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Generalized coherent states and generalized squeezed coherent states
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Roy and Virendra Singh showed that the harmonic oscillator possesses an infinite string of exact
shape-preserving coherent wave-packet states

~
n, a) having classical motion. In this paper it is

shown that the states
~
n, a) could be obtained from the coherent state

~

a) and it is also shown how
a coherent state

~

a) could be expanded in the basis of
~

n, a)' s. Further, the possibility of "squeez-
ing" the state

~

n ) is investigated and the "generalized squeezed coherent states" are obtained. The
squeezed coherent states for the displaced oscillator are also defined. The physical meaning of
squeezing is also pointed out.

I. INTRODUCTION

and

(x) =x,)(t) =A cos(cot+g)

It is well known that Schrodinger's original motivation'
for introducing coherent states was to look for those states
with probability-density wave packet remaining un-
changed in shape as time progresses and have the classical
motion

coherent states for arbitrary potentials. (For the other cri-
teria of defining coherent states see Ref. 3.)

Recently, Roy and Virendra Singh showed, by adopt-
ing Schrodinger s criterion, i.e., to define coherent states
as those with undistorted normalizable maUe packets with
classical motion, that the harmonic oscillator possesses an
infinite string of coherent states, hitherto not thought of.
Originally they were known as "semicoherent states" in-
troduced by Boiteux and Levelut. We briefly discuss
their coherent states below.

Define
(p & =p„(t)—=~x,

where

(2)
U(a(t))—:exp[a(t)at —a*(t)a] . (4)

A=/a]
2A'

1/2

(3)

Then the "generalized coherent states" (GCS's) of the har-
monic oscillator are

~

n, a)—:U(a(t))
~

n)exp[ i(n+——,')cot],

~a&=e-~ '"g ~n&
n=O

is a coherent state (CS).
Nieto et al. have used Schrodinger's criterion to define

I

n =0, 1,2, . . . ,

where
~

n) is the nth state of the harmonic oscillator. It
is easy to see that the state n, a) satisfies Schrodinger s
criterion.

The Fock-space representation of n, a) is found to be

1/2
oo

~

n, a) =exp[ ——,
' ia(0)

~ ] g '
L„' "'(

~

cz(0)
i

)[a(0)] "~ m)exp[ icot(m+ —,')], —
=o

where L„' "'(x) are Laguerre polynomials.
Also, the uncertainty in the state

~
n, a) is given by

b.x b,p =(n+ —, )fico .

where f(t) is an external force. If the driving term is tak-
en to be linear in a and a ~, then one obtains the states
~n, a).

If one considers (m
~

n, a), then

The above equation implies that the minimum uncertainty
(i.e., fico/2) is not necessary for the classical motion of a
wave packet. This fact has been also noted by Ohnuki
and K.amefuchi. 5

The states
~

n, a), though not explicitly stated, could be
spotted in the literature. " The states

~
n, a) could also

be obtained when one considers the Hamiltonian

/(m /n, a) f'

~a~2( —)[L( —
)(~ ~2)]2

m!
J

(9)

H = —,
' p'+ ,' q'+q f(t), — It has been shown by Koonin that Eq. (9) is related to

the S-matrix element S „by
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/S „/ =/(m/n, a)/ (10)

II. RELATIONSHIP BETWEEN GCS AND CS

S „gives the amplitude for excitation from the initial os-
cillator state

~

n ) to the final
~

m ).
Also, Hollenhorst has proved that Eq. (9) gives the ma-

trix element for a transition from the state
~

n) to the
state

~

m ) under the influence of a gravity wave.
Equation (9) is also known as Schwinger's formula,

and is also given by Feynman. ' (See also Refs. 11—13.)
Section II discusses the relationship between GCS's and

CS's and in Sec. III generalized squeezed coherent states
are introduced.

+ n
Ba 2

/a), (18)

Eq. (17) could be given a differential operator representa-
tion as

not only establishes the relationship between GCS's and
CS's and also gives a simple algebraic way to obtain the
QCS's.

