
PHYSICAL REVIE& D VOLUME 32, NUMBER 3 1 AUGUST 1985
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The main content of this article is a phenomenological treatment of the energy dependence of
proton-proton scattering in the energy region 0(E&,b(800 MeV, using previously developed two-
variable expansions of scattering amplitudes. Instead of turning directly to the experimental results,
we make use of the recent Geneva-Saclay phase-shift analysis to calculate the proton-proton
partial-wave amplitudes A&,I,, (together with their error bars). These amplitudes are expanded in
terms of O(4) transformation matrices in a manner implied by the two-variable expansions. The ex-

pansion coefficients, i.e., the O(4) amplitudes, are then obtained by a P minimization, treating the
phase-shift values of A~,I, as data. We find that the O(4) expansions provide a good fit with a
reasonable number of parameters, that the fit is quite stable with respect to the variation of the
number of free parameters allowed, and that the expansions have a good threshold behavior. The
results are sufficiently encouraging to warrant a future reanalysis of all nucleon-nucleon elastic-
scattering data, using the O(4) expansions, and to extend the analysis to higher energies than those
that have been treated by phase-shift analysis.

INTRODUCTION
I

The purpose of this article is to apply previously
developed two-variable expansions' of scattering ampli-
tudes for binary reactions to analyze proton-proton
scattering from threshold to 800 MeV incident-particle ki-
netic energy. This is the first such application of the
two-variable formalism and its aim is twofold. On the
one hand we wish to provide a good and stable fit to the
energy and angular dependence of the proton-proton
scattering amplitudes in the mentioned energy region (for
all scattering angles) in terms of a reasonably small num-
ber of free parameters —the expansion coefficients. On
the other hand, we wish to test the appropriateness of
these particular expansions, based on the representation
theory of the rotation group O(4), as a means for recon-
structing scattering amplitudes from data in the inter-

mediate energy region. In principle we view these expan-
sions as a tool that should complement and in some cases
replace partial-wave analysis as a phenomenological
reconstruction method.

As a brief historical remark we mention that two-
variable expansions of scattering amplitudes for spinless
particles were originally proposed' as an application of
harmonic analysis on homogeneous spaces of the Lorentz
group O(3, 1). The scattering amplitude f(s, t) for a reac-
tion of the type 1+2~3+4 was expanded in terms of
functions of both kinematic variables s =(p&+pz) and
t = (p ~

—p3 ) . The kinematic variables s and t ranged
over the entire physical region, and the expansions were
provided by the representation theory of the homogeneous
Lorentz group O(3, 1). Different choices of bases for the
representations of O(3, 1) made it possible to incorporate
different types of single-variable expansions used in
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scattering theory, such as the partial-wave expansions (for
fixed energy), Regge-pole expansions (for fixed momen-
tum transfer), and eikonal expansion. ' The envisaged
applications were mainly theoretical ones: the expansions
can serve as a tool for solving relativistic equations, and
particle dynamics can be formulated in terms of proper-
ties of the expansion coefficients.

The most essential feature of the expansions is that they
are "complete" expansions: the kinematic variables are
displayed explicitly in known basis functions. The
dynamics of any particular reaction is reflected in the
properties and values of the expansion coefficients. The
use of group-representation theory has made it possible to
incorporate many desirable kinematic properties of the
scattering amplitudes into the expansion functions. The
latter have correct threshold behavior, and are orthogonal
over the physical region; properties of amplitudes under
parity conservation, the Pauli principle, etc., can be incor-
porated in a natural manner; various analyticity properties
are manifest.

More recently, the expansions have been generalized to
reactions with arbitrary spins and the emphasis has shift-
ed to the possibility of phenomenological applications.
From this point of view, the simultaneous treatment of
the entire physical region is a drawback, rather than an
advantage. Indeed, the fact that the physical scattering
region is infinite forces the expansions to involve integrals
(over representations of the Lorentz group), in addition to
sums (e.g., over angular momentum). What is more, ex-
perimental data are always available in finite-energy re-
gions only. A way out of this dilemma is to restrict the
treatment to a finite energy region 0&E&E „,where
E~,„ is some chosen fixed energy (in this articleE,„=800 MeV in the laboratory system). It has been
shown that a restriction to a finite energy region
makes it possible to replace the O(3, 1) integral expansions
by "discrete" expansions, based on the representation
theory of the group O(4).

The O(4) expansions share many of the desirable prop-
erties of the original O(3, 1) expansions. The expansion
functions, which are now the O(4) group-transformation
matrices, also have the correct threshold behavior. The
expansions incorporate the usual O(3) partial-wave expan-
sion (no longer, however, the Regge-pole or eikonal expan-
sion). The basis functions are orthogonal, this time over
an O(4) sphere, corresponding to the finite region that we
are considering.

Since the O(4) expansions involve sums only (conver-
gent series, to be more precise), they can be used as a tool

for analyzing the energy dependence of scattering ampli-
tudes. Indeed, the expansions involve two infinite sum-
mations, one over the total angular momentum j, conju-
gate to the scattering angle, the other over an O(4) label n,
conjugate to the energy. In a phenomenological data
treatment both sums are cut off at some maximal values
and the expansion coefficients are calculated from a sta-
tistical best fit to the data. The coefficients, once deter-
mined, provide a complete description of the angular and
energy dependence of the scattering amplitudes.

In this article, we do not return all the way to the
proton-proton scattering data. Instead, we make use of
the recent Geneva-Saclay phase-shift analysis to calculate
the proton-proton partial-wave amplitudes A~,~, at 20-
MeV intervals and we treat these amplitude values as
"data. " From them we calculate the O(4) amplitudes and
ultimately the total amplitudes. The purpose of this exer-
cise is mainly to test various features of the O(4) expan-
sions. These include (1) the rapidity of convergence, i.e.,
the number of parameters needed to get a good global fit,
as well as reasonable X values, (2) the stability of the ex-
pansions with respect to the choice of the cutoffs, and (3)
the sensitivity with respect to structures in the amplitudes.

In Sec. II we present the O(4) expansions in a con-
venient form for our purposes. We establish some new
properties of the O(4) transformation matrices needed to
implement the consequences of time-reversal invariance
and other symmetries on the O(4) amplitudes. In particu-
lar, we show that the O(4) expansions permit a convenient
decoupling of the coupled triplet pp amplitudes. Section
III is devoted to a numerical fit to the proton-proton
"data, " separately for singlet, uncoupled-triplet, and
coupled-triplet states. The conclusions are contained in
Sec. IV. Running ahead we state the main conclusion.
The "hybrid" approach of this paper has shown that O(4)
expansions provide a useful parametrization for describ-
ing nucleon-nucleon scattering. The next step is to per-
form a complete reanalysis of all pp scattering data, for
all angles and all energies up to some E,„, in terms of
the O(4) expansions, taking all experimental points direct-
ly as they were measured (avoiding interpolations between
the energies of different accelerators, etc.).

II. THE O(4) EXPANSIONS
OF PROTON-PROTON SCATTERING AMPLITUDES

The O(4) expansions ' in the "initial-spin —final-spin"
formalism can be written as a partial-wave expansion, '

21' 1(a, 8,$)=g f4~(21 +1)]'~ (lo' iso
I j —o)(l'0 so' ~j o')A(,(, (a) Yi n(8, $)~

ll'j 2j+1 (2.1)

supplemented by an energy expansion of the partial-wave amplitudes

&&&,, (a) = g (10sA, j
jX)(l'Os'A, '

~
jA, ') g [(n +1) —v ]T"„'&d",& (a) .j+ ~

A, , A,
'

n, v
(2.2)
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Here Tz» ~ are the O(4) amplitudes and dj",~(a) are the re-
duced O(4) group-transformation matrices, given explicit-
ly in the Appendix. The O(3) Clebsch-Gordan coeffi-
cients and spherical harmonics are as in Ref. 11.

The energy variable a is given by
' 1/2

w —(m~+mz)
sincx =

wM —( m ( +m 2 )

(m(+my) & w (wM, 0&a &7TI2, (2.3)

The symmetry (2.4) will reduce the number of indepen-
dent O(4) amplitudes in the expansions by a factor of 2.

In addition, time-reversal invariance implies

J J
A»), , (a)=A(, »(a) . (2.5)

Below we shall obtain the implications of these two sym-
I

where w =(p~+p2) is the total invariant energy and wM
is some fixed energy, up to which we plan to perform the
data analysis. For the relation between the amplitudes
A»~, and those of Stapp and coworkers, ' usually used in
phase-shift analysis, see Ref. 8.

