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Both the classical and quantum stability of the Schwarzschild metric in fourth-order theories of
gravity are investigated. Characterizing the theories by the mass squared of the two massive parti-
cles present in the linearized theory, we find that, provided both particles are nontachyonic, the
black hole is classically stable; arbitrary initial perturbations which are regular at infinity and on the
future event horizon cannot grow without bound. In the quantum case, where the Schwarzschild
metric is unstable when in equilibrium with thermal radiation in the Einstein theory, we find that it
is catastrophically unstable when the spin-two particle is tachyonic, but that when nontachyonic the
fourth-order terms stabilize low-mass black holes; black holes do not evaporate away completely in

these theories (an effect due to Hawking radiation of the negative-energy spin-two particle of the
theory). We conclude that black holes appear well behaved in a quarter of the parameter space
available to the fourth-order theories.

I. INTRODUCTION

It has long been known that any solution of the Ein-
stein field equations is also a solution of the general
fourth-order theory of gravity. The reverse is not the
case, however, and so it is not obvious that the stable,
highly symmetric black-hole solutions of the Einstein
theory need remain stable in the fourth-order theory.
Moreover, while it is known that black holes are unstable
when in equilibrium with thermal radiation in quantum
theory (due to Hawking radiation and, in particular, the
black hole's negative specific heat), it is not obvious that
they should remain so in the fourth-order theory, or that
they could not be more seriously unstable than in the Ein-
stein case.

In what follows, I shall treat separately the classical
and quantum stability of the Schwarzschild black hole. A
metric is to be considered classically stable if no initially
small perturbation can grow unboundedly with time,
while remaining a solution of the theory; a quantum
stable metric is one whose (Euclidean) action is a local
minimum in the space of all R =0 metrics.

The classical stability of the Schwarzschild metric has
been investigated in a number of papers' by means of a
frequency analysis, made possible by the staticity of the
backround. A metric is stable if there are no modes with
positive imaginary part of their frequency which are regu-
lar on the future event horizon and at infinity. The pro-
cedure followed has been to decompose each mode into
spherical harmonics, separate these into odd- and even-

parity perturbations, and then to use the gauge freedom to
simplify the resulting set of coupled radial equations. So
long as the solutions of these form a complete set, this is
sufficient to prove stability for an arbitrary perturba-
tion.

This method carries over directly to the fourth-order
problem. We shall find that it can be divided into two
parts, one of which is identical to the Einstein case, and
the other consisting of perturbations to the Ricci tensor.

II. FOURTH-ORDER GRAVITY THEORY

In this paper we shall be dealing with the stability of
the Schwarzschild metric

ds = —Vdt +V 'dr +r (d6 + sin HdtI) ),
where

V =(1—2m lr),

(2.1)

(2.2)

in the general fourth-order theory (without a cosmological
term), whose action is given by

1
( —R +otR'+PR„.R" )( —g)'~'d'x+~&,

16~
(2.3)

We find that we need both particles of the linearized
theory to be nontachyonic in order to prove stability of
the Schwarzschild black hole. Moreover, the formalism
used makes it clear that the radial solutions form a com-
plete set, and thus that the black hole is stable to arbitrary
perturbations. This result is, perhaps, surprising, since
there is evidently a bifurcation in the spherically sym-
metric solutions of the fourth-order theory, and one might
expect therefore that the Schwarzschild metric would not
be everywhere stable.

The quantum stability of the Schwarzschild black hole
has been studied in the Einstein theory by Gross, Perry,
and Yaffe, by splitting arbitrary perturbations into a pure
trace part, a longitudinal part, and a transverse trace-free
part. It is found that only the transverse trace-free part
can represent a physical quantum instability, and, decom-
posing by frequency and angular momentum, that black
holes do exhibit such an instability. The extension of this
method to the fourth-order theory is straightforward. We
find that, provided the spin-two particle of the linearized
theory is nontachyonic, black holes of sufficiently low
mass are stabilized by the fourth-order terms.
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taking G = 1. X is given by

x= 1
(R RP"a~ 4R R&~+R )( —g)32'

(2.4)

and can be ignored classically as its functional derivative
with respect to the metric vanishes, while in quantum
theory it is of significance only when topology changes
are relevant (since X, the Euler character, is a topological
invariant). The field equations derived from (2.3) are then

