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We discuss the spontaneous compactification of chiral N=2 ten-dimensional supergravity from
ten to five dimensions on S'. Harmonic analysis on 5'is used to compute the complete mass spec-
trum. Our results indicate that scalars and spinors in different SO(6) multiplets have different
masses, even within the "massless" supermultiplet. We show that the conformal diffeomorphisms,
which remain after imposing certain covariant gauge conditions for the general coordinate invari-
ance, can be used to gauge away twice as many modes as there are gauge parameters. A doubleton
multiplet of pure gauge modes is identified, and all modes in the massless supermultiplet lie at the
beginning of infinite towers of modes.

I. INTRODUCTION

Chiral %=2 supergravity in ten dimensions' is an in-
teresting alternative to the eleven-dimensional supergravi-
ty theory. Both are fundamental maximal supergravities
in the sense that neither is derivable from a higher-
dimensional theory (in any known way). All other maxi-
mal supergravities, gauged or ungauged, are believed to be
derivable from one or both of these theories by a process
of compactification and truncation.

Unlike the d =11 theory, this ten-dimensional theory,
along with the nonchiral X =2 and various (chiral) X =1
models in ten dimensions, is obtainable as the zero-slope
limit of a superstring theory. It seems likely that this
model, as well as its compactifications, will play a role in
the study of the connections between string theories and
conventional field theories.

Moreover, this model has the virtue of being a chiral
theory without gravitational anomalies. The absence of
minimal coupling in the ten-dimensional theory is not en-
couraging for the emergence of chiral fermions in the
d =4 spectrum, even if a compactification to d =4 were
to be found, although topologically nontrivial configura-
tions of the tensor field might lead to surprises (see, e.g. ,
Refs. 5 and 6).

The chiral ten-dimensional theory includes the gravi-
ton, a complex scalar B, a complex two-index antisym-
metric tensor 3-, and a real four-index antisymmetric
tensor A-- whose five-index field strength is self-dual.

pvpcT
The fermionic sector consists of a chiral complex gravi-
tino g- and a chiral complex spinor A, of opposite chirali-

P
ty. Carets denote ten-dimensional quantities. For further
conventions, see Ref. 7.

It was noted in Ref. 1 that one can compactify this
model to d=5 using the d=10 analog of the d=11
Freund-Rubin ansatz,

+rsvp~~
=e~pvp~m +aiay5e apy5e &

where the parameter e is an arbitrary overall mass scale
for the compactification.

Assuming that only the four-index tensor and the
metric are nonvanishing in the background, the Einstein
equations read

Rp ——4e gp, R p ———4e g~p (1.2)

while all other field equations are automatically satisfied.
In this paper we are concerned with the maximally sym-
metric solution of (1.2), in which g„describes a five-
dimensional anti-de Sitter spacetime (AdS ) and gap de-

scribes the five-sphere 5, both of radius e

2(
+pvpcr e (gppgvn gpngvp) r

2
+aprs e(garg ps

——gasg pr
—) .

(1.3)

Other compactifications are discussed in Ref. 9.
The model raises some interesting questions. The first

question concerns the vector fields. The ungauged maxi-
mal (X =8) d =5 model' has 27 massless Abliean vec-
tors while compactification on S is expected to yield only
15 SO(6) Yang-Mills fields. Where have the remaining 12
vectors gone? As we shall see, they have been replaced by
a complex sextet of antisymmetric tensor fields satisfying
field equations of self-dual type. " Another question con-
cerns the d =4 singleton' and d=7 doubleton' super-
multiplets. These multiplets form unitary irreducible rep-
resentations of the pertinent superalgebras, but there are
no corresponding propagating modes in the d =4 and
d =7 theories. Does a similar phenomenon occur for the
d =5 doubleton' in this model?

Perhaps most interesting is the question of massless-
ness. We recall that in d =4 the scalars and spinors in
the "massless" supermultiplet (the supermultiplet contain-
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ing the massless graviton, gravitinos, and vectors, i.e., the
gauge fields) satisfy a conformally invariant field equa-
tion, which has often been "explained" by asserting that
they are massless and thus must propagate on the light
cone. In d =7, however, it was found in several
models' ' that the scalars in the same supermultiplet as
the massless graviton do not have a conformal field equa-
tion, although for different models these field equations
are still the same (to linear order). Here we will find a
further surprise: scalars and spinors in different SO(6)
representations, but all within the massless supermultiplet,
have different mass terms.

Closely related to the doubleton issue is a subtlety con-
cerning the removal of modes by fixing the general coor-
dinate gauges. After imposing de Donder-type gauge
choices, one is still left with a residual gauge symmetry
whose spherical harmonics are conformal scalars' (scalar
harmonics Yon spheres for which D D& Yis proportional
to g p Y). In the sector of these conformal scalars one can
either algebraically eliminate certain nonpropagating
fields, or remove them by a conformal gauge choice.
Counting seems to present a problem, because in the latter
procedure one ends up with more modes than in the form-
er. The resolution we will discuss is that one must use the
gauge freedom twice to eliminate fields, as in elec-
tromagnetism.

Based on the results of this article and of Refs. 16 and
14, the maximal d =5 gauged supergravity has been con-
structed in the meantime. ' ' This allows one to study its
potential and its critical points.

Our work makes contact with the group-theoretical
analysis of Ref. 14 insofar as the entire set of modes we
find fit precisely into the supermultiplets of Ref. 14. In
addition, however, we have obtained the spectrum of
masses.

The article is organized as follows. In Sec. II we deter-
mine the bosonic mass spectrum while in Sec. III the fer-
mionic mass spectrum is deduced. In four figures some of
the results are given, while our final results are summa-
rized in Table III.

tensor, since their modes are decoupled from the other
modes. Afterwards we shall analyze the modes contained
in Ap and 8, which are decoupled from any other
modes.

The bosonic field equations, linearized in excitations,
read'

1 „F„P«&
PV 6 PP«K V

A )A ) Ap A gA pFpvpo +1 v o r
pvpor 5~ pvpovp'v p o ~

2l—F„„
I p vp] 3 vpom'

DP0-B=0 .

(2.1)

(2.2)

(2.3)

(2.4)

gpv=gpv+~pv~ gpa =~pa

gaP gaP+~aP ~

hp ——hp ——,'gp h

(2.5)

The fields gp and gap are the background fields, and
h is equal to h ~g ~, while hp is related to hp by a
linearized d=5 Weyl shift. [Note that for d spacetime di-
mensions, the Weyl shift is proportional to (d —2) .]
We will need the expansion of the ten-dimensional Ricci
tensor in terms of Auctuations. It reads

R-=R-+ —, ( + y)h-

The covariant derivatives contain only the background
metric, the curl F has strength five, and we have put the
gravitational coupling constant ~ equal to one. The
square brackets denote antisymrnetrization with strength
one. After choosing the scale of I' such that (2.1) holds,
the only nontrivial constant is the 2i/3 in (2.3).

Let us begin with the Einstein equations. There are
three cases to be considered, namely, the cases with Rp,
Rp, and R p. We shall denote the corresponding equa-
tions by (El), (E2), and (E3), respectively. The fluctua-
tions of the gravitational field g- are parametrized as

PV
follows:

II. THE BOSONIC MASS SPECTRUM

In this section we wiH determine the bosonic modes.
We shall first determine the bosonic field equations linear-
ized in excitations. Then we shall expand the bosonic ex-
citations into spherical harmonics, and choose covariant
gauge conditions which will reduce these harmonic expan-
sions to a very simple form. Next we shall insert these
simple harmonic expansions into the linearized d =10
field equations, thus obtaining a set of coupled d = 5 field
equations. After diagonalizing these, we will end up with
the bosonic spectrum.

An important aspect concerns the remaining gauge
freedom which is still allowed by the gauge conditions.
We shall elucidate the connection between the remaining
conformal invariance of Refs. 17 and 20, and the disap-
pearance of the scalar modes which are present in the
singleton and doubleton representations of the relevant su-
peralgebras. ' '

We shall begin by treating the metric and the self-dual

+ —,D„-D-h-P ——,D„-DPh,- ——,'D DPh „
(2.6)

h„', =gH„'(x)Y '(y),

h& ——g [B&'(x)Y '(y)+B&'(x)D Y '(y)],

h( j) ——g [P "(x)Y("p)(y)+(h '(x)D( Yp')(y)

(2.7)

(2.8)

+P '(x)D( Dp) Y' '(y)],

h = g~ '(x)Y '(y) .

(2.9)

(2.10)

The symbol (af3) means that this index pair is sym-

Inserting (2.6) and (2.5) into (2.1) gives the linearized Ein-
stein field equations. They are given in Table I.

Next we expand the fields h& (x,y), h& (x,y), and
h ~(x,y) into a complete set of spherical harmonics as fol-
lows:
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TABLE I; Linearized field equations for g —and 3—
p, v pvpo'

2 ( „+ z+2e )h&„+3e g&„h' —
2 V&V~h z

—
z V„V('h&z+ z V„VP

~ V„V h„—6 g„(D„+O„)by——,e'g„hy = ——,eg„„d' 'B„asap (E1)

(Baavpo~ —40vaapa~) ——ga (Q ap ~ —4/pa ~ )
6

~ + y 2e ) h(ap) + ]() gap( ~ + y 32e ) h y )5 VaVph y+ p V~Vph

hpp 2 VpV h p 2 V V h(py) —
2 VpV h( y) = —

3 eg pp
'~y

Q apy$,

apy5e e 'o g y5~[pavpo. v] = ~pvpav Baa pygmy+
—(h a 3 h y)&pvpo. v

5t 2

~aa pvpo + ~[@avpo]a ~pvpoa ( ~ra py5e+ 4~pa y5e~) +e ~pvpo h av
~py5e

5l

10
38[„avp]ap+ [aa p]pvp Epvpap (30ya~,~, +20 a~~, )

5!

