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Color, confinement and the quantum-chromodynamic vacuum. III
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In earlier papers it was shown that if soft gluons do not propagate in the vacuum state the vacu-
um expectation value of the modified Coulomb interaction develops a singularity at zero momentum
that leads to the confinement of color. The consistency of this picture is established with the
demonstration that if the interaction is singular soft gluons do not propagate. This conclusion is
shown to be independent of most approximations. Taken together the three papers in the series pro-
vide a framework for calculating the most important aspects of color confinement in quantum chro-
modynamics.

I. INTRODUCTION

This paper is the third in a series which seeks to estab-
lish an analytic connection between the properties of the
vacuum in quantum chromodynamics (QCD) and the con-
finement of color. In the first paper' (I) it was established
that, if the vacuum expectation value (VEV) of the modi-
fied Coulomb interaction in the Coulomb gauge is in-
frared singular, color is confined. An infrared-singular
interaction is one which grows with distance in configura-
tion space or which diverges sufficiently rapidly near the
origin in momentum space. , In both the quark and gluon
sectors only color-singlet states have finite energy. There
are infrared divergences in the bound-state equations.
Both the interaction and the self-energy contributions are
singular. For a color-singlet state there is an exact cancel-
lation between the two. If the state carries color, there is
no cancellation and the energy is infinite. The second pa-
per (II) examined the mechanism for producing the pos-
tulated infrared singularity. It was shown that if the
gluon propagator is softened at low momentum, the- modi-
fied Coulomb interaction naturally develops an infrared
singularity. In other words, the failure of low-momentum
gluons to propagate in the physical vacuum leads to a
long-range confining interaction.

In this paper we demonstrate that the nonpropagation
of gluons is, in turn, a consequence of the singular in-
teraction. In QCD there is a regime, distinct from the
perturbation-theory sector, in which a confining interac-
tion is generated in a self-consistent manner. The vacuum
modifies gluon propagation to produce a singular
Coulomb interaction. This interaction, in turn, produces
the modification of gluon propagation. This regime is
characterized by a single dimensionful parameter which
cannot be determined within the theory. The results of
this paper provide a theoretical justification for the special
properties that were postulated in I and II.

Two arguments are presented to establish the softening
of the gluon propagator. In the next section, the Tamm-
Dancoff formalism of I is applied to vacuum-vacuum
amplitudes. In the third section the VEV of the Hamil-
tonian is minimized as a functional of the gluon propaga-
tor. Both procedures produce the same integral equation

for the VEV of the gluon propagator. There is a digres-
sion in Sec. II that is needed to establish an essential prop-
erty of the VEV of gluon field operators. As in earlier pa-
pers, all calculations are in the Coulomb gauge. The
necessary approximations have been used before. The
zero-momentum solution of the integral equation is dis-
cussed in Sec. IV. All but the most dedicated readers will
want to skip the fifth section which analyzes the effects of
the most important approximations. The conclusion is
that if the modified Coulomb interaction is infrared
singular, the gluon propagator approaches a constant at
p =0. Perturbation theory predicts 1/p. The final sec-
tion discusses the significance of our results and suggests
an explicit model of the vacuum state which appears to
incorporate those properties of the Coulomb-gauge vacu-
um essential for confinement.

II. THE GLUON PROPAGATOR
IN THE TAMM-DANCOFF FORMALISM

In the Tamm-Dancoff formalism one calculates the
expectation value of the commutator of field operators
with the Hamiltonian,

(0
~
[O(P),II]

~
g) = (Eg —E )(0

~

O((b)
~ g) . (1)

The states
~
P) and

~
0) are eigenstates of the total Ham-

iltonian. Thus,
~

0) is the physical vacuum state. The
operator O(P) is a product of field operators P, and the
commutator on the left of (1) is evaluated with the equal-
time, canonical commutation rules. Here, we take

~
g) =

~

0), and the right-hand side vanishes. The gluon
propagator is a function of the vacuum expectation value
of two-gluon field operators,

5,b 5(p+ k)P J (p)
A (p)AJ (k) = A(p),

2(2~)

where Pz(p)=5, J. —p;pi/p and a, b are color indices. In
the Coulomb gauge the gluon field A (p) has only spatial
indices and is transverse [p A'(p)=0]. The 5 functions
and the spin-projection operator in (2) are fixed by the re-
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quirement that the vacuum state is colorless, spinless, and
translation invariant. The factor of 1/[2(2n) ] is chosen
so that in the perturbation-theory limit A(p)=1/p. We
intend to show that in the interacting theory

The Coulomb Hamiltonian is

Hc = fd 1 d2d3 d4 fabe fbdeE (1) A (2)
2

limA(p) =1/m,
p~0

(3) XF,b( —1 —2, —3—4)E"(3).A'(4) .

where m is an arbitrary constant with dimensions of
mass.