2pR— Ra&p„2aR—R&„pC—IR& +R&„+(2a+p)R &„+.g&„[ , aR—+, pR—a,R ' (2a—+ —,p)CIR —, —R1=0 (2.5)

with trace

—2(3a+P)I7R —R =0 . (2.6)

We may note for future reference that the theory con-
tains two mass scales, associated with the spin-0 and
spin-2 particles present in the linearized theory. (The
former has significance even in the nonlinear sector. )

They are given, respectively, by

and

m 0
——1/(6a+ 2P)

m2 ——1/p,

(2.7)

(2.8)

so nontachyonic spin-0 and spin-2 particles require
(6a+2@) to be negative and P to be positive, respectively.

6a 1

P P
+2 CI+ —5R =0. (3.4)

This is just the scalar wave equation with mass mo on
the Schwarzschild background. It is well known that if
mo is positive there are no instabilities. (There would be
instabilities, however, if the black hole were rotating. )

I.et us turn for a moment to the boundary conditions
which we shall need. It has been noted by Vishveshwara
that in applying boundary conditions at the Schwarzschild
horizon one must work in a coordinate system which is
nonsingular there, such as Kruskal coordinates, to ensure
that they are physically meaningful. In Kruskal coordi-
nates the line element is

ds =(32m /r) exp( r/2m—)(du dv )—
III. CLASSICAL STABILITY +r (dO + sin Odg ) . (3.5)

If we consider a perturbation, h„„of a metric g„,
which satisfies the vacuum Einstein equation

The coordinate transformation between this and (2.1)
are given implicitly by

Rp (gap) =0, (3.1)

such that the perturbed metric (g»+h») still satisfies
the fourth-order field equation (2.5), then we can derive a
set of somewhat messy fourth-order partial differential
equations for h„„. It is simpler, however, to split the set
of perturbations into two subsets: those which ensure that

- the perturbed metric still obeys the Einstein equations
(Ricci-flat perturbations) and those which do not.

In the former case we have simply that

—1 exp(r /2m ) = u —v
2ffl

tl4m =arctanh(v/u) .

These may be rewritten as

exp(r /2m ) = u —v

(3.6)

(3.7)

(3.8)

Rq (gap+hap)=R~ (g p)+5R (h p)

=5R„,(h p) =0, (3.2) exp( t/2m) = (u +v)
(u —v)

(3.9)

2(x
gpagvp+ + T gapg pv

2(x +1 g„,V Vp

1 1+ 2R~ p
——

gp~g p+ g pg -Qg1" —0
P 2P

This has trace

which is exactly the problem studied for the question of
stability in the Einstein theory. Hence, no instabilities
arise from such perturbations.

In the latter case we should consider not the perturba-
tion in the metric but the resulting perturbation in Ricci
tensor, 5R»(hap). (This is sufficient, since any non-
Ricci-flat perturbation which is exponential with time
corresponds to a Ricci perturbation which is exponential
in time. ) It is then easy to derive the equation

In these coordinates the future horizon lies on u =v
and the past horizon on u = —v. The boundary conch-
tions appropriate to our problem cannot involve the past
horizon, as we are imposing an arbitrary perturbation at
t =0 and are interested in its future evolution. Thus we
need only have regularity on the future event horizon,
u =v. Now any function of the asymptotic form
exp(ar )exp(Pt) transforms to

(u +V)(a+P)/2m( )(a—P)/2m

Thus, for regularity on the future event horizon, a func-
tion which is exponentially increasing with time must be
sufficiently exponentially damped as r —+ —oo to satisfy
our boundary conditions: we need Re (a /3) )0 for sta-—
bility. (We shall see that the equations make this
equivalent to the requirement that a should equal P.)

