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A two-stage measuring apparatus (detector and meter) for detecting gravitational waves is
analyzed using a recently developed formalism for continuous observations in quantum mechanics.
Detector and meter are modeled as quantum-mechanical dissipative linear systems; a large class of
couplings between them is considered, so obtaining a unified treatment of various models which
have appeared in the literature. In the simplest cases, explicit expressions for uncertainties in the es-
timate of the gravitational force are obtained. In the general case it is shown how the problem of
the estimation of the force can be treated and general results are given.

I. INTRODUCTION

A detector for gravitational waves can be crudely
described as a harmonic oscillator which couples to the
gravitational field; by monitoring some characteristic of
the oscillator one obtains information about the wave.
The gravitational wave is estimated to behave essentially
as a classical force on the oscillator; however, this force is
so weak that uncertainties in the measurement due to the
Heisenberg principle can completely mask it. The need to
avoid these uncertainties has led to the development of the
concept of “quantum nondemolition (QND) measure-
ment” (see Refs. 1—7 and references contained therein).
Essentially, one chooses properly the measured observ-
ables of the detector in order that from the data obtained
one can deduce the value and the time behavior of the
classical force with an uncertainty as small as desired.

The chosen observables (QND or not) are often continu-
ously monitored, so that we have to treat continuous mea-
surements in quantum mechanics (QM). This is a delicate
concept: only in the framework of a generalized formal-
ism for QM (Refs. 8—12) can continuous observations be
introduced in a well-founded and mathematically con-
sistent way.

A theory of continuous observations, suitable for the
quantum analysis of a gravitational-wave detector, was
developed by our research group in Milan.'*~2! We suc-
ceeded in giving a quantum-mechanical description of a
situation in which some observables (such as position, or
position and momentum, for a particle) are continuously
followed in their time evolution.

The aim of this paper is twofold. First, using the
theory we have developed, I give a unified treatment of
some models for gravitational-wave detection which have
been introduced in the literature. I think that the physical
ideas underlying the QND concept (see, for instance, Ref.
2) are essentially right; I reconsider these models here be-
cause, as questions of principle are raised, the analysis
must be well founded in measurement theory in QM.
Moreover, our formalism allows for an easy treatment of
dissipative phenomena, such as diffusion and damping.

Second, the simple models introduced in the literature
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in connection with gravitational-wave detection provide a
framework for a nontrivial application of the formalism
of continuous observations, so allowing one to test the
possibilities of this theory and to illuminate the underly-
ing physical concepts.

The plan of the paper is as follows.

In Sec. II the formalism of continuous observations in
QM is presented.

In Sec. III we discuss a quantum-mechanical model for
a two-stage measuring apparatus (detector, coupled to the
gravitational force, and meter) and introduce continuous
observations for this model. Detector and meter are treat-
ed as linear dissipative one-dimensional systems and vari-
ous couplings between them are considered. The strategy
is to obtain information about the gravitational force
starting from continuous measurements of the canonical
position and momentum of the meter.

In Sec. IV, in order to test the possibilities of the
continuous-measurement theory, we treat the simplest ver-
sion of the introduced model. Mean values and correla-
tions are calculated and compared with the results of the
usual formulation of QM. Moreover, it is shown how one
can obtain information on the position and momentum of
the detector from measurement of the position and
momentum of the meter.

In Sec. V the problem of the estimation of the gravita-
tional force is considered. First it is shown how this prob-
lem can be handled in the general case; then two particu-
lar schemes for the measuring apparatus are treated in de-
tail and the uncertainties in the estimate of the force are
calculated.

II. CONTINUOUS OBSERVATIONS
IN QUANTUM MECHANICS

In this section we give an account of the formalism of
continuous observations in QM. We shall try to pay more
attention to physical ideas than to mathematical rigor;
however, because notions from different fields, such as
open system theory, measurement theory in QM, and gen-
eralized stochastic processes, are involved, the exposition
of the mathematical formalism is lengthy. A full presen-
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tation of continuous measurements can be found in Ref.
15.

The most general framework for treating continuously
measured quantities is that of genmeralized stochastic pro-
cesses (GSP’s),?? which turns out to be essential for intro-
ducing continuous measurements in QM. Let us denote
by

z(t)=(z,(2),z5(8), . . . ,2,(2))

the set of observables that are continuously measured. As
any measuring apparatus has a certain “inertia” in its
response, in general, its output will give only “time aver-
ages” of z(z) of the form

z,=3 [dthj(t)z;(0),

j=1

(2.1

where the test functions
h(t)=(h(2), ..., h,(2))

belong to a suitable function space E.

In this context, a physically meaningful question is the
following: given a set of test functions h''(z), ..., h*)z),
what is the probability that the s-tuple of values of the
corresponding stochastic variables z,(), .. .,z, belongs
to a Borel subset B of R*? More precisely, we take for E
the nuclear space of n-component, real, C® functions on
R with compact support and denote by E’ the topological
dual space of E. The subsets of E’ of the form

c(h'V, ... ,b¥;B)={z€E"(z,u),...,2,0»)EB}  (2.2)

(B is a Borel set in R *) are called cylinder sets. Let = be
the o algebra generated by the cylinder sets. Then the
continuous observation is described by a probability mea-
sure P(N |p), N €ZX [for instance, N can be the set (2.2)],
which gives the probability of the result zEN; p is a sym-
bol which denotes how the system is prepared.

A GSP is uniquely determined by its characteristic
functional L([@(t)]|p),?? which is defined as the mean
value of exp(iz,) with respect to the probability measure
P(-|p). Vice versa, probabilities can be obtained from
the characteristic functional by taking the Fourier
transform

P(C('Y, ..., n*;B)|p)

1 -
—_—_fB dsz(zv)s fdskexp —i Y k,z,

}s: k. h'7(2)

r=1

XL

p ] . (2.3)

Moreover, the moments of the variables (2.1) can be ob-
tained directly from the characteristic functional by func-
tional differentiation,

<Zh(1)zh(2) T Zh(s))

n
= 3 [dt-o-dhPa) - mo)
jl ..... js=1

X(Zjl(tl)' "ij(ts)> ) (243.)

(zj](tl). : 'st(ts))

88

=(—1i) 8;,(11) - - By (1,

) L([e]|p) (2.4b)

=0
The prototype of a GSP is white noise, whose charac-
teristic functional is
L. [e¢]l=exp [——;—F f dt ¢*(1) ], '>0; (2.5)

it is a zero-mean Gaussian GSP with a two-time correla-
tion function given by

([z()—(z())][z(t")—{z("))])=T8(t —¢') .

Many manipulations, such as linear transformations on
stochastic variables, are easily made at the level of the
characteristic functional. For instance, consider a GSP
described by the characteristic functional L ([¢]]|p); z(¢)
is the continuously observed quantity. Suppose we are in-
terested in the probabilities for the derivative z(z); we
denote by 7(¢) the generic test function associated with
z(t). Recalling that test functions vanish with all their
derivatives at the ends of the interval of measurement, we
can write

[ drqi=— [ deqpoz(r) .

By taking @(¢)= —1)(¢) we obtain the characteristic func-
tional L( - - - ) for z(2), i.e.,

L([n)]|p)=L([—0(D]|p) ;

then probabilities can be obtained from L(---) by Eq.
(2.3). