. Therefore, the
stopping domain in the 0.= 1 case is limited by the energy
at which energetic pions start being produced outside the
nuclear volume due to time dilation. On the other hand,
in the u =3 case the stopping domain is limited by the en-

ergy at which the nuclear thickness is no longer sufficient
to bring the baryons to rest in the c.m. frame.

The above estimates are only upper bounds because
they are based on the assumption, Eq. (4.16), that the

p —2T mpo —8+2po ~

and the energy density could reach

e=y, mNp-5+3 GeV/fm

(4.30)

(4.31)

where we input our estimate y, &4 as the boundary of
the stopping domain. In fact, baryon and energy densities
up to twice as high could be reached if shock conditions
could be reached. On the. minus side, not all the secon-
daries produced in the nuclear volume will be reabsorbed
in the fireball due to their finite interaction mean free
paths. The leakage of some secondaries would probably
compensate for any extra compression beyond the
kinematical minimum (4.30). In any case, energy densities
in excess of one order of magnitude above the ground-

chains are produced sequentially. Furthermore, they
neglect the effects of fluctuations in the number of chains,
their energy fractions, and production points. To study
such effects we have written a Monte Carlo program to
evaluate the ensemble average in Eq. (4.13) sampling the
number of chains from a Poisson, the x; from the distri-
bution (4.15), and z; from either (4.16) or (4.17). We have
also included the contribution from the projectile chain
assuming zp=z& in (4.13). Further details of the algo-
rithm and results will be published elsewhere. Here we
only quote the final results of such calculations in Table
II. In that table the average energy loss and deposition in
nuclear matter of thickness 14 fm is given as a function of
incident energy Eo. Cases u=1 and 3 are again con-
sidered. The upper and lower estimates from the energy
deposition are obtained using (4.16) or (4.17), respectively.
Note that while the energy loss is greater for a = 1, the en-

ergy deposition is smaller in that case because the chains
are longer. Note also the saturation of the energy deposi-
tion above Eo & 50 GeV. The most remarkable point is
again the relative insensitivity of the total energy deposi-
tion to variations in a and the distribution of the z;. The
maximum average energy deposition in 14 fm of nuclear
matter is thus —30+10 GeV. We also found that the rms
fluctuations about the average are fairly large ( —10 GeV).
However, in nuclear collisions those fluctuations are re-
duced by- W -'~'.

This Monte Carlo study is therefore consistent with the
estimate Eq. (4.29) for the upper bound of the nuclear
stopping domain. The error bars quoted in (4.29) there-
fore correctly reflect the theoretical uncertainties in the
present estimates.

Just beyond the stopping domain (E, /A &3 GeV)
the situation is more uncertain. If a-1 is appropriate at
those energies, then there could exist a curious intermedi-
ate energy region, 3&E, /A &6 GeV, where baryons
would stop on the average in the midrapidity frame but an
ever increasing fraction of the energy is lost to fast secon-
dary pions produced outside the I orentz-contracted nu-
clear volume. For ca=3, such an intermediate region
would not exist. Experimental information in this energy
domain is obviously needed.

We can now estimate the maximum baryon and energy
densities that could be reached in the stopping domain.
Simple kinematic considerations ' alone indicate that in
the stopping domain the baryon density could reach
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state value should be easily accessible in central collisions
of heavy nuclei at energies E, =(3+1)A CxeV

[E~,b-(17—50)A GeV]. The unique feature at these en-
ergies is that the baryon density reaches the maximum
value that could ever be attained in a laboratory via nu-
clear collisions.

V. HIGH-ENERGY Y NUCLEAR COLLISIONS

In this section we make predictions for the nucleon ra-
pidity distributions in the projectile fragmentation region
for nuclear collisions beyond the stopping domain. The
extension of the multichain model to B+A~N+X,
where both B and 3 are nuclei has been carried out in
Ref. 32. With the assumptions in Sec. II, the invariant
nucleon inclusive cross section for nuclear collisions can
be written as

BA ~XX
=rfawÃ(pj. )

dp
(5.1)

where the rapidity density is given by a multiple collision
series in analogy to Eq. (2.3) as

d1VBA B

g P~z(m, n)Q~ „(x) . (5.2)
m =1 n =1

(Charge-exchange and isospin effects will not be con-
sidered here. ) For a distribution of nuclear-collision im-
pact parameters, %(b), the probability that m projectile
nucleons interact with n target nucleons is given by the

usual Glauber expression

P~&(m, n)= f »P~(m, s)P&(n, b —s),d b&(b) d s
BA oln

(5.3)

where Pz(m, s) is the binomial probability that m projec-
tile nucleons interact at relative impact parameter s:

P~(m, s) = [Nz(s)/B] [1 Nz(—s)/B]I!(B—m)!