(E2)

(E3)

(M1)

(M2)

(M3)

metrized with the trace removed. Let us now impose the
following de Donder and Lorentz-type gauge conditions:

D h(~p) ——0, D h~~ ——0. (2.11)

D( jp) +D( pg~) Oand D (D——gq+ Dp g ) =0 . (2.13)

They consist of (i) ordinary Yang-Mills syminetries for
which g'p=A, (x) Yp with Yp equal to Killing vectors, (ii)
ordinary diffeomorphisms for which gz

——g„(x), and final-
ly (iii) what have been called conformal diffeomor-
phisms'

g =k (x)D Y (y), g„=—B&k (x)Y' (y), (2.14)

where Y (y) are the k = 1 scalars which satisfy
D(~Dp) Y =0. These three classes of diffeomorphisms
also respect the form of (2.12) although the x-space coef-
ficient fields will, in general, be transformed. The appear-
ance of the extra conformal diffeomorphisms is not
surprising, because in (2.9) the terms with D(~Dp) Y '

cancel when Y ' is a k =1 scalar harmonic, so that no
gauge parameter need be fixed to eliminate these modes.
We shall come back to the role of these conformal dif-
feomorphisms later.

We now repeat the above analysis for the antisymmetric
tensor A--. We decompose it into background valuespvpo

'

A~ z (x) and A~prs(y) and fluctuations a--(x,y). We
choose the following covariant gauge conditions

D Q ~ping
—D Q ~pyp D Q ~tv D + ~pvp (2.15)

Under diffeomorphisms, one has 5h —,=D-g-+D g& and

by expanding g- into spherical harmonics, it becomes
p

clear that one can gauge away all x-space fields which
correspond to gradients of spherical harmonics in (2.8)
and (2.9). This yields

h„'„=AH&'„(x)Y '(y), h&
—gB&'(x) Y~'(y),

(2.12)
Ii4

h( p)=gP (x)Y( p)(y), h =pm' (x)Y (y)

Those diffeomorphisms which respect (2.11) are given
by

Again, these conditions remove terms with gradients
from the spherical harmonics of the various fluctuations.
However, on S the transverse-traceless Y p& and Y p&~
can be expressed in terms of Ds Y, and D, Y, respectively,
and one ends up with

I) I)apvpa = g b pvpn (x ) Y' (y ),
I5 I5

apvpa = g bpvp(x) a (y)

Iio Iio
a~, p ——g b„, (x)Y( pl(y),

a„p, gy„(x) —.e,p" DY,'(y),

a p&s
——g b '(x)e~p&s'D~Y '(y) .

(2.16)

( «+CIA)b '+ H~~ — m. ' Y '=0 (—I(&0), (2.17)CTCT

[(Max+Ay)Pp' —e8„']Y ' =0,
r

Iio+
pvp

(2.18)

(2.19)

The Y and Y harmonics are eigenfunctions of the
Hodge-de Rham operator 6, but Yt ~~ are, in addition,
eigenfunctions of e pr 'D&Y(s, ).

The self-duality equations in (2.2) split into three pairs
of equations, where the two equations of a given pair are
equivalent. Hence, one obtains from (2.2) three indepen-
dent field equations, which we will call (Ml), (M2), and
(M3), respectively, and which appear in Table I also.

Having obtained the linearized field equations, we sub-
stitute the expansions of the graviton and four-index ten-
sor, and collect in each field equation the coefficients of a
given spherical harmonic. In this way one obtains the re-
sults in Table II where we have denoted those equations
which follow from (El) by (El.l), (E1.2), etc. Let us first
consider the M equations in Table II. From (M2.2) and

Ii I5(M3.2) we algebraically eliminate b&„z (x) and b&„&(x),
respectively. Substituting the results into (Ml) and
(M2. 1), respectively, one finds the following three equa-
tions which summarize the content of (2.2):
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TABLE II. Linearized field equations for various fields from g—and 3—--;
iM V I vp

[T~( + y)II(i;) D—(pD'8 )~+ z D(~D )~~~+e'~(„' )]Y '=o
—

5 D D H o+ —,0 (2 „+Gy+2e )Hgg+3e Hgg

(E1.1)

——,( + +32e')~ '+ —d"~~~9 5 ' Y '=P (E1.2)p vptTS'

I5 I5
P2 (Max+by)B„'+ —e„"~ 'c}P~,+4ebyg„' Y '=0

P

—,(Cl„+ y
—2e')P '4 YI'p) —0

I] 8 I] I](2H„„——,5 m )D( Dp) Y =P

(D"8„)D( Yp) ——0

I] I I] I]
5~[@&vpo~) &pvpo~ H aa ~ + y&2 3

[4d(„b p )+e„p (by/ eB )] Y—=0
I] I] I]

[bp~pg +E'p~p~ D~b ]D~ Y:0

(E2.1)

(E2.2)

(E3.1)

(E3.2)

(E3.3)

(E3.4)

(M2. 1)

(M2.2)

I I]0 ]0 1 o~ ]0 yg
I I 1038[@6vp] Y[ap] —4 epvp 6 ow rap Dy Y[gg] =Q (M3. 1)

I~ I5 I5
I ~a+ v~p ~~~ ] (~ pl = (M3.2)

The expression Max denotes the Maxwell operator, which
is normalized such that it starts with . The symbol 6
denotes the Hodge-de Rham operator, and satisfies

b Y(~p) ——( —6e )Y( p) = —e (k+2)2Y( p),
k =1,2, . . .

b, Y =( —4e ) Y"= —e (0+1)(k+3)Y
k=1,2, . . .

