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Using the short-range-expansion formalism we simultaneously fit the pp elastic differential cross
section (DCS) as Vs =52.8 GeV and the newest Pp DCS data measured by UA4 at the CERN SPS
pp collider (SppS). This amounts to a prediction of the large-¢ behavior of the SppS DCS. The cor-
responding valon-valon matter form factor has a zero at a smaller Q2 than it has at Vs =52.8 GeV.
We show that, as s increases from CERN ISR to SppS and beyond, the valon, like its host hadron,
becomes larger and blacker while still remaining about half the size of its host. A qualitative physi-

cal explanation of this behavior is suggested.

I. INTRODUCTION

In a previous paper,! we argued for the use of matter
form factors (MFF’s) as an arena of confrontation be-
tween theoretical descriptions of dynamic hadron struc-
ture, on one hand, and high-energy elastic hadron-hadron
scattering data on the other hand. Specifically, we
analyzed the pp and mp MFF’s extracted from CERN ISR
and Fermilab differential-cross-section (DCS) data in
terms of the valon model discussed in Ref. 2.

Denoting the c.m. energy squared by s, the impact pa-
rameter by b, and the four-momentum transfer squared
by ¢t = —Q?, we define the MFF corresponding to high-s
AB—>AB elastic scattering as the Fourier-Bessel
transform of the eikonal Q(s,b) (Ref. 3)

M 5(s,00= [ " Qs,b)o(bV = )b db (1)
and assume it can also be written as
M 5(5,6)=K 4(Q*)K5(Q*)V(s,0?) . 2)

Here K4,Kp are due to the matter distributions of struc-
tureless valons in the colliding hadrons A4,B, as deter-
mined in the valon-model analysis of high-Q? deep-
inelastic lepton-hadron scattering.* ¥(s,¢) is the univer-
sal valon-valon (“reduced”) MFF (Ref. 1).

The most striking feature of the MFF’s extracted from
experimental data in Ref. 1 is that they all pass through
zero beyond Q2?=5 GeV>2 This is intimately related to
the behavior of the corresponding differential cross sec-
tions at such large values of — ¢, notably to the absence of
further dips. By predicting the mp MFF at pj,, =200
GeV/c from the pp MFF at Vs =52.8 GeV we found
that Eq. (2) gives good results modulo the s dependence of
the zero.in the (reduced) MFF (see Fig. 4 in Ref. 1).
Given the universal features of MFF’s that one could ex-
tract from DCS data up to the highest measured ¢ values,
we will again assume the validity of (2) for all measured ¢
values of the DCS at the CERN SPS pp collider (SppS).
Since the relevant ¢ range decreases experimentally as s
increases due to the shrinkage of the forward peak, we ex-
pect our analysis to become increasingly more valid as s
increases.

The idea of “equivalent energies” for different hadron-
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hadron systems, at which the factorized ansatz (2) is ex-
act,! is an expression of the following observation: let
x4,xp be the longitudinal-momentum fractions of valons
in hadrons A4,B (in the coordinate system discussed in
Ref. 5 and used in Ref. 1). Strictly speaking, ¥ should be
a function not of s, but §=x 4xps, the fraction of the total
c.m. energy which is available for valon-valon scattering.
The factorized ansatz Eq. (2) can only be an approxima-
tion. We should properly write

1 1
Mp(5,0)= [ dx s [ dxplK 4(x4,0)Kp(x5,0%)
XV(E,00], 3)

but as long as we do not know the analytical form of
V(5,t), we must use Eq. (2) to compare valon-model cal-
culations to data, thereby testing its validity as an approx-
imation to Eq. (3). To see that such a convolution leads to
the concept of ‘“equivalent energies” for different reac-
tions, let us take the simplistic case of a factorizable
Kc(xc,0%)=8(xc —%c)Kc(Q?) with different X for dif-
ferent particles [e.g., v for mesons (C=M) and + for
baryons (C =B)]. We then have

Miyp(s,0) =Ky (Q*)K5( Q) V(Xps % 55,03
but
Mg (s,0) =Kz (Q*)V(Xp’s,0°) ;

hence to obtain a unique expression for ¥ one should
compare the extracted MB—MB MFF at an s value
Xp /Xy times the one for the BB— BB reaction.

