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Effects of dynamical quark loops on Monte Carlo simulation in lattice gauge theory
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We have run computer simulations in SU(2) lattice gauge theory including dynamical quark loops.
We report the experimental results of the plaquette energy, the plaquette-plaquette correlations,

(tTP), the value of the Polyakov line, and n, p, and co masses and discuss the effects of dynamical

quark loops on these quantities. We also present our experimental procedure of the simulations in

detail.

I. INTRODUCTION

The incorporation of fermionic degrees of freedom in
Monte Carlo (MC) simulations of lattice gauge theories
would allow us to reach a new stage of hadron physics.
We could calculate, in principle, all the hadronic proper-
ties and could see how the QCD vacuum is constructed at
low energies.

Unfortunately, we now stand far from such a state.
The main difficulty consists in the very long computa-
tional time of quark propagators and, especially, of quark
vacuum polarization diagrams. Therefore, the first trials
to calculate fermion propagators under SU(X) gauge
fields have been done without quark loops (quenched ap-
proximation). ' The results were quite encouraging:
reasonable values of hadron masses, decay constants, and
baryon magnetic moments have been obtained. After
these successful papers, a flood of efforts have been devot-
ed to the improvement of the results along this line to-
wards larger lattices.

However, the real world includes quark loops. We ex-
pect that the mass splitting between the flavor-singlet and
-nonsinglet mesons can be explained with quark loops.
Chiral symmetry breaking should be confirmed with the
inclusion of quark loops.

The hopping-parameter expansion had been the only
way to include fermion loops numerically. It is a very
good and effective approximation for heavy quarks, i.e.,
small values of the hopping parameter, and for a small
lattice. Fake quark loops due to finite-size effects are
easily eliminated in this approximation. However, there is
a convergence problem for light quarks, and the computa-
tional task is very heavy for a large lattice.

Although the above approaches may be highroads, it is
worthwhile, we believe, to explore the MC simulation of
gauge theories without these approximations. Towards
the real QCD simulations, we should develop efficient al-
gorithms not only for quark propagators but also for '

quark loops.
The first numerical results along this line were obtained

by two of us for SU(2) gauge group and the Wilson ac-
tion and by Hamber, Marinari, Parisi, and Rebbi for
SU(3) and the Kogut-Susskind action. Here we shall
continue the study of the previous paper and report more

detailed results. In Sec. II, the basic formulas are recalled
and several relations are derived which will be useful later.
In Sec. III, we describe the experimental procedure and
the results. Section IV is devoted to a summary of the
problems found in this experiment and to discussing pos-
sible approaches to them.

II. FERMIONS IN THE MC SIMULATION

A. general formulation

+(r +yq)U „6„„-],
where n and m are site indices and we suppress color and
flavor indices. The hopping parameter k is related to the
bare mass I, Wilson'term r, and lattice spacing a as

Ck=
8r+2ma

(4)

The fermion variables are related to the continuum fer-
mion fields P(x) as

1/2
Q

In this paper we set both r and c to be 1. We use self-
adjoint Euclidean Dirac matrices:

The Euclidean lattice action has the form

S=SG( U)+SF( U, g, g),
where the first term represents the kinetic term of gauge
variables U with bare coupling g. In this paper we em-

ploy the Wilson action both for gauge and fermion parts.
The fermion action is bilinear in the fermion fields,

SF gbp=@(c ——kM)p . —

The matrix b, has the form
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z= J~U~q~y. " "'
gd t g Ue 6 EF (6)

I y&, y"I =25~„, y4t =y", p = 1,2, 3,4

r'=x'x'~'x'.
The matrix b. has the following property:

y5gy5

Because of this symmetry, the eigenvalues of b, (and b, ')
appear in complex-conjugate pairs.

For numerical simulations, it is convenient to integrate
the partition function over fermion fields using the
Matthews-Salam formula

FIG. 1. Diagrammatic representation of the fermion contri-
bution to the meson propagator [Eq. (10)]. The first graph
represents the quark-loop contribution to the meson propagator,
which is different from zero only for flavor-singlet mesons.

To our knowledge, there is no proof to show the positivity
of detA above k = —,. We assume, therefore, its positivity.
Then we can write

detb, = (detA )
'~

where
the time direction.

With the help of the Matthews-Salam formula, we can
easily get the formula

For small change of the gauge fields,

5SE&= ——,
' Tr(Q '5Q) .

We may write meson fields in the form

P(x)I g(x),

(8)

k ln detb, = tr(1) —tr(b, ') .
dk

After integration over the gauge fields we have

k (SEF ) =nfN [(P(x)g(x)) 4n, ], —
dk

(13)

where I is a matrix with dirac and flavor indices. Then,
meson propagators are given by

G (x,y) = ( 8 (x,y) ),
where

where nf and n, are the number of flavors and colors,
respectively, and X" is the number of lattice sites. We
will use formula (14) later to estimate the magnitude of
the effective fermion action, SE„.

B. Pseudofermion method and quark propagators

S(x,y) =9g, —S,
=Tr[I b, '(x,x)]Tr[l b. '(y, y)]
—Tr[I b, '(x,y)I 5 '(y, x)]

with I =y4r~y4 and

G EF

(10)

The pseudofermion MC method was introduced by
Fucito, Marinari, Parisi, and Rebbi to calculate 6
The quark propagators, 6 ', may be expressed in a bo-
sonic integration form,

where

G EF

Figure 1 is a diagrammatic representation of Eq. (10).
Except for flavor-singlet mesons, the first term of Eq. (10)
vanishes. The time-slice propagators are defined as

G(r)= g G(x,y) .

and

J uy*uyee-'~«)„= I ~ye~y —SP
(16)

These propagators, for periodic boundary conditions,
show the following behavior at large r:

TG(r) —coshMa
2

(12)

In this expression, M is the lightest hadron mass with the
same quantum numbers as Pl"P, and T is periodicity in

The bosonic fields, P, have the same quantum numbers as
The "action" S~, being positive definite, is given by

Sp ——X X. (18)

Fucito et al'. have proposed to evaluate this integral by
the MC method.

In terms of the pseudofermion fields, the variation (8)
may be expressed in the form

5SEF———(g (5b,g))FF . (19)
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Since the gauge and the pseudofermion MC sweeps of a
lattice are performed in turn, we do not know the new
gauge configuration I U„, I and, therefore, the variation
M, in Eq. (19) during the updating of the pseudofermion
variables. 'We rewrite 6A in the following form:

4
5b, = —k g [(I yp—)(DU)„„o„+„-

@=1

(22)

where 6A" is obtained by replacing DU with o'U,
&d in

Eq. (20).
In terms of the pseudofermion fields, the connected

part of the time-slice propagator is given by

+ ( I +y„)(DU) „&„+-],

3

DU= U„, —U, ld
——(V —1)U,ld

—— g C;o' U, ld .

F"I kl g (&k(z)(t', (X) &PF
x,y

x4 —y4 =7

X (X; (X)gl(y) )PF . (23a)

(21)

Here o' are the unit and Pauli matrices. Then we may
write 6A as

This form, however, is not appropriate to the computation
because we should store all the pseudofermion fields gen-
erated in the pseudofermionic MC iterations. We can
rewrite (23a) as

(k)=(, ( kl ( g X; (k)() '( )krak(J') l(()g) g gX, (X)() (k) QXk(7 $)1(g)
x,y PF x y4 7 & PF y PF

X4 —y4 =7

(23b)

By this simple trick, we can drastically save computer
memory.

C. Discrete pseudofermions

In this paper we will study the case of a SU(2) gauge
theory. We employ for gauge variables the discrete sub-

group of SU(2) defined by the symmetries of an icosahe-
dron. ' Here is a simple trick to reduce the computer
time in the pseudofermionic MC calculation: We also
make pseudofermion variables discrete. Suppressing
Dirac, color, and site indices, we may write the pseudofer-
mion fields as

where u and P satisfy the condition

Just this condition is also satisfied by a column vector of
an SU(2) matrix. We replace the pseudofermion field P
by a column vector of the representation of the
icosahedral group in the numerical computation.