Turning back to (3.3), we find that we can greatly sim-
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6Rp ——
4 6Rgp +5Rp (3.10)

where

plify the problem by decomposing the perturbation into
trace-free and pure trace parts:

to whether 5R". is, and similarly the second term is ex-
ponential according to whether M is. Thus, either each
term vanishes separately, or else 6R„ is stable or unstable
according to whether 5R is stable or unstable. We are
therefore led to study the following equation:

g"'6R„=O . (3.1 1)
1—(~L, )„.p ——g„g„p M" =0, (3.13)

Then we can write (3.3) as

1
gpagvp(:)+2R„asap —g—„ag.p M

where

(~t. )palp= (gulag p++2Rpa p) ~

1+— 8a +3 g pH

8a 1+4 V' V'p+ —g p M=0. (3.12)

In doing so, we follow Regge and Wheeler' in analyzing
the perturbations into modes of definite frequency, angu-
lar momentum, and parity. We may ignore the P depen-
dence, considering only the M =0 harmonics, as all phys-
ics will be independent of M. We write

Since the operator acting on 5R" is a linear differential
operator, the first term is exponential wit/ time according

I

5R~b =5R~b +5R~b

where

(3.14)

5R,'b ——

0 0 0

0 0 0

I'L(8)exp(kt) (3.15)

0 0 0 p2 —cot8
BO

sym sym sym

5R,'b'" ——

&o ~i Po~BO

sym P2 p) Bo
a2

sym sym K+6 ae'

0 0

0

0

E+G cot0 a
00

I't (0) exp(kt), (3.16)

where "sym" indicated a component which may be found
from the symmetry of M& . A few points should be not-
ed here: the perturbations are written in the orthonormal
basis, not coordinate basis; the functions po, p~, p2 Po,
P&,P2 K, G depend on r only, k is the imaginary frequen-
cy, so when it has a positive real part there is instability.

The contracted Bianchi identities tell us that the pertur-
bations are transverse, and these, together with the trace-
lessness of M„„, provide us with constraint equations
which can be used to simplify (3.13) in the two cases
(3.15) and (3.16).

It is worth noting that since 0 and V„do not commute,
transverse perturbations will not be eigenstates of angular
momentum. However, the field equations will be found to

t

reduce to purely radial equations, as EL (on transverse
perturbations) does commute with the angular momentum
operator.

If we look at the k =0 form of (3.13) on a
Schwarzschild background we know that only when
I/P=0. 19/m is there a normalizable solution. That
mode is spherically symmetric (L =0) and so indicates a
bifurcation of the spherically symmetric solutions of the
fourth-order theory. (That is, we are led to believe that
there is another family of spherically symmetric solutions,
which becomes identical with the Schwarzschild solutions
at a critical mass 0.44P.) We might expect, therefore, that
we will find an L =0 instability for I/P&0. 19/m . In
what follows I shall mostly assume k&0. (A brief treat-
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ment of k =0 may be found in Appendix E.)
We shall first deal only with L, )2 perturbations. Then

in the odd-parity case the Bianchi identities yield a single
constraint,

po

( V —l)k
p1 ——0,

7

(3.18)

L(L+1)V V 9V 5V 1
2 2

' ~ 2 2 +r p 4r 2r 4r

( Vl/2 3 )+kV —1/2p
Br 0

+2cot8 YL, ——0, (3»)
BO r

L(L+1)V V 5V'
D4 —k+

2 +—+
r f~ 4r

where

7V 1
2+ 2 P1

(3 V —1)k
po

——0,
r

which may be used to reduce the three independent equa-
tions in three variables resulting from (3.13) to the follow-
ing two equations:

nV 8
D„Dn=— +

For even-parity perturbations, we have three constraints

+cot8 +kV ' P +V ' r (Vr P ) YL=0,
BO

"
r Br

+cotg +kV ' 'P&+ P, +r '(V' 'r-'P, ) [2K—L(L+1)G]—Yl =0,BO+-

K ~ + k —1/2 —3 /2 3+ ~+ po+r .
~

rpl L

These, together with the trace-free condition,

P, P, +2K L(L—+1)G =0—,

(3.19)

(3.20)

may be used to reduce the seven independent equations obtained from (3.13) to the following three coupled equations:

L(L +1)V V 3V' 2V 1
2 + 2 +

~
+ 2 2 + 2r p 2r r 2r

L(L+l)V V V 2V 1
4 + + +

r 2
/3 r2 2 r2

2kV 2k 5V 2V 10+ 1+ 2
2 2

3kv k' kv kP1+ Po+ ——P2 ——0,r r r r (3.21)

L(L+1)V V 5V' 4V 1
6 + + +r2 13 2r2 p2 2r2

6k V 2kP2+ P1+r r
—3V

2r
1

Po ——0.
2r

I +A —M X=O,
Br Br

(3.22)