One can also see that the GCS
~
n, a) is the "general-

ized coherent state" in the sense of Perelemov", for whom
the reference state could be an arbitrary vector in the
Pock space.

Since

(12)

We are interested in obtaining
~
n, a ) from

~
a). I.et

~
n, a) =A (a,a,n)

~
a):—A(a, a,n)U(a) (0),

~

na) = g ( —a*)" /a&.

(19)

where A (a,a, n) is the operator to be determined. Also

~
n, a) —= U(a)

~

n )
(at)n—:U(a)

~

0) .
n!

From Eqs. (12) and (14)

nf

(13)

(14)

(15)

Since U(a) translates a and a, it could be proved us-

ing operator calculus' that

( t e)n
A=

and

( U(a), U(a') )=Tr[ U(a) U (a')] =~5(a —a')

U(a) U(/3)=exp[ ,'(aP" —a*P)]U(a—+P) .

(20)

(21)

In view of Eqs. (20) and (21), we think of defining
coherent states of the displaced oscillator as

Therefore, we observe that the GCS
~

n, a) is related to
the CS

~
a) just the number state

~

n ) is related to the
vacuum state

~

0).
Now, we illustrate below an interesting use of GCS's.
The displacement operators U(a)'s provide a complete

and orthonormal basis for the adjoint group of the Weyl
group formed by a,a, I with a scalar product given by

Therefore,

ae )n/na)= /a) . (17)

~
z, a ):—exp[z (a t —a* ) —z'(a —a) ] ~

a )

=exp[z*a —za*]U(z)
~
a)

(22)

Now, the meaning of the state
~

n, a) is very clear as
the nth state of the oscillator whose ground state is

~
a),

a coherent state, not
~
0), as in the case of the usual oscil-

lator. In other words, the GCS's are the excited states of
the displaced oscillator.

The above result is clearly depicted in the following dia-
gram:

U(a)

cx) n

=exp[z*a za" ]e—I I g U(z)
I

n ) . (23), ~n!

Using the relation (6), we get

(24)

t)n

vn!

Equation (21) could be written as

~
z,a ) =exp(z*a —za )U(z) U(a)

~

0 ) . (25)

/n)

~
0): ground state of the harmonic oscillator,

~

a): ground state of the displaced

harmonic oscillator .
The above method of obtaining GCS's using Eq. (17)

In view of Eq. (21),
~
z,a) is just another element in the

set of coherent states, which forms an invariant subspace
of the Hilbert space. Equation (21) could also be written
as

(26)

From Eqs. (25) and (26), we note that any arbitrary
coherent state could be expanded in terms of GCS's.
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III. GENERALIZED SQUEEZED
COHERENT STATES

I
a,z&= U—(a)S(z)

I
o&

where U(a) is the displacement operator given by

U(a )—:exp(aa t —a"a )

(27)

(28)

First, we shall briefly discuss the squeezed coherent
states (SCS's). The SCS is defined as' '

vacuum state and those states follou) the classical motion
though the uncertainties oscillate. '7

Recently there has been a lot of excitement regarding
SCS's, since they are considered to be useful in the detec-
tion of gravity waves. It has also been proved that these
states are emitted in certain nonlinear optical processes. '

(For a review on SCS's see Refs. 19 and 20.)
Now, we define generalized squeezed coherent states

(GSCS's) as

and

S(z)—:exp —a a — aaz tf z*

2 2
(29)

I
n, z,a&=—U(a)S(z)

I
n & .

We first compute
I

n, z &:

In z&=—S(z)
I

n&

(31)

(32)

is known as the squeeze operator. Also,

SaS~=a coshr+e' a~sinhr =b,

Sa S =a~ coshr+e ' a sinhr =b~,
(30)

where z =re' . The squeezed states correspond to Gauss-
ian wave packets with u)idths distorted from that of the

I

=—g Im&(m IS(z) In&

= g Im&G „(z) . (33)

Making use of a slightly modified form of the technique
developed by Rashid, ' we get the expansion coefficients
G „(z) tobe

' 1/2 (m +n)/2
f—i(n —m)e/2r ~ )m+n/2 m .n .