As m varies over the considered region, the variables o.,
8, and P range over a hemisphere: 0 & a &vr/2, 0& 0 (~,
0 & P & 2'. To be able to use the completeness of the O(4)
d functions, we extend the definition of the partial-wave
ainplitudes to the entire sphere by symmetry:

(2.4)

nv jrn~ iyn —+
+j 'A.'=( l)J' ' —k'=( —1)g 'A, ' ~ (2.7)

From here on we restrict to the elastic scattering of two
identical spin- —, particles, e.g., proton-proton scattering,
and summarize the direct and inverse expansion formulas.
We recall that parity conservation and the Pauli principle
imply that l and l' are even in singlet states and odd in
triplet ones.

Let us first consider the singlet (s =s'=0, l =I'=j
even) and uncoupled triplet (s =s'=1, l =I'=j odd)
states. We have

metrics for the O(4) amplitudes Tz» ~. Previously ' we
have shown that parity conservation

l +l'
A»,

——g( —1)

implies

(2.6)

(q is the product of the four intrinsic parities) and that if
the initial-state and final-state particles are identical, i.e.,

0

A(,(,, ——( —1)'+'A(,(,,
and

J f+s J
~»is =( ~»ts

we obtain

&Jpjp(a)= . g (n+1) SJ"dJ"pp (a) (j even),2j+ 1
(2.8)

&j~j~(a)=,&2 g n(n+2)Tg, '[dj»" (a) —dj&*&(a)] (j odd) .(2j+1)'" n

The inverse formulas are

(2.9)

~/2
&Jap(a)djpp(a) sin a da, n even,

n nQSj —Tj QQQ
—

0 (2.10)

Tn 1

Tnl j &]&

(2J + 1)1/2

0, n even,

2AJ~&z~(a)[dj"~~(a) —dj"~ ~(a)] sin ada, n odd .
3m(2j+1)'»

(2.1 1)

For the coupled triplet we have s =s'=1, l =j+1, l'= j+1,j even. Consider first the special case when j=0. The
only nonvanishing triplet partial-wave amplitude with j =0 is

c4 ~~~~(a)= 3 g (n +1) Tppdp~p (a)
n=1

and the inverse formula is

(2.12)

0, n even,
TQQ = TQ&&Q

A~~~~(a)dp&p(a)sin ada, n odd.
(2.13)

In order to extract the full implications of time-reversal invariance (2.5) and the symmetry (2.4) for the coupled triplet
with j)2 we first invert the expansion (2.2) for the case under consideration, using the orthogonality properties (A4) of
the d functions. ' We obtain
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(2.14)

T' "+" =2c 8 (a)d' "+" (a) sin (ado.3 J10
m/2

T(2k+1)1 gj( )[d(2k+1)1( )+d(2k~1)1( )] 2

0

where

2

3'(2j + 1)
(2.15)

and k =j/2, j/2+ 1, j/2+2, . . . .
The new amplitudes 8, (a) (a = 1, . . . , 4) are convenient linear combinations of the usual partial-wave amplitudes

(2.2), namely,

W(~) = [j(j+1)]'"[(2j—1)~(j 1)1(j 1)1 —(2j+3)~(,+)))(,+))) ]

+[(2J' —1)(2J'+3)]' [J' (j ())(q+))).—(J'+ l)A(q+))((j 1)1],

82(a)= (j+1)(2J' —1)A(j 1)1(J 1)1+J'(2J +'3)A(j~()((j+))(

+ [J'(J'+ 1)(2J' —1)(2J' +3)]' (A (j 1)1(j+1)1+ (j+1)1(J 1)1),
(2.16)

B', (a) = j(2j —1)A (j ))1(, , ), +(j+1)(2j+3)A(,+, ),(, +, ),

j[(J+ 1)(2j —1)(2j +3)]'"(~(j—1)1(j+1)1+~ (j + l)1(j—l)1»

~4(+)= [J(J +1)] [(2J 1)~(j—1)1(j—1)l (2J +3)~(j+1)1(j+1)1]

+[(2J' —1)(2J'+3)]' [—(J'+1)A(j 1)1(j+,)1+jA(J+)))(j ))(],
where j)2 is even.