III. EXPERIMENT AND DATA

In this experiment we use essentially the same computer
program as in our previous paper, where the reliability of
the program was discussed. in detail. We employ the
Metropolis algorithm" (not the heat-bath method) for up-
dating both gauge and pseudofermion fields. In the up-
dating process, each link variable is changed by multiply-

ing the old variable times one of the elements closest to

the unit element (twelve in the case of the icosahedron).
To check the reliability of the program, we have com-
pared5 (/ltd) of our calculation with that of the hopping-
parameter expansion at k =0.1, where convergence of
the expansion may be very good. The agreement is quite
good. Periodic boundary conditions are imposed on both
gauge and fermion fields. Two flavors are generated in-

dependently to reduce systematic errors. Typical comput-
er time on a 4 lattice is one hour in a VAX 11/780 for
one gauge sweep which contains 2&&200 pseudofermionic
MC iterations with five hits. The times for one sweep of
the pseudofermion field, for one calculation of 6A over
the fixed pseudofermion, and for one calculation of the
propagators are about 7.5, 2.2, and 1.3, respectively, in
units of one gauge sweeping time. The rate of acceptance
in performing one upgrading step on a pseudofermion
vector with four Dirac and two color components is
roughly 5%. -

Convergence is satisfactorily fast. In Fig. 2 we show
the behavior of the expectation value of S~ for the first
four gauge configurations. The run is initiated with all
gauge variables chosen randomly (hot start). For any
gauge configuration, the following condition should be sa-
tisfied:

( Sy ) pF = (number of degrees of freedom)

After each gauge sweeping, the pseudofermionic MC cal-
culation starts from the last configuration in the previous
iteration. Figure 2 shows that after a few gauge configu-
rations, condition (24) is satisfied with a few percent error.
We monitored this quantity when running the program.

The plaquette energy Fz and the chiral order parameter
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FIG. 2. Expectation value of S~ against the number of pseu-

dofermionic MC iterations for the first four gauge configura-
tions. The starting gauge configuration has been chosen ran-
domly (hot start). For each gauge configuration, we have used
40 pseudofermionic MC iterations as thermalization. The
crosses correspond to the hot start for the initial pseudofermion-
ic configuration, and the circles to cold start. The theoretical
value of (S~) is 2048 on a 4 lattice with two color degrees of
freedom. After each gauge sweeping, the pseudofermionic MC
calculation starts from the last configuration in the previous
iteration.
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FIG. 4. Expectation value of the plaquette energy as a func-
tion of the hopping parameter k (k =0 corresponds to the pure
gauge case). These values have been obtained from about 50
MC gauge iterations.
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(gP) are plotted as a function of the number of MC
gauge iterations in Fig. 3. Ten or twenty iterations seem
to be enough for these quantities to reach equilibrium.

Now we shall report the experimental data. First let us
investigate the effects of fermion loops to the gauge fields.
In Figs. 4 and 5, we plot the expectation values of the p1a-
quette energy and the Polyakov line as a function of the
hopping parameter, where the Polyakov line is defined
as"
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FIG. 3. Expectation values of the plaquette energy (a) and
the chiral order parameter IT(x)g(x) (b) against the number of
MC gauge configurations. Each point was obtained averaging
over four gauge configurations. The initial conditions for gauge
fields -are cold start (crosses) and equilibrium configuration for
P=2.2 and k =0.18 (circles), respectively.

I.O 2.0

FIG. 5. Expectation value of the Wilson line as a function of
the hopping parameter k.- These values have been obtained
under the same conditions as in Fig. 4.
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In the figures the points at k =0 correspond to the
quenched case, i.e., pure gauge case. When we put quark
loops into the system, the plaquette energy decreases, i.e.,
the system temperature goes down. The Polyakov line is
used as an order parameter of deconfinement in the pure
gauge theories. Fermion loops increase this order parame-
ter. These observations indicate that fermion loops push
the gauge configuration to a more ordered state. The ef-
fect becomes prominent above k=0. 15. In this region, as
we will see, the fermion determinant makes a sizable con-
tribution to the action.

In Fig. 6, we illustrate the fermion-loop effect in the
plaquette-plaquette correlation function G(r) for r=0
and 1. We define G(r) as

40 80

Number of Gauge MC iterations

2.0

o & 4'4~—05- ~ ~~X&»x&xxxx&x&&xxxxx
o
(9

n k=0.20

x k=023

G(7 ) =x, [ ( W(r) W(0) ) —( W(0) ) ']
where

(26)

lflllllllllll IIIIIIIII IIIIIIIIIIi/If/I III I /I /III I / I /I

P'(r) = g —,
' tr( U» ),

spatial
plaquette

I.O—

~Pure Gauge

and X, is the number of spacelike plaquettes. In this fig-
ure, we plot G(r) as a function of the number of MC
iterations. The solid line and the hatched region in the
figures stand for the corresponding values in the pure
gauge theory. The value of G(0) is much smaller than
that of the pure gauge case: the fIuctuation of the pla-
quette energy decreases due to fermion loops. The value
of G(1) is very small and we cannot distinguish it from
zero. The pure gauge configurations generated with fer-
mion loops seem to be fairly different from those of the
pure gauge case. Note that the glueball masses are essen-
tially determined by G(r). Our measurement here does
not allow a determination of the glueball masses because
of poor statistics and the problem of the fake quark loops
due to the small size of the lattice. However, if one wants
to know a realistic value of the glueball mass, the effects
of fermion loops should be considered seriously.

Next, we will study the problems related to the quark
propagators. In Fig. 7, we plot (g(x)gi(x)) on a 4 lattice
as a function of k at /3=2. 2. Here (P(x)g(x) ) is defined
by

O P =2.2

k =0.25

xx
00 x -x

x x xxxx xx x xxxxx

I 1

Number af Gauge MC iterations

FKJ. 6. (a) Time-slice plaquette-plaquette correlation func-

tion 6(~) at ~=0 against the number of MC gauge sweeps. The

solid line stands for the pure gauge case. The triangles corre-

spond to k =0.20 and have been obtained with a thermalization

of 40 gauge MC iterations. The crosses correspond to k =0.23

and the thermalization is 68 sweeps. (b) Time-slice plaquette-

plaquette correlation function G(w) at ~=1 against the number

of MC gauge sweeps. The hatched region stands for the corre-

sponding value in the pure gauge case. The crosses correspond

to k =-0.23 and the thermalization for gauge fields is 68 sweeps.

(g(x)P(x)) = tr(A ') .

nfl
From these values we can estimate the magnitude of SEF
using Eq. (14). We fit the data in Fig. 7 with a spline ap-
proximation and integrate it to obtain Fig. 8. We find
that there is a sizable contribution of detA to the total ac-
tion at large k, i.e., light-quark-mass regions.

We have measured E~ and (gg) also on a 4 X 8 lattice
at 13=2.2. We do not see any significant difference in the
data between 4 and 4 )& 8 lattices within statistical errors.

In Table I, we present the "masses" of vr, p, and co in re-
ciprocal lattice distance units. Here masses are defined as

Ma =cosh [see Eq. (11)) .) G(r=1)
G(r=2)

We have found that the ~/p mass ratios are about 1 and
that the splitting of p and co has the correct sign for the
observed region of the parameters. We should notice,
however, that (i) the mass defined above has a strong con-
tamination of higher states because of the short distance
of the propagators; (ii) the value of the Polyakov line is

larger than that of the quenched case and the finite-
temperature effects are more serious; (iii) in this experi-
ment we could not determine the physical k (fixed for ex-

ample from n pmass difference) -at which all hadronic
quantities should be measured; and (iv) statistics is not
enough.