(2.20)
hY"= Y"=—e k(k+4)Y", k=0, 1,2, . . .

b Y~"
p~

——( —10e ) Y~"
p~

———e (k +4k+8) Y~~p~,

k=2, 3, . . . .

There is one special case to be discussed separately: when
Y '(y) is constant, the (M2.2) equation disappears and
(2.17) must be replaced by

well as their origin:

[(Max+by)pz —eB&']Y '=0 [from (2. 18)],

(D"B&')(D~ Yp'~) =0 [from (E3.3)],

(D"P„'by eD"B& ) Y =—0 [from (2.23)] .

(2.23)

{2.24)

(2.25)

Thus, we must diagonalize the following 2)&2 system:

B Ay —8e2 16ehy Bp
Max

~
+

P,
(2.26)

The eigenvalues form two branches

M =(k —1)e, M =(k+3)(k+5)e (k&1) (2.27)

[—,(Max+ by )B„'—4e(Max —by )pp'] Y' ' =0
[from (E2. 1) and (M3.2)], (2.22)

k=0 k —o 4e k o
5~[@~vpo~ j ~pvpcr~ ~A,A,2 3

(2.21) and the corresponding eigenvectors are

The Einstein equations yield, in a similar way, equa-
tions which are denoted by (El.l), (El.2), {E2.1), (E2.2),
and (E3.1)—(E3.4), where (El.1) contains the traceless part
of the R&„equation (El) while (E1.2) contains its trace.
These equations are given in Table II also. We now divide
all E and M equations into three classes: (i) Maxwell-
Proca equations, (ii) coupled scalar equations, and (iii) di-
agonal equations. We shall discuss them separately.

Maxwell-Proca equations. We list these equations as

Bq —4e(k+ 3)Pp, B„+4e(k+1)P„ (2.28)

Clearly, the k =1 modes in the first branch form the
SO(6) gauge fields since they are massless. The transver-
sality conditions confirms this: (2.25) states that
B&='+8eg&=' is transversal, while (2.24) vanishes for
k =1, since in that case the Y are Killing vectors. We
summarize the results in Fig. 1.

Coupled scalar equations. There are five equations in-
I, I]

volving the three scalars H&&, m, and b
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24-"

hpa —a+a py

&p, a

'c
„(m+10eb) 45—e (m+10eb) =0 . (2.35)

Under the conformal diffeormorphisms, the scalars
transform as follows:

mal diffeormorphisms to obtain H„„='=—,", ~ ='. How-
ever, one could directly eliminate H&&=' from (2.31) and
insert the result into (2.32). In the latter case one would
find only one field equation, and for one field only, name-
ly,

I5--
6Hpp ——2Cl„A, + ~ A, , 6m= IOQ, Q(eb)= (2.36)

8--

0

h p.a a ps a p y where the —, comes from the Weyl rescaling. '50

With. these preliminaries we now will demonstrate that
fixing the conformal gauge will lead to the same result as
direct elimination of H),~. Consider as a simplified model
the equation with gauge invariance:

FIG. 1. Mass spectrum of vectors. QA+B=O, 5A =A, , 6B=—HA, . (2.37)

(Hpp —
{5 IT )D{aDp) Y ' =0 [from (E3.2)] (2.29)

2 3

[from (2.1'7)] . (2.32)

The fifth scalar equation is (E1.2), but since it is linearly
dependent on the previous four equations, we shall drop
it. We shall first consider the case that D Y ' and

D~ Dp~ Y ' are nonvanishing, i.e., the case k) 2. In this
case one obtains a simple 2&2 coupled system because

I)
one can eliminate H&& from (2.29), so that (2.31) and
(2.32) yield

1T

+

r

y 32e 80e Gy
'4 =0.——e5 Uy

(2.33)

The mass eigenvalues are

M =k(k —4)e (k&2),

M =(k+4)(k+8)e (k &0),
(2.34)

where, in the absence of an unambiguous definition of
mass, M is simply taken to be the eigenvalue of . We
have indicated by (k &0) in (2.34) that the second branch
also contains modes for k =0, 1 (see below).

