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From Regge trajectories to a static sine-Gordon-type equation
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We present a model of mesons and baryons as colorless bound states of effective colored quarks.
Their dynamics is in both cases that of a single string, and as a result light rnesons and baryons are
shown to lie on parallel Regge trajectories. A baryon appears as a soliton on the string (with a
favored quark-diquark structure), the underlying equation of which reduces, in a suitable approxi-
mation, to a static sine-Gordon-type equation. A baryonic number differentiating between baryons
and mesons is defined.

In this article we will generalize the preliminary Abeli-
an model introduced in Ref. 1 to an SU(3) non-Abelian
one allowing a unified description of mesons and baryons,
Thanks to the key structure of our preliminary model,
that is, to the appearance of effective quarks as "con-
densed" magnetic charges, we will again be able to match
a single-string dynamics with the usual quark description
of mesons and baryons. That is, a meson will be made of
an effective-quark —effective-antiquark pair and a baryon
will be made of three effective quarks which in turn will
dynamically cluster to a quark-diquark pair. As a result,
the light mesons and baryons will be shown to lie on
linear and parallel Regge trajectories, and the origin of the
translation of the baryonic trajectories relatively to the
mesonic ones will be identified. Moreover, the coupling
between the effective quarks and the SU(3) Yang-Mills
field will, as in Ref. 1, account for the necessary short-
distance interaction.

This is not the first attempt to describe baryons in the
framework of string models. Several models having been
constructed up to now; however, none of these models
is directly related to our work although we may share
some results. In particular, it has been known for a long
time that linear baryons lead to Regge trajectories with
the same slope as mesons.

This paper is organized as follows:
In the first section we show how to build a meson and a

baryon as colorless composites of effective colored quarks
and antiquarks. At this stage, the discrimination between
baryons and mesons will be achieved by using a non-
dynamical pseudoscalar and SU(3)-valued field p defined
on the world sheet of the string. In so doing, we will sug-
gest a one-soliton nature of baryons as opposed to a zero-
soliton nature of mesons and define a baryonic number
(for a first appearance of this idea, see Ref. 7). Unfor-
tunately, the light-baryon Regge trajectories will appear,
in that scheme, to lie slightly below the light-meson ones
in contradiction with experiment and thus obviously ask-
ing for a cure. We will end this first section in showing
that a very natural cure to this problem is to promote the
nondynamical field p to a dynamical one.

The second section will be devoted to the introduction

and the study of the dynamics of this field and to its
consequences. To begin with, we will show the field p
possesses a single degree of freedom 8 and will introduce a
canonical kinetic term for this last field as the only addi-
tional piece to the action of Sec. I. Next we will look at
the equation of motion for 0 and show it reduces in a suit-
able approximation to a static sine-Gordon-type equation
so that the mesons will be recovered as the trivial solution
of this equation and the baryons will be described by the
one-soliton solution of the same equation. These last will
be seen to exhibit a quark-diquark structure. Then we
will explain how the 0 contribution to energy acts to
translate the baryon trajectories in the right direction.
Unfortunately, the equation for 9 being far too complicat-
ed to be solved analytically, some of our last proofs will
remain qualitative. Nevertheless, these heuristic reason-
ings are, in our opinion, convincing. We obviously intend
to publish a complete numerical treatment of the equation
for 0 as soon as available. The paper will end with our
conclusions. Throughout we use the same notation as in
Ref. 1.

I. BARYON AND MESON STRUCTURE

To begin with, the fundamental fields of our Lagrang-
ian will be an SU(3) Yang-Mills field A & (x),
a H [1, . . . , 8I and a vector field y"(r, r'). From this
last f'ield, it will be convenient to define the SU(3)-valued
tensor field

G" (x)= J ' 6 (x —y)p(r, r')dr dr',
sheet Q(ro &&)

where p(r, r') is a mapping from the parameter space
]—co, + ce [x[0,1] to the Lie algebra su(3) of SU(3) which
will be made precise as we go along. Depending on what
p(r, r') we choose we will describe either a meson or a
baryon.

An analogous tensor was introduced by Eguchi.
Under a local SU(3) transformation g(x) the fields intro-
duced transform as follows.

We define

A„(x)=A„'(x)T',
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where T' are the eight Hermitian generators of SU(3): we
use T'=A, '/2 then

0

sA„(x)=g(x)A~(x)g '(x)+ —g(x)B~ '(x),
e

e is the SU(3) coupling constant, and

gp(r, r') =g[y"(r, r')]p(r, r')g 'fy"(r, r')]

such that

gG&„(x)=g(x)G& (x)g '(x) .

Note the implicit dependence of a general p in y"( r, r').
The action for these fields then can be written as a trivial
generalization of the action in Ref. 1:

S= g f & gdr d—r'+m f, ds;+m f, ds~

+ Tr Fz x FI' x d x

+Mo f Tr(Gp„F" )d"x .

We recall that the two terms m I ds;+m I ds~ are
l f

just an ansatz to get, through the limit m ~0, all the ki-
netic contributions for the string as is explained in Ref. 1.
By the way, note that in spite of the fact we will describe
baryons together with mesons we have introduced only
two masses which further stresses their ansatz character.
This action is clearly invariant under gauge transforma-
tions whatever are Mo and e and also under these local
reparametrizations which map (r,0)~(7-,0) and
{8,1)—+(7,1). In order for it to be also invariant under
the complete Lorentz group, we have to require that
p(r, v') changes sign under parity and time reversal so
that G&„(x) is a pseudoscalar tensor field and Mo a usual
scalar coupling constant. Note that p(r, r') is not con-
sidered as a dynamical variable at that stage.

In what follows we will further impose the gauge-
invariant condition

Tr[p (7,7' )]=X '»t(r, T ) H ]—,+ [x[0,1],
where X is an arbitrary constant. An early motivation for
it was to realize an analogy with the previous Abelian
model. Indeed, it is well known (see Ref. 9 for an early
proof) that in the Abelian case f G&„G" d x is formally
proportional to f U' —g dr dr' which appears in the ac-
tion of the Abelian model; moreover, it is easy to prove
that, similarly,

f Tr[G„,(x)Gpv(x)]d x

is formally proportional to

f 0—g Tr(p')d odeum'

so that, as it is also f v' —g dr dr' which appears in the
action of the non-Abelian model, we get a complete analo-
gy if we impose Trp =const.

A more pragmatic reason for this condition is that it
leaves only one degree of freedom in p(r, r') (see below),
which will be enough for our purposes. Then we follow
the same steps as in Ref. I in order to choose the distribu-

tions allowing the usual interpretation of mesons and
baryons as multiquark bound states. That is, we first
compute the A&(x) equation of motion which can be
written

where

F""=d"A' d"A—" ie[—A",A ],
D„{F~"or G &")=(8„ie—[A„, ])(.F~" or G ~") .

(3)

Such an Abelian ansatz is a priori a very restrictive one;
however, a work of Patkos' suggests that it may well be
sufficient to catch most of the correct physics of our
model. What Patkos proved is that for a general class of
Higgs models which allow non-Abelian Aux-tube configu-
rations it is always possible to find a gauge where these
solutions take an Abelian form thus showing that there
exist situations not very far from ours where an Abelian
ansatz exhausts the entire physics. This fact gives us the
hope that our Abelian ansatz may indeed be relevant espe-
cially if the physics to be deduced from it is consistent
with experiment as it will appear to be. Thus, we proceed
from the Abelian form of the Eqs. (3).

We are now in a good position to choose p(», r') distri-
butions. Indeed, we remember from Ref. 1 that the form
of B„G" was the key toward effective Abelian quarks so
that we will look for p's implying, respectively,

(d„G" )M ~d»+d ', i=VorR or-8

(d„G" )g ~ d;, +d,' +d,

where d stands for the q; dimensionless current density,
namely,

d;"=p; f,„dr', 6'(x —y)
line of q,.