The quality of the DCS data at the other ISR energies
was not sufficient to enable us to extract a clear trend in
the s evolution of experimental MFF’s (see Fig. 1 of Ref.
1). The only way to look for a clear signal on the s depen- -
dence of the reduced MFF is to analyze the collider data.
Note that, under the standard assumption of Pomeron
dominance,® the fp MFF should be identical to the pp
MFF at the same (high) energy.

II. THE MFF FROM ISR TO SppS

The UA4 collaboration has measured the pp total cross
section’ at Vs =546 GeV to be 61.9 mb. Their elastic
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DCS data®® are represented by solid dots in Fig. 1. In or-
der to extract the corresponding MFF we use the follow-
ing parametrization of the spin-nonflip, purely absorptive
elastic scattering amplitude,’ based on the latest UA4 fits®
to the measured DCS [in GeV~?, with normalizations
do/dt=7|f(s,t)|* and o0y;=47Imf(5,0), and ¢ in
GeV?,

12.65¢7%, 0< |t| <0.15,
Imf(t)= {11.376e™!*, 0.15< |t | <0.21, @)
10.79¢%7, 0.21< |t | <0.5.

For |t | >0.5 GeV?, we use!”
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FIG. 1. Simultaneous SRE fit to the pp DCS at Vs =52.8

GeV and to the pp DCS at Vs =546 GeV. ISR data are

represented by open dots and UA4 data by solid dots. The solid

curve is the fit to ISR data and the dashed curve is the fit to the

UAA4 data (up to —z=1.5 GeV?. Beyond 1.5 GeV? the dashed
curve is a prediction. Typical error bars are shown.

Imf (1) =Re[0.107 25¢/0(e > /0 o4 +230 =0y (5
with —£,=0.81 GeV? ¢=7—0.39, and 6=0.13. As
suggested by the UA4 group, we have used smoothly con-
nected exponentials instead of the sum of exponentials
used in Ref. 1. The elastic profile 4 (s,b) is then obtained
in the standard way as the Fourier-Bessel transform

Ch(s,b)= [ TImfls,00o(bV—E W —tdV=F . (6)
The corresponding eikonal
Q(s,b)=—In[1—h(s,b)] 0)

is then used to calculate the resulting MI-,p(s,t)/MFp(s,O)
which is represented by the dots in Fig. 2. Since the DCS
has only been measured up to | ¢ | =1.5 GeV?, we cannot
trust the corresponding MFF beyond roughly 1 GeV?2,

To make a statement about the zero in the MFF at the
collider energy we must thus predict the large-t DCS. We
do this by performing a simultaneous fit to the measured
SppS DCS and to the DCS measured at the ISR energy of

s =52.8 GeV, using the short-range expansion (SRE)
ansatz®!%!! for the inelastic overlap function G (s,b):
2n

_¥b_ 12—/
V2B

2
G(s,b)=Pe "8 5, 8)
n=0

This is an expansion of the inelastic overlap function
G (s,b) around a Gausszian form, in terms of the short-
range variable (be ~(Y®7"/4B) where the argument of the
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FIG. 2. Various pp MFF’s at V's =546 GeV. These MFF’s
are normalized to unity at ¢ =0. Dots represent the extraction
from UA4 DCS data. The solid curve corresponds to the small-
est value of the SRE parameter B compatible with the fit in Fig.
1. The error bars are induced by the errors listed in Table I.
The dashed curve represents Eq. (15) with a?=3.2 GeV>.
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power series is chosen such that its maximal value be uni-
ty. Given the simplifying assumptions that ¥ is constant®
and 8,=8,2/4 (Ref. 11), a simultaneous fit to the DCS
data at two c.m. energies determines a well-defined evolu-
tion of each of the three remaining parameters with the
increase of s. Setting y =In*(s /sy) with s,=100 GeV?
one writes

_btcy
Ply)= [+cy ’
S y)=f+gy,

as discussed in the Bern talk of Ref. 6 and in the Syracuse
talk of Ref. 10. The fit shown in Fig. 1 is obtained for the
parameter values quoted in Table I.

The errors on the parameters in Egs. (9) (see Table I) in-
duce errors in the corresponding MFF. In Fig. 2 the solid
curve corresponds to the lowest value of B (Vs =546
GeV) compatible with the fit and the error bars show the
effect of the uncertainty in the SRE parameters on the
corresponding normalized MFF. We have represented
this curve because it coincides with the extraction from
Egs. (4) and (5) up to Q%=1 GeV?; for 0%*>1 GeV? it
amounts to a prediction of the pp MFF, corresponding to
the dashed curve in Fig. 1. Our predicted SppS MFF has
a zero at a’~3.2 GeV? whereas the pp MFF at
Vs =52.8 GeV had its zero at a?~5.67 GeV>.