When D{ D~~ Y '=0 and Da Y' '&0, one is in the
k =1 scalar sector. In this case (2.29) no longer holds,
but one could, in principle, still use the remaining confor-

[from (E2.2)], (2.30)

[(H~+Cl« —32e )m '+80e «b
'

+l-3«(Hpp —
{5 m ')]Y ' =0 [from (E3.4)],

(2.31)

One can either directly eliminate .B by B=— A, in
which case there are no surviving propagating modes, or
one can use the local symmetry to set B=aA. In the
latter case, one obtains A+aA =0, which seems to indi-
cate a propagating mode with a gauge-dependent mass.
However, we can use the local symmetry once more to
gauge A away. To see this, note that we can still make
gauge transformations which respect B=aA by using a
parameter A. which satisfies Gk+ o.'k =0. Thus, "the
gauge shoots twice, " and no modes remain. Returning to
our original model, we conclude that in the k =1 sector
there is only one mode propagating, namely the mode in
(2.35). This is also the k =1 mode in the second branch
in (2.34). Thus, although in the spherical harmonic ex-
pansion one does find a second mode at k = 1, it drops
from the theory. In the conclusions we shall argue that
this 6 of scalars is part of the doubleton multiplet.

The necessity of utilizing a residual gauge invariance
for a correct identification of physical modes is familiar
in the context of Maxwell theory. There, the field equa-
tion (in flat d =4 spacetime) reads

(2.38)

HAp ——0 . (2.39)

In order to restrict Az to the two physical polarizations,
one must utilize the remaining invariance of (2.39) under
gauge transformations parameterized by A satisfying
HA =0.

IIWhen Y is a constant, one is in the k =0 sector. In
this case, there is no b term in the expansion of aa~ys in
(2.16), while (2.32) is replaced by (2.21). Equation (2.31)
reduces to

(Cl„—32e )vr
= =0 (2.40)

which describes the dilatational mode of the internal
metric. Again, this mode can be found in the second

One may use the gauge invariance 6A& ——
. B&A to gauge

{) A =0 thus reducing the number of degrees of freedom
carried by A& from four to three; the wave equation for
these modes is then
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45-

32 4

21-

12-

a
h~ 0 p

—( y
—2e )Y'( p)

——ek(k+4)Y( p), k=2, 3, . . .

(2.47)

Iio+ Iiowhile the two complex fields b&'„'+ and bz", in (2.41)
have masses e (k+2) . The field bz'„'+ is the complex

conjugate of b plo —
because the four-index antisymmetric

tensor is real.
We now discuss the modes contained in the fields A -,

and B. These fields are purely fluctuations and contain
no background parts. %'e expand them into spherical har-
monics as follows:

5-

C

4 e

a
aPy8

05 k

FIG. 2. Mass spectrum of scalars.

3„„=ga p'„(x) Y '(y ),
A„~=+[a„'(x)Y '(y)+a&'(x)D~ Y' '(y)],

A~p ——+[a "(x)Y["p](y)+a '(x)D[~ Yp'](y)],

B=+B '(x) Y '(y) .

We choose the Lorentz-type gauges

DA p
——0, DA~p ——0

(2.48)

(2.49)
branch of (2.34), namely at k =0. We summarize the re-
sults of a11 scalar modes in Fig. 2.

Diagonal equations. The remaining fields, b„„in a„
and P '4 in h(~p) as well as H(z ) in h&, have diagonal
fie1d equations which read

(M a+x6 )«b z
' Y[''p]+—=0 [from (2. 19)],

( x+CI« —2e )(t "Y(~p) ——0 [from (E3.1)],
l I) p I) ~ I

[T(+x++y)H(pv)+e H(pv) D(pD Hv)k

(2.41)

(2.42)

+ —,'D(„D )HI~]Y ' =0 [from (El.1)] .

(2.43)
The last equation can be diagonalized for k ) 1 by

which can be implemented by first fixing the transversal
I5

part of A in 6A p
——D Ap —DpA to gauge a =0, and

then fixing the D A„part of 6A „=D Az —D&A to set
Il

a& ——0. The on1y gauge transformations which respect
these gauges have y-independent A„(x), which are the
usual gauge parameters for az„= (x). Thus we may use

I)
the expansion in (2.48) with a„'=a '=0. Substituting
these expansions into the field equations yields

[(Max+ «)a„z+2iee z
"(3 a,„']Y '=0, (2.50)

++« —6e )a Y[ p] +2iea e pr Dr Y

2(D~aq')(D[—Yp])=0, (2.51)

(Max+ «
—4e )a 'Y '+(D"a&'„)(D Y ')=0, (2.52)

H(~„) P(q„)+D(„D,——)( , n. 12eb) j[(k—+1—)(k+3)] .
(E3 +xCly)B 'Y' '=0. (2.53)

(2.44)

The traceless field P(&v) is then transversal on-shell from
(2.30) and satisfies the Einstein equation

I&oWe recall that the spherical harmonies Y~ p~ are not
only eigenfunctions of 6, but also of the operator

[Ein —k(k+4)e ]P(„„) 0, ——
where Ein stands for the Einstein operator

(2.45) ( D ) Y[ap] —=cap Dr Y[sp]

Rp,'(g„„+h„',) 4e (g„„+h„' )=0—. (2.46)

This clearly demonstrates that h& is the massless gravi-
ton, as expected.

I[4 ~The real scalars P
' in (2.42) have masses

2R~„'"(P(p ))—8e P(„„) (O +2e——)P(„„).