The canonically conjugate operator to A (p) is E (p),
In I the modified Coulomb operator F,b(p, k) was as-
sumed to have a VEV of the form

[Ag'(p), EJ (k)]= 3 5,b5(p+k)P(J(p) .
(2~)

(4) (F,b(p, k) ) =5,b5(p+k)F(p), (10)

Since E (p) is a transverse vector operator,

5,b 5(p+ k)P 1(p)
&E, (p)E,"(k)&= " '+

2(2vr )

In the perturbation-theory limit E(p) =p =1/A (p). The
VEV's of the two other bilinear field operators are fixed
by the equal-time commutation relations together with the
parity and time-reversal invariance of the vacuum state,

( A (p)EJ (k) ) = —(E (p)AJ (k) )
5,b5(p+k)P;, (p)

2(2m )

To use (1) we need the QCD Hamiltonian in the Coulomb
gauge,

H =Ho+Hc+H'+H" .

The free Hamiltonian is

2 3

Ho —— fdp[E'(p) E'( —p. )+p A'(p). A'( —p)] . (8)
2

with F(p)~p " as p~O. When n & —,', color is con-
fined. In lowest-order perturbation theory F(p)=1/p .
In II it was shown that if A(p)~p p as p~O, with
13& —,', F(p) has the required behavior. The operator
F,b(p, k) is defined in. terms of the QCD Coulomb
Green's function, '

F b(p, k) = fdq D, (p, q)q D,b( —q, k)

d=
d [gD.b(p k)l . (11)
dg

The second expression for F,b(p, k) comes from convert-
ing the integral equation for the operator D,b(p, k),

D.b(p, k) = 5,b5(p+k)

+ig fdq p A"(p —q)D,b(q, k),
P

(12)

into a power series in the coupling constant g and insert-
ing that series into the defining equation for F b(p, k).

The three- and four-gluon interaction terms are con-
tained in H',

H'=ig(2m) f,b, fd1d2d35(1+2+3)A'(1) A'(3)1 A (2)

+ f,b,f,d, fdl d2d3d45(1+2+3+4)A (1) A"(3)A'(2) A'(4) .

The final piece of the Hamiltonian, H", contains renormalization counterterms and the Schwinger term.
To apply the Tamm-Dancoff formalism, we need to make two major approximations. Both have been made before.

In Sec. V we consider the validity of these approximations, or at least the conditions under which they are valid. In Hc,
F~b(p, k) is replaced by its VEV as it was in I. We are interested in the infrared limit where the VEV is assumed to dom-
inate Hc. The practical effect is to replace an operator by a c-number. Hc becomes quartic in gluon field operators.
The second assumption is that the VEV of a product of gluon field operators is to be evaluated in terms of all possible
VEV of pairs of fields. For example,

( A (1)AJ (2)E~(3)E„"(4)) = [5,b5(1+2)PJ(1)5,d5(3+4)P „(3)A(1)E(3)
[2(2~)']

—5„5(1+3)P; (1)5bd5(2+4)PJ„(2)

—5,d( 1+4)P;„(,1)5b,5(2+ 3)PJ~ (2) ] .

This procedure may not be an approximation if the VEV is interpreted in terms of propagators. The implicit assumption
is that gluon number does not change when a gluon scatters off the vacuum. In II the method was used to convert the
operator equation for D,b(p, k) into a "Dyson" equation for (D,b(p, k) ). A third, less significant approximation is the
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neglect of H' and H". We return to these corrections in Sec. V.
The derivation of the key equation is almost trivial. We use (1) with O(P) equal to one of the three bilinear products

of A (p) and E~ (k). If O(P) is A (p)AJ (k) or E (p)EJ (k), the result is just 0=0. The interest is in

([Af'(p)EJ (k),HO+HC]) =0

3 5(p+k)5 bP~(p)2(2~)'