We can obviously use Egs. (8) and (9) to extract the pp
(pp) MFF at other energies as well. Figure 3(a) shows the
corresponding s dependence of the quantity

f(s)=M,,(s,0) (10)

and Fig. 3(b) displays the s evolution of the zero in the
MFF. Error bars are again induced by the parameter un-
certainties listed in Table I. Slightly larger error bars are
obtained if we compare different versions!® of the SRE
analysis: one which gives a detailed description of the
ISR regime, and yet another one which is especially
designed for the analysis at very high energies (the Super-
conducting Super Collider and beyond) since it explicitly
satisfies unitarity at asymptotically large s. We find that
this does not affect the conclusions we draw from Figs.
3(a) and 3(b), namely that f(s) is very well described by

f(s)~s€, €x~0.105 (11)

and that the zero in the (reduced) MFF decreases in a very
specific way as s increases.

III. BEL AND THE VALON

Can we interpret these findings physically? The in-
crease of the SRE parameters with s according to Egs. (9)
has a simple physical interpretation:*!° the proton (an-

TABLE 1. Parameters in Eq. (9) used for the fit shown in
Fig. 1. d and e are in GeV~2,

b 0.912+0.004 c

0.026+0.006
d 6.530+0.211 e 0.045+0.008
f 0.118+0.0026 g 0.0009+0.0001
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FIG. 3. (a) f(s) and (b) a*(s) according to the SRE fit in Fig.
1. Error bars are induced by the errors listed in Table I. The
straight line in (a) corresponds to e=0.105 in Eq. (11) [or (16)].

tiproton) becomes blacker as P increases, larger as B in-
creases, and edgier (that is, closer to having a step-
function profile) with the increase of §,. The valon model
interpretation of MFF’s allows us to trace this so-called
“BEL” behavior to the (as yet) qualitative dynamics of
valon-valon scattering.

In Ref. 12 we linked the phenomenological valon model
to a simple two-scale picture of hadron structure suggest-
ed by nonperturbative dynamical mechanisms for chiral-
symmetry breaking and confinement in QCD. Dynamical
quark mass generation in QCD implies that the valon
(“constituent quark”) is identical to the chiral-symmetry-
breaking color-field (“parton”) configuration Gy, which is
characterized by a fundamental scale parameter Ay. Con-
finement can be described as dynamical gluon mass gen-
eration, expressing the existence of a color field configura-
tion G, with the fundamental scale A, =200 MeV. The
two scale parameters must satisfy the inequality

Ay> A, . (12)

The valon model is a phenomenological implementation
of the two-scale idea. Consider lepton-hadron scattering
as an “electroweak gauge boson microscope” with resolu-
tion Q7 (see Ref. 12). For 0?<10 GeV? (Ref. 5), the im-
pulse approximation for the interaction of the virtual pho-
ton (or W,Z) with the probed constituent allows one to
factor off confinement dynamics into distributions of
valons in the host hadron. The distribution of partons in
a valon is then independent of the confinement problem.
This universal distribution, independent of flavor and host
hadron, is generated by chiral-symmetry breaking and is
therefore governed, to a first approximation,'? by a single
parameter Q> which expresses the existence of Ay.
Valon structure is not resolved at resolution scales below
Q0% At the same time, Q,? also sets the scale of the spa-
tial size of a valon.

Analogously, let us consider hadron-hadron (HH)
scattering as a “gluon microscope.” Now we have two
resolution variables s and t. As opposed to ¢, s explores
the on-shell dynamics of hadronic matter, the dynamical
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excitations of hadronic substructure. Pumping large
amounts of s into hadrons may cause G, and then Gy to
break apart, thereby producing QCD plasma in the labo-
ratory. It is generally agreed that it will take high-energy
heavy-ion collisions to realize this possibility, which thus
remains experimentally off-limits for HH scattering. We
shall therefore restrict ourselves to the hypothesis that
dynamical excitations produced in such collisions cannot
break up the bound-state structure of valons and hadrons.
This motivates the ansatz for M 45(s,t) given in Eq. (2).
According to the static two-scale picture, the K’s embody
the binding of valons into hadrons; since deconfinement
of valons is not supposed to occur, K4 and Kp must be s
independent. All the s dependence of M must be con-
tained in the reduced MFF. V (s,t) must have the general
form

Vis,t)=f(s)W(s,t) . (13)

In Ref. 1 we used a simple ansatz for the reduced MFF
(normalized to one at Q2=0)

22
wis,0h=281=2 (14)
a<(s)+Q
It continues to be a fair first approximation at the SppS:
the dashed curve in Fig. 2 is obtained by fixing the pa-
rameter a? in the formula

GZ(S)-—Qz
a’(s)+Q?

to the SRE-predicted value of 3.2 GeV2. Let us therefore
use Eq. (14) in our heuristic discussion of the valon-valon
MFF.