Here R„',' is the Ricci tensor of five-dimensional space-
time. One should not be confused with Rz ' and the orgi-
nial R„. Recall that R& is the pv component of the full
Ricci tensor in ten dimensions. For k =0, the (El) equa-
tion, together with (2.21) and (2.40) yields

(*D) Y[ '
p] = +2l e( k +2 ) Y["p]'' (2.55)

Collecting all terms with a given spherical harmonic,
one gets the d =5 field equations

Since (*D)(*D)=4( y
—6e ), we can divide the Y[ p] into

YI~p~ and Yl~p~, where

(*D)Y['p] =+2i( — «+6e ) Y['p] (2.54)

Since

( —Cl +6 ')Y" —= —b. ", —,= '(k+ )'Y '—

we thus have
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[Max —e k(k+4)]a„"&+2iee z
' 8 a,"~ =0, k &0

(2.56)

[&„—e'(k+2) +4e'(k+2)]a" +-=0, k & 1 (2.57)

(Max+A»)a"„=[Max —e (k+1)(k+3)]a =0,
k & 1 (2.58)

D~a„=0, k &1, D~a& ——0, k &1

[ „—e'k(k+4)]B"=0, k&0.
(2.59)

(2.60)

Thus, all vectors a„, and all tensors az, except a„=,are
massive.

The a&, fields in (2.56) satisfy a field equation contain-
ing both an explicit mass term CI» = —e k(k+4), and a
topological mass term +2ieE'

p 8 Q p For k =0 there
is only a toplogical mass, while there is also the gauge in-
variance

(2ekI+i "D )[2e(k +4)I i*D]a& —0——
so that there are two sets of field equations

(2.61)

( 2ekI +i *D )a z' ——0, [2e (k +4)I i *D]a&—' ——0 .

(2.62)

Iterating these field equations one obtains two massive
Proca field equations

(Max —k e )az'" ——0, k &0

[Max —(k +4) e ]a„',"=0, k & 0 .

However, the k =0 mode of a&, can be gauged away,
since its field equation states that it is a pure gauge.
These results are analogous to those in seven dimen-
sions. ' We summarize these results in Fig. 3.

(2.63)

(2.64)

5ap„——BpA„(x)—B,A„(x) .

This suggests that the self-duality mechanism of Ref. 11
can be applied. Indeed, the field equation factorizes into

III. THE FERMIONIC MASS SPECTRUM

The gravitino and spinor field equations in d = 10,
linearized in fermion fields, read

T

D g-+ I" ~ F-;,-,-,I -g- =0,
480 PVPC77VP

L

(3.1)

(3.2)

The gravitino field equation can be derived in an elemen-
tary way, once one assumes that a supersymmetric d=10
theory exists, by requiring that it can be written as
P ~D-g=—0 where D- is in the background given by

V P V

l8D-e= D-+ —F- e .v v 2 v

In order that the variation of the gravitino field equation
vanish in the background, the commutator of two D
derivatives should vanish, and using that R& ——4e g&
and R~p= —4e g p, this fixes the factor „'0 in the gravi-
tino field equation. (The sign in front of „, can be fixed

by choosing the sign F-—,.) The value A = —,
' comes out

of a lengthy analysis given in Ref. 1.
We choose the following representation of the d=10

Dirac matrices

(3.3)

The y5 matrix in d = 10 will be called I ~ ~ with
I"~~ ——+ 1. Further, the gravitino (spinor) is left (right)
handed,

where o' are Pauli matrices, and y" (r ) are d =5 (d =5)
Dirac matrices satisfying

IP-, P„-I =2r)-„-, Iy, y„j =2g~~, Iro rb ) =25~b .

(3.4)

M
2

j IL

56-
0

0
e 0

(3.5)

Substituting the background values for F-—into the A.-
PVPCTT

field equation, we obtain

25-
6C

0 0 2L 0
=iA 0 0

( 8„+i8» )A, = —23 A, .
(3.6)

4-
l-

2

a+v
—C
0

FIG. 3. Mass spectrum of antisymmetric tensors.

A, (x,y) =+A, (x):- (y), (3.7)

II. I
where both A, and:- are four-component spinors, and

are eigenfunctions of g».
These eigenspinors can be expressed in terms of Killing

Here, g„=y"D&S 14 and g» ——I4r D~, and A. is a 16-
component spinor. We decompose A,(x,y) into spherical
harmonics
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B,:-'+=m '+:-'+=+& k+ —" ="+ k&0
2

(3.8)

spinors g+ and g, and bosonic spherical harmonics as
follows. On S", with unit "radius, " and with
D~rl+ +—(i/2)r~r) +=—0, one has for the spinor spherical
harmonics

and decomposing

e(x,y) =Xe '(x):- '(y),
it is clear that there are modes in I 1(~ which are invari-
ant, namely, those proportional to g+. Thus the nearest
one can come to I g =0 is

where IL ——k satisfies k & 0 and P =g~ I+X (x)r g '+(y),
(3.17)

:-"+ =[(k+n —1+iB» ) Y"]g+,

=[(k+n —1+iB»)Y ]g

An alternative expression for = '

also be obtained; it is given by

k)0
k) 0.