Now in each case, the resulting equations, (3.18) and
(3.21), may be written in the matrix form k + 1

16m

k
2m

k
2m

k'+ 1

16m

(3.25)

a'
~ 1I —k+ —I X=O,

dr' P

and at the horizon (r~ ao ) they become

a'I —M X=O,
Br

where for odd-parity perturbations

(3.23)

(3.24)

where X is a function-valued column vector (po, p&) or
(Po,P I,P2) as appropriate, and A is diagonal. Moreover,
asymptotica11y the equations become, as r ~ op,

and for even-parity perturbations

1 k
k +

Sm

1

Sm

k
2m

k + 1

4m

k

(3.26)

1

Sm
k + 1

m Sm

Now %'aid' has shown that is is sufficient to prove sta-
bility to show that there are no modes with k real and
positive or zero, so for L, )2 we shall consider only this



32 STABILITY OF SCHWARZSCHILD BLACK HOLES IN. . . 383

case. So long as we have m2 )0, these matrices are posi-
tive definite for non-negative k, and so (3.23) and (3.24)
admit only exponential solutions. We discard the diver-
gent solutions at both infinity and the future horizon.
(The latter boundary condition must again be examined in
Kruskal coordinates, using the appropriate transforma-
tions for tensor components. Exponentially divergent
solutions remain divergent in the nonsingular coordinate
system. ) So we are looking for solutions of (3.18) and
(3.21) with at least two zeros on [2m, oo ].

We use the following identity,

D =r "V r V—n ~ n

3r Br
(3.27)

8
Br Br

—V PM X=O, (3.28)

where P is positive definite. There are no solutions of this
equation with more than one zero on an interval [a,b] if
and only if the functional

to write our equations in Sturm-Liouville self-adjoint
form:

I[P,M; 71]= J
8 8P

+q ( V PM )rI dr (3.29)

is positive definite, for all [ao,bo]C [a,b] and
q(ao) =q(bo) =0.

Now if M is positive definite for any given value of L,
it will also be positive definite for any greater value, so we
need only consider the I =2 perturbations. Similarly, we
see that if it is positive definite when I/P=O, then it will
be for all positive mz . Then we can evaluate the sums of
products of the eigenvalues of M for both the even- and
odd-parity perturbations to find that in both cases M is
positive definite when k is non-negative (see Appendix
A). Now since P is positive definite and diagonal, both
terms in the integral (3.29) are positive definite, and hence
there are no solutions which satisfy our boundary condi-
tions.

When L = 1 the constraints simplify, becoming for
even-parity perturbations [since G can then be absorbed
into K in (3.16)]

8 po+cotO +kV P +V r (Vr pi) I'i —0,r Br

V
—1/2 3 V1/2

+cot8 +kV ' 'P, + p, +r —'
( V'»r'p, ) I o,

—0r 2r c)r
(3.30)

Po —P2 a -1 — a
2r Bg ' gr

+kV —'"p +r '(V'"-r'p ) y'=0
1 1

and in the odd case [since now pz vanishes in (3.15)],

(V' rp)+kV ' p=0a
Br 1 0= (3.31)

The constraints (3.30) provide a differential equation in Po, P„Pz,

2 8 11V 3V
ar~ '+ 2r +2 a '+ —3V V 5V 3VP, +(2kV) P,+, +, P,2r 2r Br Br r r

—3V' V, 5kv k+ +k Po+ +—P
r 2 r 2 r r

(3.32)

and the even-parity equations (3.21) are unchanged. By examining the asymptotic forms of (3.21) and (3.32) and apply-
ing the boundary conditions, they can be shown to admit no normalizable modes. (See Appendix B.) In the odd-parity
case, the equations resulting from (3.13) differ from (3.18), being

V 9V
D2 — k +—+

13 4r'
V 1 ( V —1)k2+ 2 po+ p1=0 &

2r 4r r
(3.33)

V 25 V' V 1 (V —1)k
D& —k'+ —+, —,+, p&+ po ——o,4r2 2r2 4r r

which again have no nondivergent solutions (Appendix C).
Finally, for L =0, the form of (3.15) shows that there are no odd-parity perturbations at all, while for even-parity per-

turbations, po, p1, and 6 must vansih. Then the Bianchi identities yield only two constraints,
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kV 'P +V ' r (Vr P )=0,8
Br