Ii ] =
t V,R,B] indicates the color of the effective quarks

and

To get more insight in this equation we can, using (1), spe-
cialize to a gauge where p(r, r') is a diagonal matrix thus
developing on the Cartan subalgebra generated by T and
T . Note that p(r, r') is not completely fixed by this
condition as gp(r, r') is as good as p(», v') provided g(x)
belongs to the Weyl group of SU(3). Then assuming the
Abelian ansatz for A„(x) in this gauge, that is,

0p {x ) =Q
~(

x)T +0~ (x ) T

Eq. (3) further simplifies to

BpF" = —4mMOBpG"

where

F" =3"a —8 a" .
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p~ v'2N——T (4)

which is visualized on Fig. 1, and, for baryons (to appear
as three effective qs),

p~(~, r') =v 2N T for (r, r') H ]—~, + ~ [X ]O, rd [,
ps(i. ,r') = P((v'2—N T )

for (i,i') E ]—oo, + ao[ X]rd, 1[

See Fig. 2 for a well-chosen parametrization of the sheet.
rd will be specified later and the operator P, operates the
permutation 123~231 on the eigenvalues of (v'2NT ).
The proof of this statement is straightforward from the
explicit general expression of B&G" (x), i.e.,

v

d„G""(x)= f dr 5 (x —y ) (r, 1)p(r, 1)

v

d&6 x —y &0p ~~0
O'T

+ f dr dr'5 (x —y)

By 8 By B,

Br Bi d'T B7

It is easy to verify that residual gauge transformations
transform the B—B, R —R and V—V mesons among
themselves and the B—V—R baryon to any other color
arrangement. The charge-conjugate states are obtained
through pM~ —pM and pg~ —pg.

The above solutions for the p matrix strongly suggest
an analogy between baryon and meson on one side and the
configurations of two-dimensional field theory with and
without soliton on the other side. Such a solitonic inter-
pretation of baryons, which was first introduced by
Skyrme, further mentioned by Goldstone and Jackiw, "
and which has recently received a regain of interest in the

1 8
py ——~T+ T

2V3
1 8 1 8

pg ———,T +— T, pg ——— ~ T, p-. = —p; .
2~3 V3

The unique suitable solutions to these equations, up to a
sign and up to the residual gauge transformations still
possible for a diagonal p, are, for mesons (to appear as an
effective qq pair),

FI(G. 2. Same 'as Fig. 1 in the case of a baryon.

context of bag models, ' will naturally strengthen in the
next section where p will be given a dynamics the necessi-
ty of which we will now demonstrate. As the p distribu-
tions (4) and (5) cannot be the definitive ones, we will be
content in looking at the classical equations of motion to
derive the static effective potential between the ends of the
string which, in turn, will imply the light-baryon Regge
trajectories to be linear and parallel to the mesonic ones
but also to be slightly below them in contradiction with
experiment, so that something must be modified in the
model.

It is easy to verify, proceeding as in Ref. 1, that the
rigid-string motion' is a solution in both the meson and
the baryon cases, provided we choose the intermediate
quark to stand in the rniddle of the rotating rigid string
(that fixes r~ once the parametrization of the string is
chosen). For that motion the static effective potentials be-
tween the ends can be written, respectively, as

(Mov'2N )
VM ——gr—

VM =nr-
2r

(Mov'2N )

5 (Mov 2N )
Vg ——gr ——

2 r

Then, plugging them into the semirelativistic Schrodinger
equation for the ends immediately leads' to the above-
mentioned result as Mov'2N should be nonzero.

A way out of this contradiction is simply to allow the
motion of the intermediate quark along the string.
Indeed, we know the zero-point energy of a relativistic
particle in a one-dimensional box amounts to irIL (L:
box length) so that, taking also into account the zero-point
energy coming from the fluctuations of the string (i.e.,
irl2r as suggested by both experiment' and the Neveu-
Schwarz model' ) we are led to

7T
Vg ——gr-

2r
(Mov 2N )2 [ir z(Mov'2N ) ]-

+

FICx. 1. Visualization of the p distribution on the world sheet
swept out in space-time by the string in the case of a meson.

Thus the leading baryon trajectory appears to be translat-
ed above the mesonic one by

(meson intercept) —(baryon intercept)

= —,
' [ir——,

' (Mov'2N )2]= —,(3.14—0.24)=1 5

if we use the value of Mov'2N suggested in Ref. 14 in the
case of m„=0.1 GeV. Such a value is quite of the right
order of magnitude as (p intercept) —(5 intercept)=1.
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The aim of the remaining part of this paper is to imple-
ment a dynamics for the intermediate quark.