Formulas (2.14) show, first of all, that the natural functions to expand in terms of the O(4) basis are the amplitudes
B~j(a) rather than the coupled-triplet amplitudes 2/))') (a). They also indicate that half of the O(4) amplitudes Tjk' are
actually redundant for a description of amplitudes satisfying the symmetry (2.4). This prompted us to derive the recur-
sion relations (A5) arid (A6) of the Appendix. Using (A5), (A6), and (2.14), we find that we can express all the odd nam--

plitudes T~~' in terms of even-n ones (for j =2,4, . . . ):

T(2k+1)0 1
I [(2k+1)(k+2)(2k+j +3)(2k —j+2)]'~ T~)"+ "

2(k+ 1)[j(j+1)]'
—[k (2k +3)(2k +j+2)(2k —j+ 1)]'~2T(2(k" I,

~(2k+1)1
[j(j+1)]'"

I /2
(k+2)(2k+ j+3)(2k —j+2) (2k+2)1

2k+1 +'1j1

1/2
k (2k +j +2)(2k —j+ 1)

2k+3 T1J1

(2.17)
T(2k+1)0 1

, , I [(2k+1)(k+2)(2k+j+3)(2k —j +)2] ~)2T(o+k2')
2(k + l)[j(j + 1)]'~

—[k(2k+3)(2k+ j+2)(2k —j+1)]'~2Tj(O2k" j,
g(2k+1)1

2[J'(J'+ 1)]'
(k +2)(2k +j+3)(2k j+2—)

2k +1

1/2
T(2k+2)0—
j1

1/2
k (2k +j+2)(2k —j+ 1)

2k+3
T(2k)0

j1
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It is now a simple matter to impose time-reversal in-
variance (2.5) which for nucleon-nucleon scattering at a
fixed value of j reduces to a single relation:

~ {j—1)1(j+1)1(~) ~ {j+1)1(j—1))(a) ~

J J

and hence

(2.18)

B4(o.') =B'1(~) . (2.19)

Using (2.14) and (2.19) we find that time-reversal invari-
ance implies

T(2k)0 2T(2k)1jo j1 (2.20)

Finally, it follows from (2.17) and (2.20) that the free pa-
rameters in the coupled-triplet expansions for j&2 (even)
are

no nl nl
TJ ] TJ o TJ J fL even (2.21)

Expanding the amplitudes Aj{{1 in (2.16) as in (2.2), elim-
inating the terms (dj")'{+dj"1' 1) and dj"{0by means of the
recursion relations (A5) and (A6) and using (2.17) and
(2.20) we "decouple" the coupled-triplet amplitudes and
obtain the following extremely simple and uniform expan-
sion formulas:

Bg~(a)= g Z~j2kdj{", (a), a =1,2, 3, (2.22)
2k =j

where B~j(a) for a =1,2, 3 and j =2,4, . . . are given by
(2.16) once (2.18) is taken into account.

The new O(4) amplitudes Z~j„(a =1,2, 3, n =2k) are
linear combinations of the original independent coupled-
triplet O(4) amplitudes (2.21). Indeed a straightforward
calculation yields

n 2 n

where

n 2 n

(2j + I )'~'

j(j+1)
p„' =2(n +1) [n (n +2)+j(j+1)],
cr„' = —[ (n —2)(n —1)(n + 1)(n +2)(n —j—1)

X (n —j)(n +j)(n +j+1)]'~,

(2.24)

both j and n are even and n) j)2.
We can now summarize the results of this section. The

O(4) expansions for singlet, uncoupled-triplet, and
coupled-triplet j=0 amplitudes for pj) scattering are
given by formulas (2.8), (2.9), and (2.12), respectively. For
j& 2 the O(4) expansions lead to a complete decoupling of
the "coupled"-triplet amplitudes, as manifested in the ex-
pansions (2.22). Notice that the coefficients Zjzk for
a =1, 2, and 3 are independent of each other and it is
hence equally simple to treat the coupled triplet, as the
other amplitudes.

The phenomenological analysis of Sec. III concerns the
energy range up to E~,b ——800 MeV. This is well above
the inelastic threshold and there is no point in imposing
elastic unitarity. We allow the O(4) amplitudes Tg~ to
have a priori arbitrary real and imaginary parts. The fit
to the data, i.e., the partial-wave amplitudes calculated
from a phase-shift analysis, will in itself impose the con-
straints due to unitarity. This means that below the
threshold of pion production the phase shifts will be real,
above this threshold they acquire non-negative imaginary
parts, as they should.