X E(p) pA—(p)+ 3 fdqF(p+q)Tr[P(p)P(q)][E(p)A(q) —A(p)E(q)]
4(2m )

(15)

F(p+q) =p5(p+q)+F(p+q), (17)

with p a divergent constant. F(p+ q) is infrared finite. If
(17) is used in (15), the divergent constant p cancels out.
Hence in (16) we can replace F(p+q) by F(p+q) to
render the integrals finite at p+ q =0. Next we note that
asymptotic freedom implies that as p —+ac, all functions
approach their asymptotic values: A (p) ~1/p, E (p) ~p,
and F(p)~1/p . Hence, the integrals in (16) are ultra-
violet divergent. The divergence is cancelled by counter-
terms in H". Since we are interested in the p —+0 proper-
ties of A (p), we imagine the integrals are cut off at large
momentum through an unspecified renormalization
prescription.

Further progress requires a second relation between
A (p) and E(p). In the Coulomb gauge the color charge
operator is

where X refers to SU(cV). This equation can be rewritten
in the form

2+
1+ g fdqF(p+q)A(q)Tr[P(p)P(q)]

A (p) 4(2m )

E (q) 'N
p + fdqF(p+ q)E(q)Tr[P(p)P(q)]

4(2m )

(16)

The trace produces an angular factor 1+(p q) . If there
is a second equation that relates A (p) and E(p), Eq. (16)
becomes a nonlinear integral equation for A (p).

Several comments must be made. The function
F(p+q) is infrared singular. However, the singularity
can be subtracted with the procedure discussed in I. Let

Q, =(2m)f, b, f. dp A (p) E'( —p) . (18)

We calculate the color charge density of the vacuum state
using the prescription for the VEV of products of field
operators

(Q')
(19)

V

X(X —1) fdp[E(p)A(p) 1], —
2(2~)

where V is the volume of space. If the vacuum state is a
color singlet, this density should vanish. Using

dp Epd p —1 =0,

In perturbation theory, this condition is satisfied, but it is
true more generally. The VEV A (p) satisfies the equation

1+ 3 fdqF(p+q)A(q)Tr[P(p)P(q)]
2'

4(2n. )

p + 3 fdq Tr[P(p)P(q)]g X F(p+q)
4(2m. )' A (q)

(22)

When g =0, the perturbation limit is recovered. In Sec.
IV we study this equation and show that if F(p+q) is in-
frared singular, A (0)=1/m, where m is a finite constant
with dimensions of mass.

we find

fdp[E(p)A (p) —1] . (20)
V 8 (2m)

/

This VEV should also vanish if the vacuum state is local-
ly colorless. Thus we have

E(p) =A(p) (21)

III. VACUUM ENERGY DENSITY

An alternate derivation of Eq. (22) starts with the VEV of the Hamiltonian. Using the approximations of the previous
section, we find that

N —1 fdp[E(p)+p'A(p))+, fdpdkTr[P(p)P(k)]F(p+k)[E(p)A (k) —1] (23)
V 2(2m ) 4(2m )

If E(p) = 1/A (p), the vacuum energy density is a functional of A (p). [It is also infrared finite; F(p+k) can be replaced
by F(p+k).] When the energy density is minimized, we discover

5 (H)
5A (p) V

X —1 1 2+ fdkTr[P(p)P(k)F(p+k)
2(2m. ) A (p) 4(2n. ) A k

A (k)
A (p)'

(24)
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Upon rearrangement this expression becomes the integral
equation for A (p) obtained from the Tamm-Dancoff
method. Unfortunately, this minimization procedure can-
not easily be extended to encompass the analysis of
correction terms. The implicit dependence of F(p+ k) on
A (p) makes the approach too cumbersome. However, the
identity of the results in the two approaches suggests that
there is a strong connection between confinement and a
vacuum state of minimum energy.