Before leaving this section let us define a baryon num-
ber differentiating between mesons and baryons. We pose

3/2
o

o (Trp )dr +, (Trp )dr(2N)'" & aro 87
(8)

To allow the motion of the intermediate quark along
the string the most natural idea is to promote the non-
dynamical field p(~, r',y") to a dynamical one, in such a
way its equation of motion admits meson-like and
baryon-like solutions. Moreover, we must pay a close at-
tention to the p contribution to the static potential in or-
der to not spoil the linearity of the mesonic and baryonic
Regge trajectories. This last requirement will in turn give
us clues toward the right Lagrangian for p as we shall see
below.

So let us address ourselves the problem of implementing
a dynamics for the field p. First of all we notice that it
possesses only a single degree of freedom. Indeed, once
we choose the diagonal gauge the p field can be written as

(
0 1)

=2v'N /6diag(cos(0+ m /3), cos(0 —rt/3), cos(8+m. ) )

=&2N (coseT —sineT ) (9)

as a result of the constraints Tr(p) =0 and Tr(p ) =N,
where 8(r, r') is a mapping from the parameter space to
R.

Under the remaining gauge transformations (those
which permutate the eigenvalues) 8(r,v')~ge(r, r') such
that in all cases

ge(P, ~') =0(P,r')[2m. /3]

ge(r, ~') = —0(r, r') [2m/3] .
Apart from these permutating transformations, 8(r, r') is
considered as gauge invariant as should be the eigenvalues
of a matrix transforming as in (1). Moreover, 8(r,~') is a
scalar under the proper I.orentz group and becomes

where C is a curve going from one edge of the sheet
spanned in space-time by the string to the other. 8 is
easily seen to be gauge invariant, reparametrization invari-
ant, conservative, and to be 0 for a meson and 1 for a
baryon.

II. THE MODEL

for 8 is needed, neither is it suitable for our present pur-

pose as we shall see shortly)

S,= —f g a.ea ed''dr'
2

which is manifestly Lorentz, gauge and reparametrization
invariant. In addition, we will require the following set of
boundary conditions for the model to describe physical
cases:

[8(v,O) =0 and 0(r, 1 ) =0][m-/3]

or

[8(&,0)=0 and 8(r, 1)=m'/3][~/3] .

i~rom (10) we see that these conditions insure the baryon-
number conservation. In our opinion, these boundary
conditions appear to be imposed by hands only because
the model in its present state describes classical colorless
objects and not quantum color singlets and as such should

disappear in a quantum version. (Moreover our model of
effective quarks with spin' suggests they may be inti-

mately related to the boundary conditions which charac-
terize the Ramond and the Neveu-Schwarz sectors of the
supersymmetric string model. ) Thus the complete action
describing our model can be written as

S2 ——g f dr dr'v
~
g ~

+ f Tr(F& F"")d x
8m

—f v' —~g ~

d~'dr'
2

+Mo f Tr[G„,(x)F""(x)]dx,
where the last term may also be written as

a(y„,y )

Mo f dr d 'Trr[p(P, ')rF""(y( ,r')r)] a(~', r')

We are now going to show that this action describes both
mesons and baryons respectively, as, the zero-soliton and
the one-soliton solution of the equation of motion of the
8(r r') field and simultaneously preserves the linearity of
both the light-meson and light-baryon Regge trajectories.
We will also exhibit the origin of the relative position of
these trajectories. So let us first report the coupled system
of equations of motion for the fields A", y", and 8 (we re-

port here the self-interactions subtracted equations in the
diagonal gauge, using the Abelian ansatz for A&) [a&G&"
is given in (6) and p(r, r') is defined in (9)]

"e(ro,r') =e(P,r')+~
under P or T. We also note that

N 3/2
Trp = — cos38(~, r')

6
so that we should have

sin38(r, 0)a 8(~,0) =O=sin38(~, 1)a 8(r, 1 ) (10)

B„H~ =O- -.H~ =B~C —8 C~, B„C~=O

BpH ""=—4nMpBpG",

(v' gu rT&')—
a~'