III. THE O(4) ANALYSIS
OF THE PARTIAL-WAVE AMPLITUDES

A. The proton-proton scattering data
and the fitting procedure

As mentioned in the Introduction, the ultimate aim is
to analyze simultaneously all available nucleon-nucleon
scattering data. In this article our approach is more mod-
est. We make use of the fact that existing phase-shift
analyses already provide good fits to angular distributions
of the observables. More specifically, we base ourselves
on the recent phase-shift analysis9 of all existing proton-
proton elastic-scattering data for 0 (E{,b & 800 MeV (and
0&0&1r). This phase-shift analysis is itself an energy-
dependent one. The phase shifts were obtained by divid-
ing the energy region into four overlapping intervals and
then fitting the phase shifts in each interval by low-degree
polynomials in the energy. The parametrization was such
that a total of 57, 50, and 124 real parameters were intro-
duced in the singlet ( I =j=0, 2, 4, and 6), uncoupled trip-
let ( I =j=1, 3, 5, and 7), and coupled triplet ( l+1 =j=0,
2, 4, and 6), respectively. We have used these. phase shifts,
together with the corresponding error matrices, to calcu-
late the amplitudes A)t{, (a) at 20-MeV intervals. The
uncertainties in the phase shifts are reflected in error bars
on the "experimental points, " i.e., the calculated values of
Ajj, (a). Correlations between errors are ignored.

The phase-shift analysis of Ref. 9 represents about 5300
independent data points: those summarized in Ref. 14
and numerous further experimental results obtained after
this compilation was completed. It should also be men-
tioned that the method of "modified phase-shift
analysis"' ' ' was employed, i.e., higher partial waves were
not set equal to zero, but rather to their values obtained by
assuming that they are completely due to the exchange of
one pion.

Our fitting procedure was a standard g least-squares
minimization fit, one for each real or imaginary part of
the partial-wave amplitudes, expanded in terms of the
O(4) d functions as in (2.8), (2.9), (2.12), and (2.22).

The number of experimental points for each fit was
X~ ——40. Several criteria were used simultaneously to
determine an acceptable minimum value of the number of
real parameters XT in each case. These were the follow-
ing requirements.

(1) g~/DF must pass through a stable region or have a
value close to 1 (DF= j)iF —%T is the number of degrees
of freedom).

(2) The overall fit to the data points must be visibly
good.
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FIG. 2. Stability graph of the O(4) singlet amplitude ReSp.

Variations of the absolute values of a sample amplitude are
shown as a function of the number NT of terms kept in the O(4)
series for the fit. The logarithmic scale stresses the speed of
convergence of these amplitudes with increasing values of n, in-
dicated on the right.
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(3) The values of O(4) amplitudes must be systematical-
ly smaller than their errors for n & n

(4) The values of the parameters must become stable,
i.e., the low-n terms do not change when further higher-n
terms are added.
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FIG. 1. Singlet O(4) fits to partial amplitudes. Red pppp(o. ),
Red ~4p(a), and Im A 6p6p(a) in the laboratory kinetic-energy in-

terval 0 & T & 800 MeV. The g /DF values are 88, 1.2, and 0.3,
respectively. NT is the number of parameters. The indicated
error bars correspond to standard deviations calculated from the
error matrix of the energy-dependent pp phase-shift analysis
(Ref. 9).
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FIG. 3. Convergence graph of the O(4) amplitude ReSp. The
sequence of ratios of the nth term to the first term is presented
for NT ——11.
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We cannot restrict ourselves to a statistical criterion
only, since the analysis involves an arbitrary number of
input data (20-MeV steps) without taking their correla-
tions into account. The 7 values are then biased by the
somewhat artificial error bars.

200
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—0. 05

0 200
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400 600 800
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B. The singlet amplitudes

We expand the singlet amplitude Ajp~p(a) for I =j=0,
2, 4, and 6 as in (2.8) and use the minimization procedure
to determine the coefficients SJ". The 'Sp amplitude
Apopo(a) was by far the most difficult to fit in view, on
one hand, of the very small "experimental errors" and, on
the other hand, of the fact that its threshold behavior is
not, a priori, known. The O(4) d functions djoo(a) for
j& 0 vanish at threshold a —+0 as (sina)J, i.e., more slowly
than the physical amplitudes Ajjojp(a) should [namely,
(sina) Jj. This can easily be corrected for by a slight
modification of the expansions, which was indeed tried.
It turned out 'to play no role in the considered energy re-
gion and we used the formalism as presented above. Some
O(4) fits to ReAj~ojo and ImAJJoJ'o for 0(T=Ei (b8—00
MeV are shown on Figs. 1(a)—1(c). We see that for j=0
the visual fit is very good for XT——8 even though the
X /DF is unacceptably large. For ÃT ——10 the curve al-
ready passes through all experimental points. Notice that
in some cases, e.g., ReAgp4p the O(4) curve corrects the
threshold behavior of the reconstructed amplitudes (the
phase shift analysis actually started at T = 10 MeV, rath-
er than T =0). For ImA6p6p [Fig. 1(c)] the O(4) curve
smoothly interpolates between the zero energy and the
"experimental" points above 220 MeV. In the phase-shift
analysis at low energies, this peripheral amplitude was re-
placed by the one-pion exchange amplitude, which does
not contribute to Im AJ oj.o.