V
—1/2 3 V1/2kv-'"P, + P, +r ' -(V'"r'P, ) =0,

2r ar

(3.34)

on the three equations

V 3V 2V 1k+ —+ — +
/3 2r' r' 2r'

2k V 2k 5V2 2V
p+ f+r r 2r2 r2

1
Pp ——0,

2r

V V 1
D& —k'+ —+, +,r r

P)+ kV k kV kPp+ ——P2 ——0,r r r r (3.35)

V 15VD, k'+——+
2r

2V 1+
r 2r

9V2
2+ 1+

2r r
I

Pp ——0.
2r

Once more the system admits no nontrivial solutions (Ap-
pendix D).

Let us now summarize what we have proved. We first
showed that the general perturbations could be split into
Ricci-flat and Ricci perturbations, and that only the latter
could cause instability. We then further subdivided the
Ricci perturbations into pure trace and trace-free parts
showing that the former could not cause instability, pro-
vided mo is non-negative. Finally we split the trace-free
Ricci perturbations into odd- and even-parity classes, and
found that no instabilities could arise here provided m2
is non- negative. We may also note that we have inadver-
tently also solved the original Regge-Wheeler problem, as,
when m2 vanishes, (3.13) is the same stability equation as
they tackled but calculated in a different gauge. We have,
moreover, shown stability under arbitrary perturbations,
since our equations are in Sturm-Liouville self-adjoint
form. (Working to higher order in the perturbations, we
are likely to find instabilities due to interactions between
the positive-energy and negative-energy modes. These
would, however, require a initial perturbation of finite
magnitude to excite them. )

One might wonder why we found no L =0 instabilities.
As fas as the structure of the equations (3.34) and (3.35) is
concerned, it is clear that the nature of the constraints
when k =0 is quite different from when k&0 and is re-
sponsible for the normalizable k =0 mode (Appendix E).
(In terms of the complex k plane, the k =0 mode must
move into the the left-hand plane as m moves away from
the critical mass. ) Physically, there seem to be two possi-
bilities: either the bifurcation is an artifact of lineariza-
tion, and no other spherically symmetric solution exists,
or the bifurcation is real and (since the form of the
k =0, L =0 mode would lead us to believe that any
second family of solutions would have a smaller horizon
size for a given total mass, rising with I//3 until when
1//3=0. 19/m it merges with the Schwarzschild solu-
tion), the second law of black-hole thermodynamics en-
sures the stability of the Schwarzschild solution.

We can extend the above analysis to cover those
theories in which R term is removed from (2.3). Then the
last term of (3.4) and (3.13) disappears, ensuring stability
for all values of a and /3.

+g(h„,'")]g'~ d x, (4.1)

where H is the traceless part of the metric perturbation
considered as a 16-component vector, and AL is the
Lichnerowicz operator ( —Clgz~g ~ —2R&~ &) considered
as a 16X16 matrix. If we fix the gauge by setting
h&

' ——0, the terms which depend only on the divergence
of the perturbation [denoted generically by g(h& '")] will
vanish. The term f(h), which depends only on Clh also
vanishes, since we are only interested in 6R =0 perturba-
tions, and in our gauge M = — h. Thus, the quantum
stability of the Schwarzschild black hole depends on the
positivity of

H AL(pbL+1)H .

If we consider the eigenvalue equation

(4.2)

(4.3)

then we can write (4.2) in the form

g A,„(/3k„+1)q„ (4.4)

assuming H = g A,„g„, where g„are a complete set of
n

orthonormal eigenfunctions. We know that there is one
and only one negative eigenvalue,

IV. QUANTUM STABILITY

It is clear from the path-integral formulation of quan-
tum theory that quantum stability is determined by the
sign of the second variation of the (Euclidean) action
about a background solution of the theory, since if this is
positive it indicates that one is at a local minimum of the
action in the space of all R =0 metrics, and thus that
there is some lower bound on the size of quantum fluctua-
tions needed to escape from that stationary point to any
lower action solution.

In the case of (2.3), the second variation about a
Schwarzschild background may be written

5'I= — f [ ,'H 6r (pbL+1—)H+f(h)
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A, p ———0. 19m (4.5)

5 I= J(5R„„h""+2135R„,5R"")g' d "x

f [(—,
' bl. h„„)h""

taking G =1. So if I3 vanishes we have a single negative
mode.