(12)

in order to insure the baryon number (8) conservation.
Then the dynamics of the p field is implemented

through a simp/e kinetic term in the action (no potential

2MoTr u p p —u ] p H & =0,
I ~ O

(13)



DOMINIQUE OLIVIER 32

+2Mou„, oTr(pH & )
8 dg

ds

—&—gT' u 1'IEdges (14)

where T P is minus the stress tensor taken with 2& ——0,
1.e.,

T — —() 0(j'vg + g P g j gP~() gQ g
8~

and where em = —m for ~' =0 and em = +m for w' = 1.
8: the variation 59 should verify M(r, 0)=59(r, 1)=0

as we require the specific boundary conditions (11) so that
we get

Obviously, these equations are far too complicated to be
solved exactly so that we will use the following strategy
based on the experience acquired with the preliminary
model of Ref. 1. We will concentrate on the nonrelativis-
tic approximation of its solution and consider it leads to a
relevant approximation to a static potential to be used in a
semirelativistic equation for our system as it was the case
in Ref. 1.

In such an approximation the coupled set of equations
[(12)—(16)] admits a particular solution where the string is
rigidly rotating, i.e., where

0

r(r —1 )coscor1 0

yP—y —
r(r1 =~)sin~ro,

3 (&—gg ~BpO)+M ' Tr pH, =0.a(y&,y ) ap-

ort(

0 I) g9 P~ (16)

0,

and where 8(r, r') is a static field satisfying (17):

d 0 +(v'2&Mo) sin[8(r') —8(1)]
(1 1)2

1

sin[9(r') —9(0)]—R f der ', " cos[8(r') —9(~)] (17)

I8(1),8(0) J should satisfy (11) in order to describe physi-
cal cases.

The parameters ~ and ~ will be fixed through the boun-
dary conditions (14) in term of r, v'2%M&, g, and eventu-
ally m once a solution. for 8(r') is chosen and the R
operator in (17) is used to regulate the integral

do. , cos 0 ~ —t9 o.
~' —o. dO 1

which is divergent in the general case of a nontrivial 8(r').
Physically this divergence occurs because of the chro-
momagnetic flux characterized by 0 is distributed in a
three-dimensional space along an infinitely thin one-
dimensional string thus leading to a singular field Ho;(r )

for any point inside the distribution itself. One way to de-
fine the R operation may be, for instance, to introduce a
transverse extension for the string characterized by some
Rz so that

de R~ 1

R f do, cos[8(r') —8(o)] = f rzdrt fdo, , 3
cos[9(r') —8(o.)]

o
l

1

l

3 dt's R 2 o [ [ 2+( 1 )2]1/2I 3

do
d8 cos[8(r') —8(o )]2sign(r' —c7)

d~ ~1 a +Rl2+~ a / Rl+
To obtain any explicit solution of Eq. (17) will unavoid-
ably require an involved numerical treatment because of
the occurrence of the last integral term, numerical treat-
ment which is not yet done, ' however, a lot of relevant in-
formation may be obtained without such a complete solu-
tion. Indeed, we notice first of all that
9(~') =8(1)=8(0)=0[~/3] is a trivial solution of (17) so
that the mesons are obviously described by the action ST.
Secondly, we notice that if 8(r') is a nontrivial solution of
(17) then P(r') =9(1)+8(0)—8(1—r') is another non-
trivial one satisfying the same boundary conditions.
These two solutions are compared on Fig. 3. The appear-
ance of this symmetry is quite natural from the results of
the first section as once the p field becomes dynamical the

FIG. 3. A typical solution of Eq. (17): 0(~') is compared
with the solution P(~') =9(1)+9(0)—9(1 ~') which follows by-
symmetry.



32 FROM REGGE TRAJECTORIES TO A STATIC SINE-GORDON-. . . 495

equilibrium of the intermediate quark in the middle of the
string becomes unstable so that the intermediate quark
will fall toward either one end or the other with equal
chance leading to the above two mostly quark-diquark
configurations of the 8 field. Such a quark-diquark struc-
ture of baryons has been put forward for a long time, in
various fields of baryon dynamics, where it appears to
have some advantages (see Ref. 17 for a short list of refer-
ences), but to may knowledge, it was used so far on
phenomenological grounds only. (The only place where a
flavored quark-diquark structure of baryons is deduced is
in Ref. 4 where such configurations realize the two nor-
mal modes of the longitudinal motion of a string with
three quarks attached to it.) Here, on the contrary, such a
substructure will emerge from a well-defined model once
a nontrivial nonsymmetric solution of Eq. (17) will be
shown to exist.