Recall that N~(s)/B with Nz given as in Eq. (2.5) is just
the a priori probability of finding a rojectile nucleon in
an infinitely long cylinder of area o;„at relative impact
parameter s. The product PzPz in Eq. (5.3) is then just
the probability of finding m projectile and n target nu-
cleons in that same cylinder when the nuclear-collision
impact parameter is b. Therefore, Q~ „must be normal-
ized to m +n In .Eq. (5.3), oBA does not correspond to
the reaction cross section but rather to a normalization
factor ensuring that

B A

g Pgg(m, n)=1 .
m =1 n=1

The Glauber reaction cross section is given by

d 2s Ng (s) Ng (1—s)
cr, = d b%'(b) 1 — 1— (5.5)

Recall that the inclusive nucleon cross section is normal-
ized as

f d+A ~Ax BA(B +g) (5.6)

~r Oin

&& I 1 —[1—Ng (1—s)/A]" I,
(5.7)

and that it is convenient to decompose B = O'B+SB and
A =O'A+SA, where 8'B is the average number of in-
teracting or wounded nucleons and SB ——B —8B is the
average number of noninteracting or spectator nucleons in
the projectile nucleus B, and similarly for the target A.
From the above relations it is clear that

nucleons fragment independent of one another, i.e.,

Q „(x)=mQ) „(x) . (5.8)

As emphasized in Ref. 22 it is far from obvious that such
an independent fragmentation assumption is valid. There
is as yet no nuclear colIision data to test this assumption.
Since such data will be available within a few years (at
CERN and BNL), we have calculated the leading-nucleon
rapidity density under this assumption using the value of
a=3 determined from pA data; The hope is that devia-
tions from our predictions may help uncover possible new
phenomena in nuclear collisions. For example, if a locally
equilibrated quark-gluon plasma is formed in the frag-
mentation regions as current. speculations suggest, ' then
there could be deviations from our predictions.

With Eq. (5.8), the leading-baryon rapidity density is
given by

with 8 A given by interchanging 2 and B above.
The above relations clearly separate the cumbersome

but well-understood geometrical aspects of nuclear col-
lisions from the sought after dynamics specified by the
distributions Q „(x). It is clear that proton nucleus
data provide information only on Q~ „(x) as given by Eq.
(2.7). In this paper we explore the consequences of only
the simplest assumption —namely, that in the m projectile

where

=(B—Wg)Qp(x)+ 8'g g P~g(n)Q„(x),
n=1

(5.9)

(5.10)

N~(s)
Pgg(n)= f f » P~(n, b —s),

0
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where cr is chosen to normalize

0.5

04-

0.3-

0.2-

I

l

I

l

I

CENTRAL COLLI Sl ONS
1 l I

0+Pb N+X

O.I-

0.0

0.4-
A+A M+X

a=&

g Pgg(n)=1,
n=I

and Q„ is given by Eq. (2.7).
In Fig. 9 our predictions for the leading-baryon rapidity

density in central nuclear collisions are shown divided by
the atomic number of the beam nucleus. Note that only
the projectile fragmentation distributions are shown. Ac-
cording to our assumption on the independence of the
target-and projectile-fragmentation regions the target-
fragmentation contribution is additive and would substan-
tially modify only the lower half of the rapidity region.
We define central collisions via an impact-parameter cut
A'(b) =g(2 fm —b). Experimentally, such an impact-
parameter range is selected via appropriate associated
multiplicity cuts.

The most obvious point to be noted comparing the dif-
ferent reactions is that asymmetric systems such as
0+ Pb offer a more stringent test of nuclear stopping
power than symmetric systems. This is due to the rather
large surface contribution with even the heaviest nuclei.
A central U+ U collision still involves a substantial num-
ber of interactions near the surface where only one or two
multiple collisions occur. In a central 0+ Pb collision,
on the other hand, every projectile nucleon traverses —12
fm of nuclear matter. Therefore, it is not surprising that
0+ Pb exhibits the largest rapidity shift of the reactions
shown.

From the point of view of new phenomena, deviations

from predictions in central U+ U collisions could be
most interesting. With such large nuclei multiple final-
state interactions could lead to local equilibrium and,
hopefully, to a high-baryon-density quark-gluon-plasma
state in the fragmentation regions. However, our calcula-
tions clearly demonstrate that there will always be a sub-
stantial source of background due to nuclear halo in col-
lisions of identical nuclei that would contaminate possible
signatures of that state In. order to reliably subtract that
background, the nuclear-stopping dynamics, via Q
must be first understood by extensive studies with light-
nuclear beams.

VI. ADDITIVE QUARK MODEL

We showed in Sec. III that the available data at 100
GeV could be understood in terms of one phenomenologi-
cal parameter +=3 related to the momentum-degradation
length via Eq. (4.2). However, we have repeatedly pointed
out the limitations of the current phenomenology. In par-
ticular, we have stressed that the extrapolated stopping
power function in Fig. 3 for nuclear depths & 8 fm is not
tested by the current data. To help gauge the uncertain-
ties involved, we show in this section that the 100-GeV
data can be also understood within the framework of the
additive quark model' ' ' (AQM). Remarkably, we find
that the extrapolation to 14 fm with this model is con-
sistent with the multichain extrapolations. This gives us
further confidence in those extrapolations.

In the AQM the incident proton is thought to be com-
posed of three constituent quarks. As the proton passes
through a nucleus one, two, or three of those quarks get
"wounded" due to interactions. The final observed proton
arises from the fragmentation of the wounded projectile.
In contrast to the multichain model the fragmentation.
probability is allowed to depend explicitly on the number
of quarks that were wounded in the projectile. In effect
the multiple-collision series in Eq. (2.3) is terminated at
the term n=3. The probabilities Pq(i) are reinterpreted
as the probabilities Pqz(i ) that one, two, or three constitu-
ent quarks interact in the nucleus. The Q„are regarded
as unknown fragmentation functions to be determined by
fitting data.

The probability that i projectile constituent quarks are
wounded is given in analogy to Eq. (2.4) by

0.3-
o

0.2-

PqA (i)= f A . . PqA (b) l I —
PqA (b) ]i!(3—i)!

(6.1)

where Pq~(b) is the probability that a constituent quark
interacts at impact parameter b,

O. I—

Pqg (b) = 1 — 1 crq~ f dz p g (z,b)—/3
A

0'0 6

~-~max
FIG. 9. Predicted nucleon rapidity densities for central nu-

clear collisions in the projectile frame. Central collisions are de-
fined by integrating impact parameters only up to 2 fm. The ra-
pidity densities are divided by the atomic number of the projec-
tile nucleus. Only the projectile-fragmentation contributions are
shown. The dashed, solid, and dashed-dot curves correspond to
o;=2, 3, and 4, respectively.

—~qx~~(b')~~~+
1 —e (6.2)

and the reaction cross section is given by

&n = f d'bI1 —[I—Pq~(»j'I . (6.3)

In the spirit of that model we take the constituent quark-
nucleon cross section to be o.

~&
——10 mb. The probabilities

for wounding quarks are shown in Fig. 10 as a function of
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FIG. 10. Additive quark probabilities for wounding 1, 2, or 3
constituent quarks with effective cross section o.

q& 10 mb on
%'ood-Saxon nuclei (Ref. 33).

x d X)/dxd pq -0.11+0.34x,
x d'X, /dx d'p, =0.35(1—x),
x d X3jdxd pz-0.

(6.4)

For these calculations we used. the Wood-Saxon pa-
rameters of Ref. 33. Use of the parameters in Eqs. (3.3)
and (3.4) lead to the same probabilities within 10%. This
is the order of magnitude uncertainty in the choice of o.

z&
in any case. Note how large is the probability that only
one constituent quark interacts even for Pb. Note further
that we have set Pq&(i)=c; ~ as in Refs. 13 and 15 al-
though a strict application of Eq. (6.1) to 3=1 would
yield P~&(1)=0.8—0.9. This is an additional model as-
sumption that is necessary in order to fit the A depen-
dence of the data form 2= 1 to 2=208. With this as-
sumption Q~(x) should correspond to the p+p —+@+X
distribution. In fact, we did not constrain Q& to equal the,
proton target data, but rather we determined the Q; at
each value of x by a minimum X fit to all six
(A =p,C,A1,Cu, Ag, Pb) reactions. Such a method was
used in Refs. 13 and 15 to fit A inclusive data.

With a three-parameter fit to six data points at each
value of x we found obviously a very shallow
minimum with enormous uncertainties and correlations
among the Q;. However, the results suggested that in the
measured x range, the contribution to d%/dy from col-
lisions involving three wounded quarks could be neglect-
ed. Therefore, we tried a fit constraining Q3 ——0 as in
Refs. 13 and 15. The invariant proton distributions,
x d~N, /dx d Pz, for i =1 (solid dots) and i=2 (open cir-
cles) as determined from such a fit are shown in Fig. 11.
The solid lines represent linear least square fits to those
distributions. Vr'e find that we can parametrize those in-
variant distributions for x&0.3 and @~ =0.3 GeV/c in
(GeV/c) units by

O.O
O.O 0.2 0.4 0.6 0.8 I.O

FIG. 11. Invariant proton fragmentation distributions in the
additive quark model (Refs. 13 and 15) resulting from wounding
one (solid dot) or two {open circle) quarks as determined by a P
fit to data (Ref. 7). Wounding of all three quarks is assumed to
lead to negligible proton production in the measured kinematic
range. The data points are obtained by a P fit to the pA ~pX
data (Ref. 7) and lines correspond to linear fits.

x =(—)'. (6.6)

With Eq. (6.6) the average momentum fraction carried by

With the above fragmentation functions the invariant pro-
ton inclusive cross section in the AQM js

d 3 pA —+pX d Ni d 2V2
F.

3
=xof'„" P„(1) +Pz(2)

dp dxd pg dxd pg

(6.5)

In Fig. 12 the solid curves calculated from the above rela-
tion are compared to the Busza data. %'e find that the
AQM can reproduce the data as well as the multichain
model. Of course, there is a much larger degree of free-
dom in the AQM through three arbitrary fragmentation
functions.

For purposes of this paper the important question is
what this fit implies about nuclear stopping power. Un-
fortunately, the data only go down to x=0.3, and the
model provides no clues of how to extrapolate the frag-
mentation functions to low x. Thus, strictly speaking, the
nuclear stopping power remains undetermined from the
available data. We can, nevertheless, try to estimate it in
the spirit of Ref. 17 by extrapolating Eq. (6.4) to a lower
cutoff x, . We took x, =0.073, corresponding to an extra-
polation to midrapidity. With this extrapolation we
found that the average momentum fraction carried by the
leading proton is x&-0.45 and x2-0.25 if one or two
quarks are wounded, respectively. With a form of Q3
compatible with it being negligible for x &0.3, the leading
proton would carry only a fraction x3 &0.15 of the in-
cident energy if aH three quarks were wounded. These re-
sults are therefore compatible with
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FIG. 12. Comparison of proton inclusive data (Ref. 7) with
calculations using the AQM fragmentation functions of Fig 11.
as parametrized by Eq. (6.4).

the leading proton after traversing a thickness z of nuclear
matter is

(x),= —,(1+e ') (6.7)

where A.&-7 fm is the mean free path of a constituent
quark in nuclear matter. For x=14 fm, Eq. (6.7) gives
(x ) =0.18. In comparison, the multichain model extra-
polation via Eq. (2.32) to 14 fm gives (x ) =0.19 for a nu-
cleon inelastic mean free path A, =2.08 fm. It is remark-
able how stable is this extrapolation to major changes in
the model assumptions as long as the 100-GeV data are
used to constrain the parameters of the models. For com-
parison, the incoherent cascade model, which fails to
reproduce the data, would give (x ) =0.03.