When m2 is negative, the n =0 mode remains nega-
tive, but is joined by all modes for which A,„)

~
mz

Since A,„ increases without bound with L, there are an in-
finite number of negative modes in this case, which is ca-
tastrophic.

In the positive-m2 case, however, we see that only the
n =0 mode can be negative, but it is in fact positive pro-
vided the black-hole mass is less than 0.44m2 '. Thus,
low-mass black holes are stabilized by the fourth-order
terms. (If we take P= 1, as it is a dimensionless coupling
constant, black holes lighter than about the Planck mass
will stable. )

This last result may seem puzzling: since in Einstein
theory low-mass black holes are less quantum stable than
high-mass ones, it is surprising that it is the former which
are stabilized.

This problem can be dealt with by a small calculation.
The second variation in the action may be written, noting
the Ricci-fiat background, as

ing way. In the Einstein case the negative specific heat
and the instability are just due to the fact that when a
black hole loses (gains) mass its temperature increases (de-
creases) and so the Hawking radiation is greater (less) than
the incoming thermal radiation, resulting in further mass
loss (gain). In the fourth-order theory we do not only
have gravitons, which follow the above picture, but a
spin-two "poltergeist", a negative-energy propagating
particle which, because of its negative energy, will have a
stabilizing effect: when Hawking radiation decreases (in-
creases) the black hole will lose (gain) net mass.

This would explain why the mass of the spin-two parti-
cle needs to be low for stabilization; it must be thermally
excitable. It also explains why the black-hole mass should
be low; it must have a temperature high enough to
thermally excite the poltergeist. Even so, one might
wonder why the stabilizing energy flux due to the polter-
geist should ever exceed the destabilizing effect of the
graviton. This may be due to the fact that a massive
spin-two particle has five degrees of freedom, as opposed
to the graviton's two. This could be called into question
in the real world, however, in which other fields might
contribute to black-hole instability.

Again we can extend the above analysis to theories
without a pure R term, the last term of (4.6) dropping out
and so guaranteeing quantum stability of the pure gravity
theory for positive P.

V. CONCLUSION

and when h" is the negative mode, g0,

(4.6)

1 /' —0. 19 0.36
16 ~ 2 + 4 IO IOPv g

'7T m

(4.7)

So we see that, while Einstein term does indicate greater
instability for smaller masses, the stabilizing effect of the
Ricci-squared term increases even faster as the black-hole
mass decreases.

We can understand the stabilizing effect in the follow-
s

In studying the classical and quantum stability of the
Schwarzschild metric in the class of theories with action
given by (2.3), we have effectively ruled out three-quarters
of the parameter-space available to those theories from
further consideration. For classical stability we found
that we needed both P and —(3a+Ig) positive. In the
quantum case, we needed 13 positive to avoid a catastroph-
ic instability. It was also found that the existence of a
negative-energy particle in the fourth-order pure gravity
theories can stabilize low-mass black-holes. We have
therefore, a class of theories which appear well behaved,
have no tachyonic particles in the linearized regime, and
which can represent the real world.

APPENDIX A

In this appendix we shall see that the matrices M, which are defined by (3.18), (3.21), and (3.22), are positive definite.
We shall consider only the L =2, 1/P=O case, as if M is positive definite in this case, it will be for all positive P and allI & 2. In the even-parity case then,

3V +8V+1
2r

k(1 —3V)
r

3V +1
2r

2k (1—V)

—V +4V+1
r 2

2k(1 —3V)

—5V +4V+1
2r

—5 V'+4V+1
2r

(A1)

Now, noting that 0 & V& 1 on [2m, oo ], we may write
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10V—2V
~M A—I~, = —A. ~A, 3k ~ 36V —16V' 1~ 12V ~30V' —20V'~ V'

r r4

k k — ~k ~k2 2 1 4 26V —14V2 2 4V+58V2 4V3 35V4

r r r4

2V(1 —V)(1~5 V)(1~4V —V')
+ 6r

(A2)

and thus see that, since each of the polynomials in V is positive definite, the matrix M is positive definite on the range of
interest.