(3.9)

(3.10)

in terms of q+ can

D+ —~ q+=0le
a

where (a) indicates that r P~~~ ——0. Note that the other
Killing spinors, g with

IT IT IT
By= ——m = =+i k+ —=", k &1

2
(3.1 1)

=(+k+1+iB~)Yk+'q+, k &0 .

Similarly, the vector-spinor spherical harmonics satisfy

D ——
w~ g =0,le

a 2 a

can be gauged away from g~. We expand the gravitino
fields as follows

(3.18)

and can be expressed in terms of bosonic vector spherical
harmonics and Killing spinors as follows:

IT I
0( )=y(e = +O'D( ): ) ~ (3.19)

= [(n —2)g r[(n+k)(n+k —2)+(n+k —1)iB]

(n+k ——1)(n+k 2)&—r+(n+k)ir~prDp

+(n 2)irrD —rprD DpI Yr—' rI

Again one can express the =~' in terms of g+

(3.12)

=
I (n —2)g r [k(k+2)+ (k+ 1)iB]
—(k+ 1)(k+2)r,+ki r.p,D

P

+(n 2)ir,D—. rp,D.—DPI Yr "q+ . (3.13)

En all these equations, the derivatives do not act on the Kil-
ling spinors but only on the F harmonics. The basic rela-
tions to obtain the fermionic spectrum are given in (3.8)
and (3.12).

IL
Returning to (3.7), we see that the spinors A, have

masses given by

IT[B„g (e+im )g—"]:- =0,

I( —3)[5e + —, (m ) ]g +5yP D P
II. ~IL+4im y g I:- =0,

IL[(B„—e —,'™L
Wi

' y—g']D~
~

= —' ——0 .

(3.21)

(3.22)

(3.23)

We will now first analyze the gravitino field equations in
the sectors without rI+ (but with g ) and later we will
separately analyze the sector with q+.

From (3.15) we find

Ii I~
I y" PD,P +(im —e)y"'P„

—[5e'+ —', (m )']y„g ' I:- ' =0, (3.20)

where the last term comes from y„D~Q~ ~. From (3.16)
one finds

B„+e(—', +k)

(3.14)

Here, (3.22) is obtained by contracting (3.16) with r,
while (3.23) is the ra-transverse part.

I~
Eliminating y p in terms of 1(t from (3.20) and

(3.22) yields

We now turn to the gravitino field equation. There are
two cases: p=p and p =a. They yield, respectively,

y g~ = —5(5e+2im —)g

and inserting into (3.23) yields

(3.24)

yPP&D P I'yl PD (r~P )+jyPPB

+y"(~ D Vp} y"P&p=—0

&PrDpg +r yP D g +'r PDp(y Q )

—ir PB„Pp+ir Pgp=0 .

(3.15)

(3.16)

We fix the d=10 local supersymmetries by trying to
achieve I fr =0. However, with

B~P +(3e+im )P =0 . (3.25)

Further, (3.20) yields, after eliminating g
I~ ILy""PD,pP +(im —e )y"PpP

IL+ —,
' (5e 2im )y"(y P—) =0 . (3.26)

In order to find the physical gravitino modes, we redefine

1 0
Qfj =D e=D~e+IgSv'~ () ()

'e IL I~
~p =0'(p)+ 5 ypy Q +~D(„)y'Q (3.27)
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I
Requiring that D"

p((&~ ——0 on-shell fixes a,
3 1

CX = —
4 IL

2t7?l +e

Then,

(3.28)

P„Y+—", eX=0 . (3.36)

The shift

Tracing the first equation and combining with the second,
the g terms are the same, and hence one finds a diagonal
result for X:

y""I'D„y(p)+(im ' —e)(p ' =0 .v IL . IL (IJ )IL

Thus the spectrum is given by

IL . IL (p, )ILy" ~D„y(e)+(im —e)y =0, k &0

+(im +3e)1i L =0, k & 1

(im —+e)g =0, k &0

where

(3.29)

(3.30)

(3.31)

(3.32)

ILim =+e( —, +k), im =+e( —,'+k) . (3.33)
I~Note that the k =0 positions in the g series are unoccu-

pied at this point.
We must now analyze the g+ modes. One finds the

following two equations

y""~D.g, +(im ' e)) &—q, +si1""D.X 4m —'ql'Z=o,

(3.34)

5i
fp =g~ — 1'pX

removes then 7 from these equations, giving

yP PD g + —eyP~@ —0

(3.37)

(3.38)

This is the massless gravitino field equation; since y& is
complex, there are 8 gravitinos, as expected.

The mode X has the correct mass to fill the k =0 posi-
tion of the g series with

im =+e( —', +k) .

IV. DISCUSSION

Hence, one might identify X with g
= (im &0). The

other k =0 slot remains unoccupied. There is a group-
theoretical explanation of these results which we will dis-
cuss in the conclusions. The mass spectrum of the fer-
mions is summarized in Fig. 4.