' tanhr
e

coshr 2

4
sinh r

(21)! —k ! ——A, !
2

'
2

for m, n even

G „(z)=
r

e
—l (n —m)8/2( 1 )m +n/2 —3/2 I

cosh 3r

j. /2 (m +rg)/2 —1

tanhr

4
slnh r

(2A. +1)! —g !
2 2

(34)

otherwise .

for m, n odd

Only odd-odd or even-even elements of G „(z) survive
due to the fact that S(z) essentially creates two excitations
every time it acts.

In the spirit of Refs. 17 and 22, we realize that S(z) has
a finite expectation value in the state

I
n & (for

n =0, 1,2, . . . ), i.e., squeezing of the states
I

n & is possi-
ble. %'e consider an interesting case below:

Using Eq. (6),

I
n, z, a&=e ~)' 'y-G „(z)

m, l l!

1/2

In z a&= U(a) In»&—= U—(a)g Im &G (z) . (37)

Goo(z) = (0
I
S(z)

I
0& (35) xL, "--)(

I
a I')a™

I
» .

1

(cosh Iz
I

)'/2 (36) (38)

[The authors of Refs. 17 and 19 have remarked that
Goo(z) sums as tanh Iz I

&1 for r & co. See Eq. (4.2) of
Ref. 14.] Now the GSCS

I
n, z,a & is given by

Equation (38) gives the Pock-space representation for
n, z, a&. Also,

I
n, z, a& could be expanded in terms of

m, z &'s as given below.
Consider
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= (m
~

St(z) U(a)S(z)
~

n )

= (m
~
exp(ab t a—'b.)

~

n )

=(m
(
exp(ya —y*a)

~

tt)

=&m in, y&, (39)

[m,z)=—S(z)
) m&

and (m
~
n, y ) is given by

n!
&m ~n, y&=e —!rt"

m!

1/2

"'(
~ y ~

')(y)

(41)

(42)

where y =(a coshr —a*sinhr) and we also note that

~
n, y) is a GCS. From Eq. (26)

n, z, cx = m, z m, z n, z, o,

Using Eqs. (41) and (42), we get GSCS as
i 1/2

2/2 n t/nza)=e ' ' g /mz)
m m.f

= g ~m, z)(m ~n, y) . (40) "'(
~ y ~

)(y) ". (43)

Now
~

m, z ) is given by As an example, we give below the GSCS
~
I,z,a):

e
—~a~2/2 e)

~1,z,a)=, , g tanh~z
(cosh )z I )

~
(2k+1) 1(m —2k —1)i i i2i m —2k —li

k!m! (44)

Overcompleteness of
~

n, z, a)
Since U(a) and S(z) are unitary, for a given a and z the set of states

~
n, z,a), n =0, 1,2, . . . , forms a complete set

just like the set
~
n). For a given n and z, the set

~
n, z,a) with all complex a's forms an overcomplete set. We can ob-

tain the resolution of the identity as

d A
n, a,z n, u, z

Using Eqs. (38), (39) and (43) the projection of
~

n,z,a) on other states like
~

m ) and
~

m, z ) could be calculated. In the
spirit of Eq. (21), we can define the squeezed coherent state of the displaced oscillator as

~
z,a)Do=exp —(at —a*) — (a —a)2

~
a)

2 2 (46)

[(2n )!]'"
nf (47)=(cosh ~z [) ' g tanh ~z

~.=o
/

2n, a) .

The physical interpretation of the GSCS is the same as that of the two-photon coherent state of the radiation field. '

We can consider the GSCS as a coherent state formed due to two excitations on a particular state
~

n ). It is a well-
established fact that SCS's are employed in quantum nondemolition (QND) measurements to reduce the quantum noise.
It is also hoped that GSCS's will find application in the QND measurements and quantum optics.
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