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The two-step approach of Hsue and Chem is reinterpreted in physical terms that allow for a powerful re-

formulation of their original treatment for one-dimensional anharmonic oscillators.

I. INTRODUCTION the Hamiltonian (in terms of the b's)'3

Interest in the one-dimensional anharmonic oscillator has
been both sustained and intense in the last few years, due
mainly to its relevance for the study of molecular vibrations
and to its role in the modeling of nonlinear quantum field
theories. A small (and by no means representative) sample
is that of Refs. 1-12.

Recently, a very elegant and powerful approach was intro-
duced by Hsue and Chem, ' who present a two-step ap-
proach in order to investigate Hamiltonians of the form

H=E0+o)b b+ [:(b+b ):+3(b+b )]
2M

+ ':(b + b')'. ,
A.4

4QJ

co = (1 —t )/(1+ t)

is diagonalized in the basis

(6a)

(6b)

m

H=p/2+x/2+ g Z,x'= T+ V(x) .

a = (x —ip)/J2, a = (x+ip)/E2,

H=a a + 2 +X3(a +a)3+X4(a +a)
(2)

(3)

a generalized coherent-state ansatz for the first step, of the
form

(P) = exp(ra"/2) (0), (4)

Their approach has a clear physical meaning and is capa-
ble of producing eigenvalues with high accuracy. The idea
is to introduce, after recasting (1) into second-quantization
shape [we restrict ourselves, for simplicity, to i = 4 and 3 in
(1)l

a process that accurately yields all low-lying energy levels.
The purpose of the present effort is to provide one with

yet a different physical interpretation of Hsue and Chem's
beautiful scheme, so as to be in a position to reformulate it
and obtain a still more powerful method.

To this end we shall first show that the treatment of Ref.
13 is tantamount to diagonalizing 0 in a scaled oscillator
basis. The parameter t is then seen to be just a scaling fac
tor and its determination by recourse to the variational prin-
ciple (minimizing thus the ground-state energy Eo) automat
ically predetermines a basis whose "width" is just the one
adjusted to the particular one-body potential
V(x) =A.3x'+A.qx +x2/2. Of all possible oscillator bases,
one selects then the most appropriate one for the problem
at hand.

where the parameter t is determined by the variational prin-
ciple.

Then, after (i) reordering by recourse to Wick's theorem
and (ii) a Bogliubov transformation,

a —ta
/2) 1/2 (Sa)

' —t (Sb)
/2 1/2

II. COHERENT ANSATZ AND SCALING FACTOR

In order to achieve our goal it is convenient to work in
the coordinate representation, where the ground state of the
harmonic oscillator ~0) reads

@0(x)= (x ~0) = vr
' 'e

We define a new coordinate representation in terms of
the operators in (5),

[b,b 1=1,
b(y) =0,

(Sc)

(Sd)

b = (Q+/P)/J2, b = (Q —/P)/J2,

[g P l (0 ~0)
—1/4e —n /2

@ (g)
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so that

Q = [(1—r)/(1+r)]'/'x =Wux (10)
where a and P are determined by recourse to the variational
principle. The Bogoliubov transformation now reads

and

(x [y) = (x ie" /2i0) = (u/m)' "e

B= 1

(1 p2)1/2 (a —Pa —n) =b —y,

—A(a —a )t2 2S=e (12)

Thus the coherent ansatz (4) is clearly seen to be a scaled
wave function, where the scaling factor is just u' . The
creation operator b generates then a complete scaled basis.
It is of interest to point out that the operator defining the
transformation (4) is intimately related to

(1 p2)1/2

a)@)=0,
and the Hamiltonian is then to be recast in terms of the 8
operators. As the relation between the "old" b 's and the
"new" B 's is a very simple one, we can easily write down
things in terms of the B 's and get

exhaustively studied in Refs. 11 and 12. S is the most gen-
eral scaling operator and one can easily find that it scales
any wave function in the x representation with the scaling
factor u = exp( —4h ).