In the denominator of the effective expression (14), the
timelike pole a? is seen to govern the size of the parton
distribution in the overlapping valon-valon system at a
. given s. In this sense, it generalizes the scale Q,%. The
zero in the numerator indicates that for Q?>a? valons no
longer scatter as structureless objects. Indeed, in the
Chou-Yang droplet model, an infinite number of struc-
tureless, infinitely small scatterers leads to a t-independent
MFF (since the Fourier transform of a 8 function is a
constant). For this range of Q2, we therefore deduce that
complicated processes involving constituents of valons set
on. This is again in agreement with the idea that a? gen-
eralizes Qo2

The s dependence of a? means the existence of a func-
tional relationship between s and Q2 [“scaling” of W in
Q?%/a*(s)]. The decrease of a? with s is then intuitively
understandable: as s increases the structure inside valons
becomes manifest “sooner” at smaller —¢. Since a? also
governs the size of the parton distribution, we see that
valons (and hence hadrons) become larger as s increases.

At this point, one may wonder about the relative sizes
of the valon ¥V and its host hadron H and the ensuing use-
fulness of a decomposition such as the one in Eq. (2). If
the relative positions of the single zeros of the HH ampli-
tude [called —1#((s)] and the V¥ amplitude [which is
a’(s) of the MFF] are an indication of the relative sizes of
these objects, then the radii are in the ratio

Ry/Ry=[—to(s)/a(s)]'72 .

— K 2(D?2
M, (5,0%)/M,,(5,0)=K,Q%) (15)

At both the ISR and the SppS this ratio is approximately
%, i.e., the valon’s size is always roughly half that of the
proton. We conclude that Eq. (2) remains useful for the
whole energy range studied and that valons, like their host
hadrons, become larger as s increases, in the ratio
R%(V's =546)/R*(V’s =53)=1.7, which is not too far
from what one would expect from studying the increase of
of(s). If one uses the forward slopes of the amplitudes
as an indication of the relative sizes, our conclusions
would qualitatively be the same.

Let us now note that one can only define the average
color and the average spin projection of a valon, since
these quantities perpetually fluctuate due to random emis-
sion and absorption of infrared soft gluons.!*> As in QED,
there must be an infinite cloud of such wee gluons sur-
rounding any partonic Fock state, that is, all valons at all
stages of their Q2 evolution. It has been known for a long
time!* that “wee,” soft gluons contribute significantly to
the rise of the total HH cross section with s. It is thus
natural to associate the Q2-independent factor f(s) in Eq.
(13) with the “blackening” of the infrared soft gluon
clouds as s increases. It is interesting to note that the
presence of a factor of the form

fs)~s€ (16)

has long ago been argued'® to be a general consequence of
field-theoretic models with soft infrared quanta and it un-
derlies the s dependence of factorizable eikonal (FE) type
geometrical models of high-energy elastic hadron-hadron
scattering. The value of € has not been theoretically cal-
culated for QCD. In fact, as in all problems involving in-
frared soft quanta, one can only expect an effective
parametrization obtained by fitting Eq. (16) to experimen-
tal data. Our Fig. 3(a) shows that Eq. (16) is a remarkably
good approximation over a wide range of s; our value for
€ is consistent with the estimates of Refs. 15 and 16.

We have inferred that the colliding valon-valon system
becomes larger and “blacker” with increasing s. Equation
(13) shows that it does so in a manner which is reminis-
cent of FE models [the factor f(s)] but which also has
“scaling” effects built into it through the s dependence of
the zero in the reduced MFF. These are precisely the
qualitative features of BEL behavior. It is an intriguing
task for the future to prove that valon-valon scattering ac-
tually is the underlying dynamics of BEL behavior, by
deriving the motion of the zero from nonperturbative
QCD. Should one be able to find a parametrization for
a?(8), one might try to represent V(5,t) by Egs. (13) and
(14) and then use it in Eq. (3). One could then calculate
G (s,b) from M (s,t) and would hopefully reproduce the
SRE analysis.