IV. INFRARED BEHAVIOR OF A(p)

I(p) = rI i 1(n ——, ) —2P
( )3—2n P

r(n) (A,'+p')'
I (n +p ——', )I ( —,

' n)I ( —,
' ——/3) 3—» —2p

3/2 2 2 2 P
I (n)l (/3)I (3 n ——P)

r(n+/3+s ,' )r(—,'—n—/3—)—
+2&

2 2 g3 —2n —2P—2s

I (s)

The term which diverges as p~O contains the infrared
singularity. This infinity cancels out of all integrals. The
second term dominates as p~0 as long as /3&0. If P=O,
the finite part of the integral is independent of p as p~0.
Equation (26) suggests an alternate prescription for ob-
taining the dominant, infrared-finite part of I(p). First
set k =0 in the integrand except where the k,p~O limit
of the integrand would be altered. Then do the integra-
tion for values of n and P for which it converges. The re-
sult is analytically continued to interesting values of n and
P. It is not necessary to maintain the distinction between
F(p) and F(p); the infrared singularity never appears.
The power of p that results is exactly that which is calcu-
lated from scaling k by p in the integrand. The large-k
behavior of the integrand is irrelevant in the p~0 limit as
evidenced by the factor of 1/A, ' in (26).

Applying this lesson to the integrals in the equation for
A (p), we try a solution of the form

j p2
Pl ping

(27)

The p ~0 limit of (22) is

2 2P
1 p

m m

1+( ( /3)
3 2n —2P—

(28)
2+ C ( /3) p 3 2n +2P—

2P—]

It is possible to extract the p ~0 behavior of A (p) from
Eq. (22). First we consider a generic integral:

I(p) = dk
(25)

k P[(p+k) +p ]"[A, +k ]'
If n & —, and p=O, I(p) is divergent due to the infrared
singularity at k= —p. The factor of (A, +k )

' controls
the large-k behavior of the integral but is irrelevant for
the small-k limit. When n & —,p~O, and p~O, I(p)
becomes

We used F(p+k)=A[(p+k) ] " when p, k~O. If
n+/3& —, and n —/3& —, , the integral terms dominate
both the numerator and denominator. (A linear confining
potential corresponds to n =2.) Consistency of the ansatz
(27) requires

—2P
p

2 2P
C(n /3) 1 p

C(n, —/3) m' m' (29)

or C (n, /3)/C (n, —/3) = 1. Clearly, /3=0 is a solution. Ex-
plicit calculation shows that there are no other solutions
for reasonable values of /3. In particular, the
perturbation-theory value /3= —,

' is not a solution if n & —,
' .

When P=O, the character of the p~O integrals changes
[see (26)], and (28) is replaced by

1+[C(n)+p C&(n)]/m
(30)

m p +m [C(n)+p CD(n)]

where C&(n) and CD(n) are not equal because they de-
pend on the order-p corrections to 2 (p). The incon-
sistency that appears when (30) is rearranged,

2 2

[1+mCD(n)]=1+ C~(n), (31)

is not a problem. The correction terms in the numerator
differ from those in the denominator.

V. CORRECTION TERMS

X —— dqA q . 32
3 2(2m. )'

The expression in large parentheses appears in the denom-
inator of (22) as an additional momentum-independent
term. If n —/3& —', in (28), it has no effect on our discus-
sion of the zero-momentum limit of 2 (p). If the inequal-
ity is violated, the H' term dominates the denominator
and any solution other than P=O is impossible. Thus,
consideration of H' strengthens our conclusions about
& (p).

The effect of H" is more nebulous since we have care-
fully avoided specifying the renormalization counterterms
in detail. However, those terms, related as they are to the
infinite-momentum limit, will not contain the infrared
singularity associated with F(p+k). Thus, to the extent
that H" contributes at all as p~0, when /3 —+0, its effect
will be reduced by at least p

" compared to the terms
retained in (22). The Schwinger term does not have an
infrared divergence,

Heretofore we have ignored the H' and H" parts of the
full Hamiltonian. In addition we replaced the modified
Coulomb operator by its VEV. Our analysis of the effect
of these approximation centers on the question of whether
a more accurate calculation would change our conclusion
about the zero-momentum limit of A(p). The effect of
H' is easily computed,

i 5,b5(p+ k)
( [ A (p)EJ (k),H'] ) = P; (p)g (p)

2(2m)
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Hs'= g, fd1d2d3d45(1+2+3+4)1 3f,b,
8(2m )

&&f.d, D,„(1,2)D„(3,4) . (33)

The effect of replacing the operator F,b(p, k) by its
VEV is more difficult to estimate. We must investigate

~ 2

([A,'(p)E (k),H ])= P;, (p)P;(k)f „,f ,2(2'�)

It affects only the denominator of (22) and is negligible as
p~0 (order p ~) compared to the dominant part of Hc.