The stability of the singlet O(4) amplitudes can be
judged by looking at Fig. 2, where we plot, in a logarith-
mic scale, the dependence of ReSp on the number of pa-
rameters XT used in the fit. We see that the values of
ReSp essentially stabilize at Xz ——6, 8, 8, 9, and 10 for
n =0, 2, 4, 6, and 8, respectively. We only give a sample
graph here, the others are similar. Generally speaking the
absolute values of ReSJ" and ImSJ" decrease as n increases.
This is put in evidence on the example given in Fig. 3
again for ReSo.

C. The uncoupled-triplet amplitudes

0. '1

I I I I f I l I I I I I I I I

0 200 400 BOG 800
T (MeV}

FIG. 4. Uncoupled triplet O(4) fits to partial amplitudes.
ImA ~~~~(a), ReA3]3}(ct), and ImA3}3~(u). The g /DF values
are 3.7, 1.8, and 12.3, respectively.

The uncoupled-triplet amplitudes AJJ&z~(a) were ex-
panded as in (2.9) and the same minimization procedure
was used to determine the O(4) amplitudes T~"&'

(j=1,3,5, 7, and n &j, odd). As examples, we show in
Figs. 4(a)—4(c) the O(4) fits to ImAI~~~, ReA3~3&, and
Imx3]3] for 0& T &800 MeV. The same criteria were ap-
plied as for the singlet. Fits in general were easier to
achieve, among other reasons because the experimental er-
rors in the triplet amplitudes tend to be larger, than in the
singlet ones. An exception is ImA3J3$ where the errors
are quite small. We favored the cut off at XT ——5 parame-
ters, even though the X /DF=12. 3 is large, since the visu-
al fit is very good and the stability diagrams (not repro-
duced here) also point to this value. For higher j values
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FIG. 5. Coupled triplet O(4) fit to the partial amplitude.
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the relative errors are too large to permit a reliable deter-
mination of many parameters. The 7 fits are very good,
the O(4) curves tend to the correct threshold values faster
than the data points.

D. The coupled-triplet amplitudes

The only nonzero coupled-triplet amplitude for j =0 is
&~~~~(a). It is expanded as in (2.12). The X2 minimiza-
tion provided a good fit with six real parameters
(n =1,3, . . . , 11) each for Red&~&j (Fig. 5) and 1m'»».

The j=2,4, 6 fits were performed to the decoupled ver-
sion of the coupled-triplet amplitudes 3J(-+ &) &( + &) &,

(J —$)$(j+ f)$ ~ (j+])/( ])J and 3 (J &)~(j &)&, namely,J j J.
the three amplitudes B,(o.), a = 1,2, 3, as defined in (2.16)
(with BJ4 BJ, ). These ——were expanded using formulas
(2.22) and the coefficients ZJ~2k~ were obtained from the
usual X /DF minimization. This provided us with nu-
merical values of Z, ~qk~ and the O(4) amplitudes T~~
[n & j&2, n and j even, (v, k, )=(1,1), (0,1), or (1,0)) were
calculated by inverting formulas (2.23) numerically. The
fits for the amplitudes ImB&, ReB2, and ReB&, taken as
examples, are shown on Figs. 6(a)—6(c). We note that low
values of X /DF and good visual fits are obtained with
relatively few parameters (5 or 6 for each amplitude with
j=2, between 2 and 5 for j=4 and j=6). This is facili-
tated by the overestimated error bars on the experimental
amplitudes. Figure 6(c) shows an example of disagree-
ments between some O(4) fits and phase-shift-analysis
data in the low-energy region. Even though all the struc-
tures were described with a larger number of parameters,
we have favored the lowest number of paranieters suffi-
cient to reproduce the amplitudes at intermediate energies.
In any case the threshold behavior of the O(4) curves is
preserved. We finally observe that in general the T ampli-
tudes are more stable than the auxiliary Z amplitudes and
that the absolute values of the former have the tendency
to decrease more monotonically with increasing values of
n than the latter.

