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Chemical potential on the lattice
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Imposing a physica11y desirable constraint, we obtain a class of lattice actions for nonzero chemical poten-
tial. Unfortunately, none of them lead to a real fermion determinant in general.

I ~ INTRODUCTION

Investigations of quantum chromodynamics (QCD) under
unusual conditions, such as at finite temperature or finite
densities, are of a great interest by themselves. Further-
more, one expects these studies to lead to important conse-
quences for ultrarelativistic heavy-ion collisions and the
early universe. Introduction of the lattice regularization of
QCD and the Monte Carlo methods to simulate it have
yielded a ~ealth of information at finite temperature, in-
cluding the prediction of a phase transition at a temperature
T, =200—250 MeV. Most of these calculations were per-
formed in a world with zero net baryon number, i.e., with
chemical potential p, =0, and it appears natural that one ex-
tends this only known method of obtaining nonperturbative
results in QCD to p, a0 as well.

One encounters problems, however, in introducing the
chemical potential on the lattice; even for an ideal gas of
quarks, which should be the p, ~ limit of QCD, physical
quantities such as the energy density diverge quadratically in
the continuum limit. The divergence is not a lattice artifact.
Indeed, it is present in the continuum theory itself. There
one uses some prescription to get rid of it, e.g. , in the con-
tour method one throws away the contributions of the con-

tour integrals at infinity. On the lattice one has the freedom
of choosing the action, which can be exploited as an ap-
propriate prescription. The remedies proposed in the litera-
ture to get rid of the above-mentioned divergence 7 have
done precisely that. The modified actions still have a draw-
back from the point of view of numerical simulations: They
lead to a complex fermion determinant in general, ~hereas
all the methods5 known so far to perform a full calculation
need a real determinant. One, therefore, needs either a
better form of action or a cleverer method of numerical
simulation. Starting from a general form I obtain a class of
actions by requiring that it yield well-behaved physical quan-
tities. The proposals made earlier 9 fall in this general
class, enabling us to understand why they work despite their
differences. On the other hand, all these actions still give
rise to a complex determinant. A better strategy of numeri-
cal simulation which will be able to deal with a complex
determinant therefore appears necessary for realistic numer-
ical calculations with p, &0.

II. A CLASS OF ACTIONS FOR p, ~o

Let us start with a general fermionic action for an ideal
quark gas with p, ~0:

3

SF=~tit(x) X [(r+y„)5 +(r —y~)S, .l
, pa=1

+ [(r+ )y8o, -f(pap)+ (r —yo)5 -g(pap)]+2ma~5 t[t(x')

f(P, ap) =e P, g(P, ap) = e (2)

Our notation is a fairly standard one. a and ap are the lat-
tice spacings in the space and time directions, respectively.
If r = 0, S~ describes naive (or, after appropriate transforma-
tions, ' staggered) fermions, whereas r =1 defines Wilson
fermions. We will choose below r =0 for the sake of clarity
and come back to other cases at the end. Choosing

is the straightforward, naive choice to introduce the chemi-
cal potential. As mentioned earlier, the last choice leads to
quadratic divergences, however. Note also that f(0)
=g(0) =1 in all the cases. I will retain this obvious condi-
tion for f and g below.

The partition function Z for the ideal quark gas is given
by

one obtains the action proposed in Refs. 6 and 9, awhile

f(p, ap) = (1+p, ap)/(1 —p, 'ap')' ',
g (p, ap) = (I p, ap)/(1 —p2ap2)'—~2

yields the action of Ref. 7, where it is also shown that

Z = ff dt[t (x) dtTt(x) e

and the energy density can be obtained from it by using

e = ——— lnZ1

V gp V=const
pp, =const

(5)

f(p, ap) = I+ p, ap,
g(p, ap) = I —p, ap

where V is the volume of the system and p ' = T is its tem-
perature. If the lattice has W sites in each space direction
and Wp sites in the time direction, then V=% a and
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/3=N&a& and Eq. (6) becomes

I 9
WpN3 a 3 Gap

p.a —const

(7)

the following expression for lnZ in momentum space (see
Ref. 7 for more details):

InZ = g lndetb, ~

Carrying out the integration in Eq. (5) exactly, one obtains
I

where

I

a f(p, as) —g(p, as) a f(p, ap) +g (p, ap)kp= l g y~slnp~a~+ ' pocosp{)ap+ I, - poslnpoap+ @la~
ap 2 ap

and
I

Then R =Vf g and

2m(go+ 2 )
p)a~=, poap =

P
and

tanh8= (f g)/(f+—g)