x fd1d2d3d4 [g( )],
dg

(34)

where

( ) = —5,b5(k+2)(A,'(P)E,"(1)Dfs(—1 —2, —3—4)E (3) A'(4) )

—5,b5(k+4) (E"(1).A'(2)Dfs( —1 —2, —3—4)A,'(p)E, (3) )

+5,b5(p+1)(A,'(2)E, (k)Dfs( —1 —2, —3—4)Ed(3) A'(4) )

+5,d5(p+3)(E"(1) A'(2)Dfs( —1 —2, —3, 4)A,'(4—)E, (k))
—ig(E"(I ) A'(2)A, '(P) fdqDf„( —1 —2, q)fxb~q, —D~s(q+k, —3—4)E (3) A'(4)) . (35)

The integral equation for D,b(p, k) has been used to evalu-
ate the commutator [EJ (k),D~, (p, q)]. The derivative
with respect to coupling constant allows us to deal with
D~, (p, k) rather than F„(p,k). Since D„(p,k) contains
all powers of A (p), an accurate treatment of the VEV's
requires contractions between the explicit field operators
and the implicit operators in D„(p,k). The calculation is
lengthy, but possible with the use of an ansatz that in-
corporates our rules for evaluating the VEV of a product
of field operators. We set

(36a)

Polarization indices have been suppressed. The polariza-
tion vector e;(p) is transverse. The creation and annihila-
tion operators a '(p) and a'(p) obey free-field commuta-
tion relations, and a'(p) annihilates the physical vacuum
state.

)
1/2

A (p)= e;(p)[a'(k)+a '( —p)],[2(2n)3]'

EJ'(k) =
3 1/2

1
I/2 [ah(k) a tb—

( k)—] . (36b)
[2(2n) ]'/ [A (k)]'/

The first VEV in (35) becomes

( )&
—— ' e.,(p)e, (1)e(3) e(4)(a (p)a "(1)D~&(—1 —2, —3 —4)a "(—.3)a '( —4)) .5~b5(k+2)

[2(2m) ]
When the explicit field operators are commuted to annihilate the vacuum, a variety of terms appear,

(37)

( ) )
——(Dfs( —1 —2, —3 —4) )[5,d5b, 5(p+3)5(1+4)+5„5bd5(p+4)5(1+3)]

+ ( [[a"(1),Dfs( —1 —2, —3—4)],a "(—3)])5„5(p+4)+ .

+([[[a'(p),[a"(1),Dfs( —1 —2, —3—4)]],a "(—3)],a '( —4)]) . (38)

The first line is the part we retained in Sec. II. The three dots stand for three additional VEV s of double commutators.
We proceed to evaluate a double commutator VEV,

([[a"(p),Dfs( —1 —2, —3—4)],a "(—k)])
2

[A (p)A (k) ]'
2(2m )

x fdqdq'[(Df. ( —I —2, q)f b„q e(p)D„(q—+p, —q')f~~q' e(k)D~(q'+k, —3—4) )+(p,h)~(k, d)] . (39)

Equation (39) is exact. To evaluate the VEV we use the diagrammatic expansion introduced in II. The leading term in
powers of g is obtained when each D„~(1,2) is replaced by its VEV,

(D„,(1,2) ) =5„,5(1+2)D(l ) . (40)
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Higher orders introduce vertex functions which are implicit functions of D(p). The quadruple commutator term in (38)
is of order g .

There are a very large number of correction terms. Fortunately it is not necessary to discuss all of them in order to es-
timate their effect on the infrared behavior of A (p). A representative term is the g addition to the numerator in (22).
The numerator becomes

2

1+ 3 JdqF(p+q)A(q)Tr[P(p)P(q)]
4(2m. )

g 2+2 f fdl d2A(1)A(2)[(p+4).P(1).P(p).P(4) (p+1)]
16(2m. )

X [F(1+p)gD(4+p)gD(1+4+p)+gD(1+p)F(4+p)gD(1+4+p)

+gD(1+p)gD(4+p)F(1+4+p)] . (41)

The double integral is infrared finite; hence, F(p) appears
rather than F(p). In the limit p~0 the p dependence of
the correction is exactly that of the g term. The rule for
extracting the p~O limit of an integral is to evaluate all
functions in the integrand in that limit. In II it was
shown that if A(p) =(p/m) ~/m, then

gD(p) =(p/m)~ /m . The scale mass m is the same
in both functions. Thus, if F(p) =p ", and all internal
momentum are scaled by p, the g and g parts of (41) are
both proportional to p

" ~. On dimensional grounds
we expect that all corrections, of any order in g, in either
the numerator or denominator of (22), will have the same
power dependence as p~O. There will be but one factor
of F(p) in the integrand of each integral —a consequence
of the single derivative with respect to coupling constant.
The factors of A (p) and D(p) either in the integrand or
outside the integral will always compensate explicit
momentum factors to maintain the power dependence.