2
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IV. CONCLUSIONS

The main conclusion that we draw is that the O(4) ex-
pansions have stood up to the test: they provide a good
and stable fit to proton-proton partial-wave amplitudes
3},'~, (a) for 0& T& 800 MeV, using considerably fewer
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FICx. 6. Coupled triplet O(4) fits to partial amplitudes.
ImB~ (a), ReB2 (a), and Re8~ (n). The g /DF values are
1.63, 0.79, and 1.22. The obtained Z,„, a =1, 2, and 3, lead to
the original O(4) amplitudes TJ"~', TJ"&, and TJ"0', respectively.
All the fits are performed separately since the new partial am-
plitudes 8,{a)are decoupled.
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free parameters than conventional energy-dependent
partial-wave analyses. Using the criteria of Sec. III A we
have arrived at a total of 174 free real parameters: 46 for
the singlet, 40 for the uncoupled-triplet, and 88 for the
coupled-triplet amplitudes. While 174 is a larger number
of parameters than we would have liked to use, it should
be remembered that we are representing roughly 5300 in-
dependent data points, distributed over a large energy in-
terval (800 MeV) and over 36 different curves (the real
and imaginary parts of 18 partial-wave amplitudes). For
comparison we mention that the original phase-shift
analysis of Ref. 9 made use of 231 parameters (57 for the
singlet, 50 and 124 for the uncoupled and coupled triplet,
respectively).

We use the occasion to reiterate some of the advantages
but also some of the problems of the O(4) expansions.

(1) Data points at all available energies and angles are
treated simultaneously on an equal footing. No interpola-
tion or extrapolation to chosen energy values is involved.

(2) The expansions incorporate and complement stan-
dard (energy-independent) partial-wave analysis. The
partial-wave amplitudes have correct threshold behavior.

(3) The convergence of the O(4) expansions is

guaranteed by group-theoretical arguments; the expansion
is performed in terms of an orthonormal set of functions.
As a consequence, a study of the O(4) amplitudes Sj" and
T&~ as functions of n shows that they decrease rapidly
and consistently and that their values are reasonably
stable with respect to the cutoff value Xz. Typical exam-
ples of this behavior are shown on Figs. 2 and 3.

(4) Symmetries of the scattering amplitudes, such as
parity conservation, the Pauli principle, and time-reversal
invariance are readily imposed in terms of the O(4) ampli-
tudes SJ" and T~"~.

Several important questions remain open.
(a) The problem of the unitarity constraints on the,

scattering matrix in the O(4) formalism has only been
touched upon at the end of Sec. II. These constraints, as
mentioned above, are not important in the context of the
present article.

In a direct fit of the scattering data, rather than of the
partial waves, unitarity must be implemented, especially if
the fit is restricted to energies below the inelastic thresh-
old. It has been shown in an earlier article that elastic
unitarity implies that the O(4) amplitudes Tz"„~ must
satisfy

Tnv, , ( 1)2n —j sj n —v — ~ ~ ~nvn'v'n "v'
7

n'v'
2

n"v"

n'v'n "v" y~
(4.1)

where the quantities Q are expressed in terms of O(4) d functions as

n vn 'v'n "v"
JS,SP [(n'+1) +v' ][(n"+1) +v" 2]

Xg f sin a da dj",~(a)d",z (~)d" ' (~) .
jE

(4.2)

These quantities can be expressed in terms of O(4)
Clebsch-Gordan coefficients and simplified using the re-
cursion relations of the present article. We shall return to
these relations and their use in the implementation of elas-
tic unitarity in connection with a fit to nucleon-nucleon
scattering data.

(b) The O(4) expansions reflect the kinematics of the
considered reaction; the dynamics is transferred to the
O(4) scattering amplitudes. Dynamical singularities of
partial-wave amplitudes, due to, e.g., the possible presence
of dibaryons, or other structures (e.g. , inelastic thresh-
olds), are not automatically incorporated in the formal-
ism. In a region where such effects are important, for in-
stance, in an analysis of nucleon-nucleon data extended to
above 1 GeV, an alternative approach should be adopted.
On one hand, a straightforward O(4) fit along the lines of
the present article should be performed; on the other, an
O(4) fit to the background, supplemented by a Breit-
Wigner-type fit to the resonances. A comparison of the
two procedures would shed some light on the obscure
problem of background subtraction and on the role of
possible resonances.

