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Gravitational Aharonov-Bohm effect in three dimensions
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We examine the effects of parallel transport of spinors and vectors around the known pointlike solutions
of three-dimensional gravity. We point out that the massive, zero-spin solution corresponds, when suitably

embedded in four dimensions, to a cosmic string.

Rgb =
2 R~„gbdx Adx"

the Riemann curvature (in the tangent frame) may be writ-
ten

R = de+ o)Acd (2)

From our experience with gauge theories we know that R
will vanish if and only if

(3)

where in an n-dimensional space U(x) is an element of
SO(n —1, 1). co is then a "gauge transform of zero. " Simi-
larly, in the coordinate frame we can introduce the
maxtrix-valued forms

Recently, several authors' have considered classical gen-
eral relativity in three dimensions. The theory differs fun-
damentally from that of four dimensions: the vanishing of
the Einstein tensor G~" implies the vanishing of the
Riemann curvature R~„~, and Newton's constant G has
dimensions of (length) rather than (length)' (in units in
which h = c = 1). If one takes Einstein's equations as the
dynamical equations of motion, the former condition means
that space is flat wherever T~" vanishes. However, this
does not mean that a pointlike source has no gravitational
effect: a light beam passing by a massive, pointlike source
will be deflected, '2 and parallel transport in a closed circuit
around such a source will in general give nontrivia1 results.
The situation is analogous to the Aharonov-Bohm effect in
electromagnetism. Here we examine in detail the effects
of such closed-path para11el transport. We also point out
that the massive, spinless solution in three dimensions cor-
responds, in four dimensions, to a cosmic string.

Using a matrix notation for the spin connection and cur-
vature, so that

6)+b = cd&+bdx

transformation rule for I":

Given U and S, it is straightforward to solve the equations
for spinor and vector parallel transport. We imagine some
curve with parameter r, x"=x"(r), r, ~7 ~rf. Then the
parallel-transported spinor at ~ is given in terms of the spi-
nor at 7 =0 by4

r

Dp
O

dxI' 8
Dr dv ()~ d7.

dUU
d7'

so

P, (r) = U, '(r)q, (0)

Similarly for a vector

If, in particular, for a closed curve U(r~)~ U(r, ) (simi-
larly for S), we will find a gravitational Aharonov-Bohm ef-
fect 2

We turn now to the particular case of the pointlike solu-
tions in three dimensions. There are, in general, two kinds
of solutions. ' a pointlike mass at rest with no angular
momentum, with line element

ds =dt —dp —po, dg

0~8 & 2m, o, =1—4Gm

( I) Bx Bx I„( )+ Bx . 8 x d iy (7)
Bx P Bx~ Bx &Bx ~

Since the space is flat, we can choose a frame (i.e., Carte-
sian coordinates) in which the first term on the right-hand
side of (7) vanishes. Comparison with (6) then gives

and a spinning, massless source with line element

ds2= (dt —Ad8)2 —dp2 —p2d82, A =4GJ (12)

R~„=—TR~„p dx~Adx

so that

Here m is the mass and J the angular momentum. In
general, for a massive, spinning point1ike source,

R = dI +I Al"
ds2= (dt —Ad8) —dp —p n d0 (13)

Clearly again R will vanish if and only if

r = SdS-',
for some matrix S. We can see what S is by writing the

but we prefer to deal with (11) and (12) separately.
The space part of the metric (11) is that of a plane with a

wedge removed and edges identified, i.e., a cone. The an-
gular defect gives rise to a mismatch of the components of
spinors and vectors upon closed parallel transport around
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the (singular) cone tip. Choosing a frame in which the viel-
bein is

e'= dk,
e' = cos& dp —o.p sin0d0

(14)
e2= sin&dp+ np cos6d8

ds = eoe —e'e' —e e2

the Cartan structure equations de'= —ebVcog give

cg = ——(a —1)o.3d8I

2

for the spin connection, so from (3),

U —e(I/2i(a- &&~ ~

(Here o.3 is the Pauli matrix: we recall that Dirac spinors
have two components in three dimensions. ) Note that co has
the required property of vanishing when a=1, i.e., when
the space is flat. [Different choices of frame can give co's