Similarly, in the odd-parity case we have

and thus

9V +14V+1
4r

k(1 —3V)

k (1—V)

~k I,5V2~ 10V~ 1

4r

(A3)

~M —A,I
~

=A,' A, 2k'~—
2r

'2
1 2 20V~ V 24V~154V ~160V ~45V~+ 2 +

4r 2r 16r'
(A4)

which again is manifestly positive definite.

APPENDIX 8

For the L, =1 even-parity perturbations we have Eq.
(3.21) and (3.32), which can be shown to be consistent by
eliminating the second derivative of P2 from (3.32), using
(3.21), to give

1
k ~

Br Sm'

Q2
k ~

()r 4m

Q2
k ~

Qr Sm

k
Pp PI P2 0,

Sm

k kP) — Pp — P2 ——0,
2&l 2'
k 1

P2 — Pi — Pp ——0,
Sm

(82)

—3V ~2V+1
2r

+ p

5V2~2V~1 V p 3—V

2l r

(81)

and (81) becomes (when 1/P&0)

1 2 1 a(Pp~Pz)~ k ~ (Pp~P2)~2k P,4m (jr Sm 3r

3k V+ Pi+ (Pz —Pp)=0 . (83)

Now (82) has solutions (provided k &1/4m, 0)

Pi+ , (Pp+Pz)=A+ e—xp k+ r1 1

2ppl

differentiating this and using (3.21) to eliminate second
derivatives to give another first-order equation (with twice
as many terms, so I shall not give it here), and repeating
this, yielding a third first-order equation (with twice as
many terms again) which can be shown to be a linear
combination of the first two.

However, by considering solutions near the horizon we
shall find there are no nondivergent solutions. Asymptot-
ically (3.21) becomes at the horizon

1~A exp —k ~ r2'
(Pp —P2) =C+ exp(kr )+C exp( —kr ),

Pi + , (Pp+P2) =8—+ exp k ——r1 1

2172

+8 exp —k-
2N2

(84)
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but (83), noting that V= exp(r/2m) near the horizon, re-
stricts these to give

r

C+ ——13 4k'+ +, A+,
2m

ture event horizon for Rek & 0 in the L = 1 even-partiy
case. [In the L & 2 case, the crucial difference is the ab-
sence of (83) which was needed to force the A+ part to
vanish, which in the L )2 case are perfectly acceptable
solutions. ]

C =P4k' — +, 8
2m

At this point we must apply our boundary conditions in
detail. We use

Moo=f (r)(u —v ) '(u Po+v P2 2u—vP, )exp(kt),

&go) ——f2(r)(u —v ) '[(u +v )P~ uv(P—O+P2) J

X exp(kt),

$g &&

—f (r)(u —v ) '(v Po+u P2 —2uvP&) exp(kt),

APPENDIX C

35V 5V 1 2 V

4r 2r 4r 13
+ + —k'+ —p) =0,

and an equation which is the result of

VB 1 —7V+
k Br 2kr

In the L = 1 odd-parity case, we can use (3.31) to elim-
inate po from each of (3.33), yielding

V2B 2V 8
Qr2 r Br

(86)
5RO2 ——4m(u —v ) '(1 —2m/r)' (upo —vp)) exp(kt),

&& ~q
———4m(u —v ) '(1 —2m/~)' (vpo up—~) exp(kt),

where

32Plf2(r) = exp( —r/2m),

the superscript k denotes components in Kruskal coordi-
nates, and angular dependence has been suppressed. Ap-
plying (84) to the first three of these components, we see
that the A,B,C parts of the solutions behave in-
dependently as (u —v) near the future event horizon
and so must vanish for Re k ~0. Furthermore, the B+
part goes as ( u —v) and so it too must vanish. Now we
know from (3.30) that

pp- V kPp+ Pj+ Pi—1/2 1

2m Qp'

p) -—V kP) + (PD+P2)+ P2
—1/2 1

4m BF

near the horizon, and so, from the last two components of
(86), we see that the A+ part behaves as (u —v), while the
C+ part behaves as (u —v) ' near the future event hor-
izon. But due to the constraint (85) we cannot set C+ to
zero without also setting A+ to zero. Thus for all
Rek & 0, there are no regular L = 1 even-parity perturba-
tions.