We now turn to this problem and intend, in looking at
two extreme approximations of Eq. (17) to convince the
reader that such solutions are indeed very likely to exist.
So let us consider as a first extreme approximation, Eq.
(17) without the integral term. It is written as

2
+(v'2NMO.),2

sin[8(r') —8(1)jd7" (1 1)2

+ sin[8(r') —8(0)] =0 (18)
1)2

and specify to 8(0)=0 and 8(1)=~/3. This equation is
just a static sine-Gordon-type equation, i.e.,

d 0 +f(r')sin[8 —P(v') ]=0 .

Thanks to the singularities for r'=0 and r'=1, the
usual uniqueness theorems, for the nonlinear two-point
boundary-value problem do not apply. Moreover, these
singularities impose that any solution of Eq. (18) verifies
8(~'=1)=8(1) and 8(r =0)=8(0) if 8(r'=1) and
8(~'=0) are to be finite.

Next look at the most general behavior of 8(r') for
r'~0+ (the behavior for ~' —+1 will follow by symme-
try). There are three possibilities:

if (v'2NMO) =a & —„

8(r )= —a [ln(l —r )+r j
v3 1 I

2

, v3
+EX

2
7 +(—,r' ——, )ln

~

1 —r'
~

'

ao 12——,ln ~1 —r'~+g
n

All together, this suggests the following pattern of solu-
tion curves for Eq. (18) [see Fig. 4 where only curves
satisfying dB/d~'(~'=0)=0 are drawn] which, in turn,
suggests that for all finite values of a the baryonic config-
uration of the 8 field are indeed quark-diquark like.

From the experimental data, ' it follows that the curves
we are interested in have

0.15&a=(/2XMO)'&0. 55 .

Among these values, only those greater than 4 lead to
curves the gross shape of which (it is step distribution
like) is satisfactory to describe baryons (forget about their
embarassing oscillating behavior in the neighborhood of
r' = 1). However, those smaller than —, should not be dis-
carded yet, as they obviously do not give a small integral
term as required by the consistency of our approximation
so that the corresponding curves of Fig. 4 may be only
very poor approximations of the correct ones.

The oscillatory behavior of the curves with a& —,
' as

well as the one of the curves with e & —„are clearly very
embarassing because the related singularity of dB/der(o)
will lead to an infinite energy as we shall see shortly. For-
tunately, we do not expect these behaviors to survive the
introduction of the so far neglected integral term as such
terms usually act to smooth singularities away.

To substantiate this argument, let us now look at the
other extreme approximation of Eq. (17), that is at the one
obtained by using the ansatz 8(o) =8&(cr) in the integral
term [8&(r ) is the particular configuration of the field
8(r') leading to the distribution p~(v') defined in (5)j. In
this case Eq. (17) simplifies to

8( )
) ( 1)(1—P)/2+b(r) )()+P)/&+ (~) )2

a(v'3/2)
2+ cx

where P=(1—4a) '

tfa= g,
B(r')=aV r'+bv r'1n~ + a(v3/2) „

7 p2+ (x

tf a)
8(r') = V r'[a cos( —,

' pin~')+ b sin( —,
'
p In'')]

a(v 3/2)+ 2+a

where p=(
~

1 —4a
~

)'/. On the other hand, for small
enough a the developable solution can be written as (for
small enough r')

FICx. 4. Pattern of solution curves of Eq. (18) subjected to the
boundary conditions 0(0)=0 and d 0/d ~'(0) =0.
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d.. &', b', a

0.3 0.4 0.5 0.6 0.7 0.8 0.9

b

FIG. 5. Pattern of solution curves of Eq. (20) consistent with
the ansatz 0(~') =8~(~'). We used a =0. 1 and the curve (a) cor-
responds to ~d' ——0.9, the curve {b) to ~d' ——0.8, the curve (c) to