that do not so vanish. For example, eo=di, e'=dp, and
e2=pnd8 gives co= —i(n/2)a'd8, an-d a spinor parallel
transported in a closed circuit around the p = 0 axis picks up
an overall minus sign, which corresponds to an additional
rotation of the spinor about its own axis by 2'. This minus
sign is a consequence of the choice of frame, and not a
physical effect associated with a solution of the field equa-
tions. l Thus a closed circuit, for the frame defined by (14),
gives

y(2m) = [cos(n —l)7r+io3sin(n —1)7r]y(0), (16)

and there will be no Aharonov-Bohm phase if and only if o.
is an odd integer. This condition is not empty because
although a cannot be negative if the metric is to be regular
every~here outside the singularity, it can be arbitrarily posi-
tive (i.e. , negative values for Gm are allowed). '

Similarly, the equations for parallel transport of a vector
V„give

'I

Vp
(17)

Vg

0 e/p Vt,

the solution to which is

Vz(v') cosu9 (1/pon) sinn' V~(0)
Vg(r ) —pn stnnt1 (p/po) cosn0 Vq(0) (18)

if at r=0, 8=0 and p=po. The dots in (17) refer to dif-
ferentiation with respect to 7. %e have omitted V„which is
constant. Thus for vectors there will be no Aharonov-
Bohm effect if and only if o, is an integer. Perhaps not
surprisingly we have found that spinors are more sensitive
than vectors for detecting such pointlike masses.

As regards the massless, spinning solution, Eq. (12), one
can always choose a frame in which the spin connection
vanishes, so spinor parallel transport is unaffected by the
presence of such an object. It is straightforward to check
that vectors are similarly unaffected.

Finally, we note that the solution (11) is a three-
dimensional cross section of a cylindrically symmetric cos-
mic string, with line element2

ds = dt2 —dp2 —p2n2dp —dz

(Note that Rt'„~ vanishes everywhere outside such a
string. )

Since g„„ is independent of z, and g33 is a constant, the
affine connection is also independent of z and has no z com-
ponents: thus the nonvanishing components of the curva-
ture are the same in four and three dimensions,

(4)RP (3)RP,
vaP vaP (20)

(21)

(we have used t3~R00=0). Thus, since in three dimensions
the only nonvanishing component of the stress tensor is'

"'Too = mh(x) 8 (y)= 1
(22)

we recover the nonvanishing components of the stress ten-
sor of a cosmic str~ng ~n four dimensions:

'" T33 = —"'Too= — mn(x)h(y)1

4—g

where

m —= (1 —n)= 1

4G

(23)

(24)

Note that the dimensions of 6 are such that m is a mass
in three dimensions, and a mass per unit length in four
dimensions.

It is natural to ask whether one might construct a mass-
less, spinning cosmic string by similarly embedding the solu-
tion (12) in four dimensions. However, while the Einstein
tensor corresponding to the metric (11) contains the expect-
ed Dirac delta function, that corresponding to (12) contains
squares of delta functions. Clement, ' following a standard
method, ' has found Roo, R[jand , R ~for ,a completely gen-
eral three-dimensional metric. From these one can con-
struct 6+" by using the identities

R = Roo go goJR'J+ gIJR'J

Roo Roo go gpR» 2goIRo&

R"=R[,—g„R",

(25)

(26)

which are valid when gpp=1. If one then inserts the specif-
ic form (12) for g„„, one finds a G"" whose only vanishing
components are 6&, i~j, and whose every nonvanishing
component contains terms of the form (vr2lnr)2 —[8(r) ]2.
If one embeds in four dimensions by writing

ds2= (dt —AdH)2 —dp2 —p2d82 —dz2

one finds, by the arguments used above, the same singulari-
ties. The physical interpretation of these singularities, in
three or four dimensions, is unclear.
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The only new component of Einstein's equations in four
dimensions is therefore

——,
' g„R =8~"'6"&T„=+—,

' g R = —8m("6"'T
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