When I/P=O, the last term in (83) becomes

V2
(Pp —Pp )

2&1

acting on this, so they are consistent. The solution near
the horizon is

1 +k r +Bexp
1

4m
p~ ——A exp —k r

(C2)
Now (3.31) yields po- —p~/4mk near the future event
horizon, and so

5R03-(u —v ) '(1 —2m/r)' ( —u/4mk —v)

)&p~ exp(kt) . (C3)

Thus, regularity on the future event horizon demands
that 8 =0 and A =0 for Rek ~ —1/4m.

k'+ 3V —2V —1

4r
Pp

—V +2V —1

4r
P2+ Pi ——0 . (Dl)

2k V

We may examine the behavior near the horizon, as we
did in Appendix 8 for the I = 1 perturbations, and again
(84) applies. The additional information obtained from
the constraints (3.34) however, which near the horizon be-
come

APPENDIX D

The L =0 even-partiy equations (3.34) and (3.35) may
be shown to be consistent; using the constraints to elim-
inate all P&,P2 derivatives from (3.35) and then the second
equation of (3.35) to eliminate the P& derivatives from the
other two equations, a single algebraic relation results:

and the solutions are as (84) but with C+ ——C
=A+ ——B =0. The same conclusions may be drawn.

When k = 1/2m, the 8+ solutions of (84) no longer ap-
ply, but are replaced by a solution' linear in r; the second
line of (85) changes appropriately. In any case, it is clear
from (86) that such solutions are divergent at the future
horizon.

Thus there are no solutions which are regular at the fu-

I ()kPp+ Pi + P) ——0,
2&7 Qr

Pp+P2
kP)+ + P2 ——0

4m ()y

restricts the solutions to

(D2)
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1
Pp ——P2 ——2 exp —k+ r

2m

1+8+ exp k-
2m

1
P~ ——A exp —k+ r

2m

(D3)

Liouville theory does allow solutions, and such have been
found previously. '

The only physically significant solution is found when
L =0 and I/P=0. 19/m (Ref 7). In this case the first
constraint of (3.34) implies that P~ vanishes if it is not to
diverge. Near the horizon the remaining constraint gives

Pp+P2
P2 ——0,

4m gp

1—B+ exp k — r
2m

but, as in the L =1 even-parity case, ' we see from (86)
that regularity on the future event horizon demands that
A =8+ ——0 for Rek & 0. (Again we find that the
k =1/2m case must be treated separately, but yields simi-
lar results. ) Thus, there are no unstable L =0 perturba-
tions.

APPENDIX E

When k =0 the equations simplify, some of the radial
functions decouple, and the effects of the constraints
change. For odd-parity perturbations, pp and p& decouple
[see (3.18) and (3.33)]. At infinity each will still be ex-
ponential if 1/13& 0, but if- I/P=O they will either diverge
or fall off as a power of r (faster than 1/r). In each case
we still find that po and p~ must go to zero at the boun-
daries if it is not to diverge: Sturm-Liouville theory can
be used to rule out any solutions to (3.18) or (3.33).

For even-parity perturbations, P~ decouples from
Po,Pq [see (3.21), (3.35)]. In the L & 2 case, we again have
either exponential behavior at infinity or power-law
behavior according to whether 1/P=O, and again this al-
lows us to use Sturm-Liouville theory to prohibit solu-
tions. In the L =0 and L =1 cases, however, Sturm-

and the equations (3.35) become

82

a2

82

1 1
Pp — P2 ——0,

Sm 8m

1 1
P2 — Pp ——0,

8m Sm

(E2)

a + I [Pl+ 2 (Po+P2)] —[—Pl+ 2 (Po+P2)] I
1 1

()r 2m

+—
I (Po —Pz)+ [Pi+ —(Po+P»]

+ [—Pi+-,'(Po+P2)] I =o

which for k&0 implies that Po P2, which i—s the only
nondivergent mode, (84) vanishes, while for k =0 this
does not follow.

which together give as the only nondivergent solution
Po = P2 =co—nst. From (86) we see that M oo,
Mo&, M&& are then regular at the future event horizon,
and from (87) that po and p& vanish. Thus in this case the
constraints no longer force nondivergent solutions to van-
ish at the horizon. In particular, the first constraint of
(3.34) in the L =O, k&0 case near the horizon may be
written
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