III. MODIFIED HSUE AND CHERN APPROACH

with

0= E,+ I,I3'13+ I,(a'+ a)+ I (a"+ a')
+ /, :(a'+a)'. + /, :(a'+a)4:,

1 +~ 30)4 6A, 3p
p — +

4~ 4'' 2co42cu

(16)

iy) =exp(ua + —,'Pa") i0), (14)

The potential term V(x) in (1) does not, in general, pos-
sess any special symmetry with respect to the origin. The
corresponding "wells" may be located far from it. Expand-
ing the wave functions in an "origin-centered" basis may
not always be, then, the best procedure. Consequently, in
addition to adjusting the "width" of the basis wave func-
tions by means of a scaling factor, a "shifting" should sure-
ly improve things, so as to place them in a better location
along the coordinate axis. This is achieved by writing the
coordinate Q as

Q = v p, (x+y/Wp, ), (13)
and recasting things appropriately. This entails working with
a coherent-state ansatz of the form

1

6A.4+ —+
QP

8Z3~' 4Z4~'

2~42~

h4=
2QJ J2QI

3X4

40)

2X4y

1+~2 3X4 12) 3y 1214'
h( —— + +

2CtJ Ql 2QI 42' Cd

/

3&3 1 6~4 12k 3ph2= —+
2 y+2' 42Cd, CIJ CU 2' J2Cd

(1—~2) 354 6A3y 6k4yh3= + +
40) 2' 2QJ'J26l Oi

(17)

8z
(19)

(20)

(21)

(22)

TABLE I. Energy values obtained with the present approach for the 3ix +X2x anharmonic oscillator (ground state and four excited
states). The order of the corresponding diagonalization is shown in column 3.

Order Ep E3 E4

0.5

1.0

5.0

10.0

0.1

0, 1

1.0

1.0

9
15
20

9
15
20

9
15
20

9
15
20

—0.255 323 790
—0.255 477 028
—0.255 477 259

—76.417 239 033
—76.417 239 044
—76.417 239 044

—55.396 844 924
—55.396 845 517
—55.396 845 173

—1019.245 576 728
—1019.245 576 729
—1019.245 576 729

0.464 359 331
0.452 258 771
0.452 236 430

—72.061 007 200
—72,061 007 491
—72.061 007 491

—48.302 887 939
—48.302 899 053
—48.302 899 063

—1004.329 821 529
—1004.329 821 537
—1004.329 821 537

1.248 679 381
1.196278 554
1.196 137 185

—67.760 421 050
—67.760 454 918
—67.760 454 922

—41.424 499 570
—41.425 155 011
—41.425 156 169

—989.587 154 720
—989.587 156 261
—989.587 156 261

2.346 432 789
2.192 411 618
2.191475 677

—63.516438 265
—63.517420 335
—63.517 420 570

—34.762 664 987
—34.782 041 802
—34.782 102 830

—974.828 845 635
—974.828 950 735
—974.828 950 736

3.782 327 465
3.332 150666
3.328 453 666

—59.323 649 646
—59.333 898 861
—59.333 906 601

—28.212 111872
—28.394 994 972
—28.396 845 618

—960.117875 863
—960.118582 259
—960.118S82 276

50.0 10.0 9
15
20

—640.364 516 561
—640.364 516 576
—640.364 516 576

—616.897 582 446
—616.897 582 762
—616.897 582 762

—593.620 807 341
—593.620 851 062
—593.620 851 064

—S70.536 630 331
—570.538 220 935
—S70.53S 221 040

—547.638 583 374
—574.653 798 678
—574.653 802 277

100. 10.0 9
15
20

—10495.068 783 74
—10495.068 783 74
—10495.068 783 74

—10447.712 304 85
—10447.712 304 8S
—10447.712 304 85

—10400.401 977 50
—10400.401 977 64
—10400.401 977 64

—10353.137 886 74
—10353.137912 52
—10353.137 912 52

—10305.920 11444
—10305.920 220 55
—10305.920 220 55
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TABLE II. Results obtained with the method of Hsue and Chem for the Xlx +A~X anharmonic oscillator'. Remaining details are the
same as in Table I. A comparison between these figures and those of Table I clearly exhibits the power of the present approach.