We conclude that the correction terms arising from the
fact that F„(p,k) is properly an operator function of
A (p) do not change the zero-momentum behavior of
A (p). Equations (28) and (29) are still valid. We have
verified that, to order g, the dominant numerator and
denominator integrals are identical when P~ —f3. Expli-
cit evaluation of correction terms in II suggests that there
may be a ten-percent shift in the coefficient functions.

Finally we mention the "approximation" inherent in
our method for evaluating the VEV of a product of field
operators. It is actually an ansatz for the nature of the
physical vacuum state. To the extent that interactions
actually dress the field operators in accordance with Eq.
(36), there is no approximation. If our approach to QCD
is self consistent, the validity of (36) constitutes another
probe of the vacuum state.

VI. CONCLUSIONS

In order to establish color confinement in QCD one
should derive a mechanism for confinement and then
prove. that it works. In our investigations of the canoni-
cal field theory in the Coulomb gauge, we have been
working backwards. First we proposed the mechanism
and showed that it confined color. Next, in II and this
paper, we provided the derivation. The mechanism is an
infrared-singular, modified Coulomb interaction. Con-

finement is observed in the Tamm-Dancoff' and the
Bethe-Salpeter treatments of bound states. The deriva-
tion of the singular interaction invokes a self-consistency
argument. The Coulomb-gauge Green's function is deter-
mined by the physical, transverse gluon field. In II we ar-
gued that if soft gluons do not propagate, the Green's
function, or equivalently, the running coupling constant,
becomes singular at p =0. The modified Coulomb in-
teraction is essentially the derivative of the Green s func-
tion. It is even more singular. Self-consistency is provid-
ed by the results of this paper. The singular interaction is
responsible for the low-momentum cutoff on gluon propa-
gation. In I and II we showed that if soft gluons do not
propagate, color is confined. Here we proved that if color
is confined, soft gluons do not propagate. The singular
interaction and the modification of the propagator are dif-
ferent manifestations of the screening properties of the
vacuum.

Are there any loopholes in our arguments? Our
analysis of the correction terms makes us confident that
the propagator tends to a constant as p~O rather than
diverging as 1/p. The analysis in II which established the
connection between A (p) and the running coupling con-
stant is equally rigorous. If A (p) ~constant, gD (p)
=g (p)/p ~p . The correction terms are again sub-
ject to dimensional analysis; the connection between the
infrared power dependence of A(p) and g(p) is main-
tained in higher orders. The quantitative connection be-
tween the infrared singularity in the modified Coulomb
interaction and A(p) is moderately sensitive to higher-
order terms. In II it was shown that the lowest-order
Dyson equation for F(p) predicts that there are no solu-
tions for F(p) if A(p)~p ~ and P&0.0095. If P takes
this minimum value, F(p)~p '. [A linear configura-
tion space potential corresponds to F(p)~p .] In this
paper we predict P=O. Full consistency and a derivation
of a linear potential are tantalizingly close. Hopefully,
there are small corrections which, when calculated in de-
tail, will shift the limit on P in the desired direction.

An important extension of this work will be the con-
struction of an explicit model of the vacuum. It is easy to
find a unitary operator which dresses bare gluon field
operators to produce the ansatz in (36). That unitary
operator, acting on the bare vacuum, creates a state con-
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sisting of a coherent superposition of color-singlet gluon
pairs. The existence of an explicit vacuum state paves
the way for investigation of the gauge dependence of our
conclusions. At a minimum it should be possible to
demonstrate invariance of the vacuum under a combina-
tion of Lorentz boost and gauge transformations which do
not leave the Coulomb gauge. Ultimately the whole

canonical, Coulomb-gauge t;reatment should be translated
into the language of path integrals and freed from the
choice of a particular gauge.
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