A question not yet touched upon is the role of one-pion

exchange in the O(4) formalism. By analogy with two-
variable expansions for potential scattering, ' we assume
that large values of the parameter n correspond to large
distances between the scattering nucleons. It follows that
a modified approach, similar to modified phase-shift
analysis, should be useful. It would consist of represent-
ing the values of the O(4) amplitudes T~"~' and S~" for
n & n „by their OPE values, rather than setting them
equal to zero, as in the present paper. This should, on one
hand, decrease the number of free parameters needed for a
good fit, and, on the other, improve the stability of the fit
with respect to a variation of the number of parameters
used.

ACKNOWLEDGMENTS

The authors from each of the two participating
research centers (Saclay and Montreal) are indebted to the
other center for its hospitality in facilitating their mutual
visits. The work of P.W. was supported in part by the
Natural Sciences and Engineering Research Council of
Canada and the "Fonds FCAC pour 1'aide et le soutien a
la recherche du Gouvernement du Quebec. "



BYSTRICKY, I.aFRANCE, DEBAR, PERRQT, AND %INTERNITZ 32

APPENDIX: SOME PROPERTIES OF THE O(4) REPRESENTATION MATRICES
We shall reproduce here some known formulas that we need in the text and also present some new results concerning

recursion relations for the functions dj"
~ x(a).J)J2

A useful (and well-known) explicit expression is"

dJ„,~(a) = [(2j&+1)(2j&+1)]'~'e
m

n+v n —v n+v n —~
J'z

(A 1)

The threshold behavior of these functions is given by

dJ"1 ~(a) —(sina)J(J2 (A2)

The symmetry properties are

dJ",~, g(a) =dJ",~ x(a), dj",J, g(a) =dj",~ x(a), dj",J g(a) =dj",J g( —a),

(A3)

dnv ( )
'~~ —~+Ji+J2+x~dnv=e J J

The orthogonality and completeness relations are

~ (2j)+1)(2j2+1)
Z= —min(J, J, ) (n+1) —v

(A4)
min(J, ,J, )

v= —min(J &,J2 ) n =max(J &,J2 )

~ (2j, +1)(2j2+1)
[(n +1) —v ]dj"

q
g(a)dj"J. x (a') =— 5(a —a')5xg .

sm 0!

The representation theory of O(4) can be used to obtain a variety of recursion relations for the d functions. Here we
only give two very special cases of these formulas which we have used to implement time-reversal invariance and the
a~sr asym—metry in the coupled triplet. The formulas can be checked directly from the general expression (Al), and
are, to our knowledge, new:

1/2
(n+3)(n+j+2)(n —j+1) „+~o

J11 a
n

1/2
(n —1)(n +j+ 1)(n —j), io

dJ"( ( (a)(n+2)
(A5)

dJ"(o(a) = I [n (n +3)(n +j+2)(n j+—1)]'~ dj&+z "(a)
(n+1)[2j(j+1)]' '

—[(n —1)(n +2)(n +j+1)(n —j)]' d "~o '(a) I . (A6)

The only d functions needed for the O(4) expansions of pp scattering amplitudes are the following ones.
(1) Singlet and coupled triplet with j=0,

dao( )
t(n/2)j J. (2J'+1)(n —J')!

( n + 1)(n +j+ 1)! (sina)JCJ+J (cosa),

where CJ+J (cosa) are Gegenbauer polynomials.
(2) Uncoupled triplet,
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d(2k+1)l d(2k+1)1 ~ 6(2J + 1)
]./2

1)k

k 0+1 j
X '

( —1)"+'[(2k + 1)(2k +2)]'~
k k 1 1

sin(2k +1)tz

k k+1 j
+ g ( —1) [(k —m+1)(k —m+2)]'~2

1

+ [(k +m)(k +m + I)]'~2
k k+1 j

stn(2m —1)a (AS)

(3) Coupled triplet with j&0,

2ko . 6(2j + 1)
k(k+1)(2k+1)

-1/2
k

g ( —1) [(k —m)(k+m+1)]'
k k j

sin(2m +1)ct . (A9)
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