I

2
II

7 gravitino

2

r (Sy"'D&g + 10ey"g&+20i8„X+10ieg) =0 . (3.35) We have obtained the complete mass spectrum for the
compactification of chiral % =2,d =10 supergravity on
S . Our results are summarized in Table III, as well as in
the four figures.

The identification of the massless modes is achieved ei-
ther by using the fact that one knows from the group
theory the content of the graviton supermultiplet, ' or by
looking up the field content of the gauged %=8,d=5 su-
pergravity. ' ' We have encircled these massless modes
in the four figures.

All massless modes are found at the lowest k mode of
their respective branches. This seems to be a general rule
and may be helpful in future compactifications to select in
advance the massless modes.

From these results we see that the field equations for
the scalars in the massless graviton supermultiplet are not
all equal. In fact, one has

( +4e )~"= (20)=0,
B"= (1 )=0

( „+3e')a ='(10, )=0.
5g
2

7
2
9
2

li
2

L

FICz. 4. Mass spectrum of fermions.

These scalars lie inside or on the boundary of the stability
region for which the field equation reads ( +4e~)/=0. ~~

Note that the conformal value (Cl+ —", e~)/=0 lies inside
this stability region, and that none of the scalars has a
conformal field equation.

This raises the possibility that the scalars in the mass-
less supermultiplet may not have any particular properties
which determine their field equations, except supersym-
metry.

The massless modes consist of the 42 scalars above, and
further the graviton, a complex quartet of gravitinos, 15
Yang-Mills fields for SO(6), and, most interesting, a com-
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Spin Field

I1 I1
h pv=Hpv Y

I5 I5ha„=B„Ya
I5 ~ I5

a„ap~=P„empt D(;1',

TABLE III. Complete mass spectrum.

Masses on S'

M =e k(k+4)

(
M'=e'(k —1)(k+1)

I M =e (k+3)(k+5)

(k &0)

Irred.
reps.

1,6,20, . . .

15,64, 175, . . .
15,64, 175, . . .

I1 I1
aapyg

——b eapyg'D, Y

k(k 4)
(k+4)(k+ 8)

(k &2)
(k &0)

20, 50, . . .

1,6,20, . . .

ant

14
~(ap) =0 y'(ap)

B=B YI1 I1

10, + 10, +apvap ~pv Y[ap]

M =e k(k+4)

k(k+4)

M2 e2(k+2)2

(k &2)

(k &0)

(k &1)

84, 300, . . .

1„6„20„.. .

10„45„.. .

ant
I1

Ap =ap Y f
M'=e'k'
M =e (k+4)

(k &1)
(k &0)

6c,20c

1„6c).. .

0

I5 I5
A pa =a„Ya

Ilo + 10 +
Q ap =a ' Y[ap]

M =e (k+1)(k+3)

' M =e (k —2)(k+2)
I M~=e (k+2)(k+6)

15„64„.. .

10„45„.. .
10„45„.. .

3
2

1

2

IL IL t
M=ek

i M= —e(k+ —", )

t
M=e(k+ —, )

. M= —e(k+ —, )

(k &0)
(k &0)

(k &0)

(k &0)

4, 20, . . .
4g 20+

36*,140*,. . .

36, 140, . . .

1

2
IL IL

0( (=0'D( (:'+&r ')+
tM =e(k+ —, )

-M= —e(k ——, )

(k &0)

(k &1)
4, 20, . . .
20*,. . .

1

2

(M=e(k+ z )

IM= —e(k+ z )

(k &0)

(k &0)

4, 20, . . .
4*,20*,. ~ .

plex sextext of antisymmetric tensors. Their linearized
field equations read

The 48 spinors have the field equations

(g ——,
' e)g '(20*, ) =0,

(g„——', e)A, (4*, )=0 .

Thus, also the spinors in different SO(6) multiplets have
different masses.

Among the unitary infinite-dimensional irreducible rep-
resentations of the superalgebra for the d =5,% = 8
model, SU(2,2

~

4), there is one irreducible representation
which is even smaller than the massless supermultiplet. '

It is called the doubleton multiplet and contains one com-
plex antisymmetric tensor, six real scalars, and four com-
plex spinors.

These fields we identify as follows: (i) With those six
scalars in the k = 1 sector of H and 6, which would have

been present if we would not have had the extra confor-
mal invariance (or, equivalently, which at once disappears
after algebraically eliminating FE)„)„); (ii) with that k =0
component of az which becamepure gauge on-shell; and
(iii) with the = =g terms in P D( )

= which are also
absent because D~ i" ——0 in this case.

A technical point we solved has to do with the confor-
mal diffeomorphisms which remain after imposing the de
Donder conditions D h~~p)

——D h
&
——0. We showed that

these symmetries must in general be used twice to elim-
inate redundant modes: once using the inhomogeneous
equation for the gauge parameter, and once more using
the homogeneous equation. Thus, there is complete agree-
ment between gauge fixing and direct elimination of
nonprogating fields.
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