UII. CONCLUDING REMARKS

The main purpose of this paper was to extract as much
information on nuclear stopping power as possible from
the limited data on p+A~p+X at 100 GeV. Making
several strong assumptions concerning transverse factori-
zation and scaling dynamics, we applied the multichain
model to extract one physical parameter, a=3+1, by fit-
ting the invariant cross sections for A =p, C, Al, Cu, Ag,
and Pb at pz ——0.3 GeV/c and x~0.3. This parameter
was shown to be related to the momentum-degradation
lengthA& ,——8+2 fm, that controls the exponential de
crease of the final baryon energy fraction as a function of
nuclear thickness. %'e pointed out, however, that the
phenomenon of longitudinal growth implies that energy
loss via multiparticle production occurs over an ever in-
creasing length scale proportional to the energy. By
analyzing the space-time development of particle produc-
tion in the multichain model we were led to conclude that
there are in fact multiple length scales associated with the
hadronization scales of the different target chains created

during the collision. This follows because hadron-nucleus
collisions involve several independent processes due to the
composite nature of hadrons: each subprocess involving
only a fraction of the incident energy. The longest of
those chains was found to be on the average 1/(1+ a)
smaller than the naive longitudinal length scale given
by Eo/o.

The second purpose of this paper was to apply the
empirical stopping power to determine an upper bound on
the stopping domain in nuclear collisions. In this paper
we define the stopping domain to be that energy range in
which collisions of slabs of nuclear thickness 14 fm lead
not only to the stopping of most baryons in the center-of-
mass system but also to the production of most of the en-
ergetic secondaries within the Lorentz-contracted nuclear
volume (14/y, ). For this we had to extrapolate to
lower energies and greater nuclear depths than covered by
the current data. We found in Sec. IIID that we should
expect violations from the simple scaling hypothesis, but
that those violations tend to increase the stopping power
of nuclei at lower energies. Unfortunately, there is insuf-
ficient data at present to determine the precise form of the
energy dependence of those violations. Therefore, in es-
timating the boundary of the stopping domain in nuclear
collisions we varied the parameter of our model from
+=1 to 3 to cover the large uncertainties associated with
scaling violations. We found, however, that because of
longitudinal growth the bound on the stopping domain,
E, &(3+1)A GeV, was relatively independent of the
value of o.. We showed further that the extrapolation to
nuclear depths —14 fm was stable against variations of
the model assumptions by considering limitations on the
number of target chains and by varying the assumptions
on projectile fragmentations via the additive quark
model. ' ' " This gave us further confidence about our
estimate of E, '". A Monte Carlo study also showed that
within the errors quoted, the maximum stopping energy
does not depend sensitively on the unknown distribution
of the interaction points.

Beyond the maximum energy for stopping the situation
is less clear. Eventually, at very high energies
E, ~ ) 1002 GeV the fragmentation regions and central
region separate although the nuclei shatter over several
units of rapidity. The energy range above the stopping
domain -(3—S)A GeV is most likely characterized by
large fluctuations. Some collisions may accidently lead to
complete stopping, while others only to shattering. In this
region the notion of an average collision may not be use-
ful. The stopping domain has the advantage that the
maximum baryon and energy densities are more or less
fixed by kinematics. With ma, ximum stopping energies
E, /A on the order of a few GeV, our analysis is con-
sistent with previous expectations' that baryon densi-
ties and energy densities on the order of 10 times those
found in ground-state nuclei could indeed be achieved in
central collisions of heavy nuclei. Whether that energy
density is enough to reach the quark-gluon-plasma phase
remains an exciting open question.

Finally, there is a clear need for more extensive data to
help resolve some of the many remaining uncertainties as-
sociated with nuclear stopping power. Systematic mea-
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surements as a function of energy in the range 20 to 400
GeV are important to map out the scaling violations.
Also important are measurements of inclusive cross sec-
tions with associated multiplicity triggers to probe stop-
ping power to greater depths z —14 fm. Finally, central
collision studies with light nuclear beams are necessary to
test linear extrapolations from pA reactions and look for
possible nonlinear effect. We have made predictions for
central nuclear collisions to establish a baseline in looking
for novel effects.
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