The question arises whether 42 is really constant at low
s (in the ISR regime and below). We performed an SRE
extraction of the pp MFF at p;,, =400 GeV/c and found
the zero at ~6.02 GeV2 Together with our observation
in Ref. 1 that the mp MFF at py,,=200 GeV/c has its
zero at a?=8.5 GeV?, this indicates that da2/ds <0 also
at lower energies. It seems however that, in this region,
the relevance of the motion of the MFF zero for the DCS
is overshadowed by Regge effects.
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IV. DISCUSSION

We have used SRE parametrizations to display the en-
ergy dependence of reduced MFF’s as s varies from ISR
to SppS and beyond. We relate the characteristic BEL
behavior of such parametrizations to the nonperturbative
dynamics of valon-valon scattering.

The SRE formalism gives an excellent simultaneous
description of all elastic scattering observables at ISR and
SppS.>1%11 It improves upon the performance of both
geometrical-scaling (GS) and FE models, whose s depen-
dences can be viewed as too restrictive particular cases of
BEL behavior. Indeed, GS hadrons only become larger as
s increases, while FE hadrons become excessively black at
the expense of an insufficient size increase which causes
too small an increase of the forward logarithmic slope of
the DCS as a function of s. Some FE models'” have actu-
ally had to become edgier and larger to improve their per-
formance.

We have found that the Fourier-Bessel transform of the
eikonal is well approximated by the generic form

M 45(s,t)=F 45(t)f(s)W(s,t) , (17)

where F4p(2) is related to the convolution of matter dis-
tributions in the colliding hadrons, f(s) is of the form
(16) and W (s,t) features a zero at a value of Q2 which de-
creases as s grows. Other geometric models of high-
energy elastic hadron-hadron scattering can be viewed as
particular cases of Eq. (17).

The new “edgy” version of the Chou-Yang model
parametrizes the eikonal as'’
cb

S 1 Qqlb) (18)

So

Q(s,b)=A(s)

which, upon Fourier-Bessel transformation, will yield an
expression of the form (17).
Chiu!® writes

M (s,t)=iK(Ee ~""/?)%xp{ —B[(A>*—1)"2—A1} ,
(19)
B=by+b,[In(E/E|)—in/2], E;=1400 GeV

with E =s/2m,. His parametrization of W (s,t) does not
have a zero because it does not apply for | ¢ | > 1.2 GeVZ
Glauber and Velasco!® analyze the small-¢ SppS DCS

data using
—c 2
Mﬁp(t)/MI_,P(O)—Gp (1) (20)

with G, given by parametrizations which successfully
describe the proton electric form factor as probed in
electron-proton scattering. A future extension of their
model to variable s and to large | ¢ | would presumably
also lead to the general form (17). Indeed, if we too re-
strict our analysis to small-(—¢) data, we see that, since
our a*(s) increases from SppS to ISR, their equivalent pa-
rameter in ®(¢) has to follow suit, a fact which these au-
thors preliminarily report. Note that their multiple
scattering analysis lends support to the idea that the fac-
torized ansatz (2) [or (17)] is exact at fixed s, for a given
reaction.

On the other hand, Bourrely, Soffer, and Wu (BSW)
still use a purely FE-type ansatz'®2°

1 2
(S)a +t )

M(s,t)= ‘
(s,1) (1—t/m2)(1—t/my?? " 0 a?—t

(21)

The presence of the zero enables them to analyze the
large-¢ but its lack of s dependence leads to the aforemen-
tioned, generic. FE problem with the forward logarithmic
slope. However, it is interesting to note that the simul-
taneous BSW fit to ISR and SppS data reported in Ref. 16
requires a?=3.8 GeV?, whereas their previous fit to ISR
data alone? required a?=5.1 GeV?.

Our model thus combines the data-reproducing features
of other approaches while reducing the number of param-
eters and offering a simple interpretation of the observed
behavior in terms of popular ideas about nonperturbative
QCD. 1t also offers the hope of going beyond the factor-
ized approximation (17). Its value depends, of course, on
the quality of its predictions about large-t¢ elastic scatter-
ing at the SppS and about the MFF at other values of s, as
well as on the ultimate calculability of its parameters
from nonperturbative QCD.
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