Recently, Otto' has claimed that even a small number
of pseudofermionic iterations might be sufficient in order
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FIG. 7. Expectation value per flavor of 8 —(t((x)g(x)) as a
function of the hopping parameter k. The solid line is a spline
interpolation for the, data on a 4 lattice. The crosses are the
corresponding expectation values in a 4'&(8 lattice.
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P =2.2 FIG. 9. Expectation values of mean energy per plaquette, Ez,
(a) and chiral order parameter gg (b) against the number of MC
gauge sweeps. The circles have been obtained from a 4 lattice
and the crosses are the results for a 4')& 8 lattice.

0.2

FIG. 8. Expectation values of S~ as a function of the hop-
ping parameter k and for one flavor. This figure was obtained
by integrating Eq. (13) and using the values of (fP) represented
in Fig. 7.

to include fermion loops. We have performed two experi-
ments with the same conditions except the number of MC
iterations (experiments 2a and 2b in Table I). Though the
values of hadron masses obtained from these two experi-
ments are consistent with each other, the error bars of ex-
periment 2b are much larger than those of experiment 2a
as a natural consequence of the smaller number of pseu-
dofermionic iterations. Both experiments give about the
same value of (ttjg). This is also the case for the pla-
quette energy: E& ——0.293 for experiment 2a and
E~=0.310 for experiment 2b. These quantities can be
usually obtained with small statistical error. For such
quantities, a smaller number of pseudofermionic iterations
might be sufficient if we include the proper number of
thermalization runs.
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TABLE I. Column 1 contains the conventional line number assigned for identification of the different runs; column 2 contains the

values of /3, column 3 those of k, the hopping parameter. Column 4 contains the size of the lattice. Column 5 contains the average of
(PP) over the sample expressed by columns 9 and 10. All the values in column 5 fluctuate typically inside seven percent. Columns

6, 7, and 8 contain the masses of the hadrons m, p, and co, respectively, measured in reciprocal of the lattice spacing for the experi-

ments where they have been measured. The errors take into account the statistical correlation (Ref. 18}. In particular, for the propa-

gators at v=2, no correlation between consecutive groups of four gauge iterations has been found. We have estimated the error of the

latter by the differences between the averages of the odd and even groups of four consecutive measurements. From this and the

correlation-connected error (Ref. 19}for the propagators at &=1, a typical error for the masses has been estimated at +0.60 in re-

ciprocal lattice spacings. For the errors in row 2b, which are very large, the statistical correlation has not been considered. Column 9

contains the number of thermalization gauge sweeps, followed by the number of sweeps on which the averages have been evaluated.

Analogously, column 10 contains, for each flavor (2X ) the number of thermalization pseudofermion sweeps, followed by the number

of sweeps on which averages are evaluated. The initial conditions for the different lines are the following: (1) Random configuration

(hot start). (2a) Hot start. (2b) A late configuration from 3. (3) Last configuration from 2. (4) A late configuration from 3. (5) Last

configuration from 3. (6) Last configuration from 5. (7) Last configuration from 6. (8) Last configuration from 7. (9) Last configura-

tion from 8. (10) Cold configuration (all link variables set to 1)~ (11) Last configuration from 10. (12) Last configuration from 11.

No.