1~q' ——0.7 and the curve (d) to ~d ——0.6.
FIG. 6. Suggested shape of a solution of Eq. (17) suitable to

describe a baryon.

d 8
i2 +~ 2 sign(r' —rd

' )sin[8(r' ) —2~/3]
sin 8(r') ——+(1/7' )sin8(r')+ =0

(19)

which is still a static sine-Gordon-type equation.
Proceeding as before we easily obtain, when a is small

enough, the pattern of solution curves consistent with the
ansatz 8(cr)=8&(cr). This pattern, drawn on Fig. 5 for
a=0. 1, clearly shows the disappearance of the singularity
near ~'=1. Moreover, it strongly suggests the true so u-

f Fi . 6. Thus, wetion for baryons looks like the curve o ig . .us,
believe the above two extreme approximations [Eq . (E s. , 18)
and (20)] match well together to give a convincing c ue in
f th existence of nontrivial nonsymmetric solutions
of finite energy of Eq. (17). Fourthly, we notice a q.
(17) does not depend on any dimensionful parameter
which will be crucial for the 0 contribution to the energy
to not spoil the linearity of baryon Regge trajectories.

Indeed, in the nonrelativistic approximation, the 0 con-
tribution to the energy can be written as

dOz, =—I dr'
d~'

(20)

S„— —gVOd~d~

in addition to the kinetic term S~. Indeed at least one
further dimensional parameter r)' of dimension (length)
would have appeared in S„and consequently an r-

Idependent dimensionless parameter (r /r) g would have
entered in (17) because of the dV/d8 term so that any
nontrivial solution of (17) would have been implicitly r
dependent. Moreover Eg would have written

so that a nontrivial solution 8(v') of (17) which do not de-
pend on r will, as usual, provide a positive (of the sign re-
quired by experiment) translation of the baryon Regge tra-
jectories. Such a translation would not have been easy to
realize at all if we had introduced a potential term

dOE,=—J dr'
r o dg

+r f dv'V(8)

III. CONCLUSION

In spite of the fact that some of our last reasonings are
for the moment only heuristic, we think we have con-
vince ed th reader that it is possible to merge in a sing e
model some features of the hadronic spectroscopy w ic
were up to now isconned' onnected. To be specific we succeeded
in merging oge et th r a description of common hadrons as
quarks composites as suggested by the quark model o
Gell-Mann and Zweig' (the quarks are effective here), a

and thus would have had a quite intricate r dependence.
Therefore, altogether, an S„ term is not suitable at all for
our present purpose of translating the baryonic Regge tra-
jec ories.t However such a term may be o some use in or-
der to introduce natural quark masses in the mo e so a
we must keep it in mind till we introduce the flavor.

What will be the final position of the baryonic trajec-
tories we cannot tell without the exact solution 8(r')
[which is also needed to compute the short-range chro-
mointeraction analogous to (7)]; nevertheless, we think we
are progressing in the right direction especially as we have
not yet taken into account the quantum fluctuations con-
tributions to the energy which are specific to baryons.
These contributions include in particular a tunnehng e-
fect between the two symmetric quark-diquark configura-
tions we missed at the end of Sec. I.

Remark: From (20) we see that the singular behavior of
d8/der near r'=1 for solution curves of Eq. (18) with a
around —,

' leads to a logarithmically divergent energy as
stated above.
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description of them as strings as first introduced for
mesons by Nambu, ' here with the additional information
that baryons should be also straight strings and not y-
shaped ones as considered by some authors ' (an analo-
gous result was obtained by Eguchi ), and the description
of rnesons relative to baryons, respectively, as, the zero
and one soliton solution of a two-dimensional field theory
as explicitly suggested in Refs. 7 and 11. Moreover, our
model appears to be quite economical and in some sense
straightforward once the physical idea of Ref. 1 is real-
ized. In particular, no arbitrary potential for 8 is needed

to accommodate baryons as one soliton. However, we are
still very far from anything realistic, spin, flavor, and
quark masses remain to be introduced and, above all, we
should go beyond the present classical field theoretical
study of the action ST. Nevertheless, we think the results
obtained are encouraging.
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