Let

N
j(——O, +], +2, . . . , +

+ PN
jo Op 1 p ~ '~ ~ p

g =R cosh&
2

3 a
h~ = i y„sinp„a + i yoR sin(poaII + i 8 ) + ma

ap

Using Eqs. (7) and (8) one obtains, for a = a&= a,

4 R'sin'(poa+ I8)

R'sin'(poa+i8)+ $ sin'p~a
l

~=1

(12)

2
g =R sinh0 (10)

Letting N& ~ at fixed a to achieve T=0 in the expres-
sion above and subtracting the vacuum contribution (p, = 0)
from it, one obtains the energy density for p, &0, T= 0:

4 1 R'sin'(poa+ i8)
a4N3

p 2Ir "—~
d poa

3

R'sin'(poa+ie)+ g sin'p„a

sin p()a
3

S111 Poa + X SII1 P~a
p, =l

(13)

R2 s1n2poa

3

R'sin'poa+ g sin'p„a
p, =l

R sin poa
3

R'sin'poa+ g sin'p„a
p, =1

d(poa)

The integrals in Eq. (13) can be evaluated by introducing the contour in Fig. 1 and one obtains

d(poa ) ——
cr p

p-e'+ i8

2m ~ -~
R sin poa

3

R sill poa + g sill p~a
p 1

d(poa)

3

g sin'p„a

3
R'+ g sin2p„a

1/2

f(p, a) —g(p, a)
2

3
& 1/2'

Slfl p~a

3

g sin'p~a
p, =l+

3

1+ X sin'p„a

3

X sin'p„a

3

R'+ X sin'p„a

1/2

In the limit a D, N ~ (V=const) the first term con-
tributes only if

f(p, a ) —g (p, a ) ac p, a for small p, a

In all other cases it does not contribute at all. On the other
hand, the other two terms contribute always in this limit
and, as can be easily verified, lead to divergences, unless
R =1. The conditions for obtaining e=16p, 4/4Ir2 from Eq.

I

(14) in the a 0 limit thus are

and

f(pa) g(p, a) =1

or, equivalently [using Eq. (15)],

df(p, a)/d(pa) ~„,=ow0

f(p, a ) —g (p, a ) = 2p, a + 0 (p, 2a2)

(14)

(16)
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It may be noted that both the earlier proposals 9 to
modify the action for p, e0 given by Eqs. (2) and (3) satisfy
the conditions (15) and (16). Furthermore, we also see
from Eq. (15) that if forward quark propogation is enhanced
by a factor f(p, a ), the forward propagation of antiquarks is
dampened by a factor I/f(p, a), and that quarks winding
around the temperature axis (for T~O) an even number of
times do not contribute to any p, dependence. This has
been already pointed out by the authors of Refs. 6 and 9 for
the choice of f and g given by Eq. (2). I just note here that
it is more general.

I used naive (or staggered) fermions in deriving the con-
ditions given by Eqs. (15) and (16). It is, however, easily
checked that a similar analysis as above results in the same
conditions for r = 1 fermions (Wilson fermions) as well,
although it may be more convenient there to use the
method of Ref. 7 to obtain the energy density. Also, in
both the r =0 and r = 1 cases, these same conditions yield
the correct number density in the limit a 0.

Introducing SU(N) gauge interactions in Eq. (1) and us-
ing Eq. (15), one has

-m'+ie

with

SF=AxQ (17)
FIG. 1. The contour C used in Eq. (14). Poles of the integrand

are denoted by &,

= D i+ 2EPM 5
XX ~ xx

One notes that in general detg is complex except for SU(2)
theory, which has real determinant due to its following prop-
erty:"

o-tUta. t= U VUC SU(2) (19)

If(p, a)I=1 &p, a

However, this leads to an imaginary chemical potential.

(20)

Since all the methods known so far5 to include the deter-
minant in Monte Carlo simulations require a real, positive-
definite detg, none of the actions belonging to the class de-
fined by Eqs. (15) and (16) will be suitable for obtaining
numerical results with the full theory. Detg can be made
real and positive definite (at least for r=0) by allowing
f (p, a) to be complex and then by requiring

(18)

I

an ideal gas of quarks. Physical quantities, such as energy
density, evaluated for an ideal quark gas on the lattice
diverge as the lattice spacing is made to vanish. This diver-
gence, like its analog in the continuum theory, can be re-
moved by a suitable prescription. Demanding that the con-
tinuum limit of these physical quantities be well behaved I
obtained a general class of lattice action for p, &0. The ex-
isting specific proposals belong to this class, enabling one to
understand why they achieve a similar effect despite their
differences.

In the presence of SU(N) interactions, N ~ 3, none of
these actions lead to a real, positive-definite fermion deter-
minant, suggesting that new, more general methods are
needed to simulate the full theory for p, ~0.
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