Order Eo EI Eg E4

0.5 0.1 9
15
20

—0.188 984 161
—0.255 238 015
—0.255 475 475

0.510600 803
0.452 560 098
0.452 240 913

1.412 304 628
1.197 893 436
1.196 160 880

2.640 505 191
2.196 807 038
2.191 578 062

4.231 411 920
3.341 295 809
3.328 841 987

1.0

5.0

0.1

1.0

9
15
20

9
15
20

—12.364 182 396
—30.555 552 733
—45,731 811 450

—27.202 764 358
—49.543 372 341
—55.186 151 814

—3.179437 044
—16.598 003 448
—30.474 727 330

—9.753 853 646
—33.139423 147
—46.360 760 620

0.287 488 097
—7.449 297 818

—18.951 597 589

—0.722 642 967
—18.316871 720
—34.770 228 680

1.501 283 262
—1.780 154 821

—10.246 080 887

1 ~ 899 561 869
—6.972 286 264

—22.482 754 913

3.463 540 344
0.490 808 909

—4.010 863 922

5.315416 301
—0.268 318 570

—11.560 141 898

10.0 1.0 9
15
20

—91.037 994 144
—218.874 347 772
—337.987 173 416

—34.111004 781
—127.290 830 875
—227.806 937 773

—7.547 749 428
—69.391 598 219

—150.755 552 727

1.107 182 935
—32.168 229 220
—94,514 306 884

4.401 529 865
—9.863 990 056

—53.809 597 908

50.0 10.0 9
15
20

—140.370 963 595
—309.515 338 747
—440.825 803 444

—54.122 117437
—189.457 824 204
—317.515 642 797

—11.444 774 449
—106.253 456 581
—219.135 110879

2.490 753 579
—49.484 633 097

—141.126 047 247

9.105 856 656
—14.179096 541
—81.257 768 708

100. 10.0 9
15
20

—367.792 836
—913.714 799

—1459.029 605

—141.564 791
—524.588 021
—960.855 001

—38.0981 12
—288.518973
—629.765 501

—0.289 140
—140.709 534
—396.614 460

7.345 293
—52.679 044

—232.232 550

The variational principle dEO/dc' =0 guarantees (as the
general requirement for the Hartree approximation) that
hq= hq ——0 and hl = cu = (1 —P)/(1+P), so that

H=EO+(oB 8+ hg. (8 +8):+h5'. (8 +8):, (23)

and all that remains to be done is the diagonalization of 0
in the basis

(24)

where the relevant matrix elements are

(n ~H~n & =ED+ nco+6hqn (n —1),

(n ~H ~n + 1& = 3h4n (n + 1)'

IV. RESULTS

Some illustrative results are exhibited in Tables I and II.
When A. I = X~ our approach and that of Ref. 13 coincide up
to eight significant digits and the corresponding figures are
not exhibited so as to save space.

Comparing Tables I and II it becomes immediately ap-
parent that our modified Hsue and Chem approach is
indeed a much more powerful one than the original
method, both in respect to accuracy and convergence prop-
erties.

Summing up, we reinterpreted the treatment of Ref. 13 in
clear physical terms that have allowed for a simple but
powerful reformulation.

(n ~H ~n + 2& = 4nh5[(n + 1)(n + 2) ]'

(n ~H ~n +3& = h4[(n +1)(n +2)(n +3)]'

(n ~Hin +4& =h5[(n +1)(n +2)(n +3)(n +4)]'

(25)
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