1

2a
2b
3
4
5
6
7
8
9
10
11
12

3.0
2.5
2.5
2.2
2.2,
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2

0.23
0.23
0.23
0.23
0.20
0.24
0.18
0.14
0.10
0.08
0.24
0.18
0.10

Size

44

44

44

44

44

44

44

44

44

44

O'X8
4'X8
4'X8

4.67
4.75
4.73
4.82
5.70
4.50
6.30
7.46
7.92
7.97
4.57
6.34
7.93

m a

3.14
2.09

1.90+ 1.19
2.28
2.62

mrna

2.69
2.75

2. 11+0.42
2.46
2.28

2.82
3.47

2.84+2.72
2.61
2.45

Number of
gauge sweeps

8+ 128
12+ 144
20+ 200
28+ 204
4+ 168
4+ S2
4+52
4+40
4+ 52
4+72
4+48
4+54
4+ 64

Number of
Fermi sweeps

2 X (25+175)
2 X (25+ 175)
2X(5+15)
2X (25+175}
2 X (25+ 175)
2X(2S+2S)
2X (25+25)
2 X(25+25)
2 X (25+25 }
2 X (25+25)
2X(25+25)
2 X (25+25)
2 X (25+25)

IV. DISCUSSIONS

The experiment presented in this article demonstrates,
we believe, that we can and we should proceed in the MC
simulation of gauge theories with dynamical fermions and
that, on the way, many things should be clarified. We
hope that one can make the best use of the experiences
here at the next steps. Though the small size of the lattice
and the employment of SU(2) as gauge group are strong
limitations in this experiment, the following observations
made here seem to be general features.

(i) The CPU time is not hopele'ssly long.
(ii) The gauge configurations generated with light quark

loops are fairly different from those of the pure gauge
case.

(iii) There is no strong size effects between 4 and 4 )& 8

lattices in regard to E~ and ( t/n/i).
(iv) The E~ and (t/tt/ ) do not suffer too much from sta-

tistical errors, but the hadron propagators do.
Let us comment upon these points. We have used

severa1 tricks to save computer time, but reduction of
CPU time is still possible. ' We employed the Metropolis
algorithm for the pseudofermionic MC calculation. How-
ever, the heat-bath method could be more efficient be-
cause this algorithm works wel1 for a gaussian distribu-
tion. We have used here the standard Wilson action with
the %'ilson term r set to 1. If we want to study only the

global nature of the fields (the plaquette energy, the
Polyakov line, (PP), etc.) and give up the calculation of

', we can perform simulations in less CPU time with

the Kogut-Susskind action because it has one component
on each site, though it is not clear whether a lattice with
the Kogut-Susskind action is equivalent to a lattice of the
same size with the Wilson action.

In the case of the quenched approximation, there is a
window where the correlation length is large enough so
that scaling has set in and yet not so large compared to
the lattice size. ' The data described in the previous sec-
tion suggest that the correlation length changes when the
fermion loops are considered. The lattice distance is also
different from that of the pure gauge theories. In the
scaling region, the lattice distance is related to the bare
coupling constant g as

—P ~2Pa= —(pog )
' 'exp (27a)

where pc and p~ are the coefficients of the first and the
second terms of the p function and, for massless QCD,
they are given by'
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4m

io 1
(n, —1)nf

(27b)

From this formula we can see that our lattice (n, =2,
n =2) shrinks faster than that with nf ——0 as P(=4/g )f
increases. This may be part of the reason why the expec-
tation values of the Polyakov line are larger than in the
pure gauge case. We should search for a new window and
remeasure the correlation length, the glueball masses, etc.,
there.

The quantities Ez and (gP) do not suffer much from
statistical errors and are stable against changing the lattice
size. The estimation of the fermion determinant in Fig. 8
is reliable. Convergence of Ez and (t)ig) even on a 4 X83

lattice is good (see Fig. 9). This raises our hope of going
to larger lattices.

As we have seen in this experiment, the field configura-
tion on a lattice with quark loops is fairly different from
that of the quenched approximation. In the latter case,
Kogut et al. and the Bielefeld group have shown that at
finite temperature the system presents a deconfinement
phase where chiral symmetry is restored. With quark
loops, however, the situation may be very different be-

cause the phase transition between confined and decon-
fined phases disappears if we use the Polyakov line as an
order parameter. ' Furthermore, the gauge configurations
which give zero eigenvalues of 6 being essential to the
chiral symmetry breaking, are suppressed with respect to
the quenched case due to the measure detA. This problem
should be investigated very urgently.
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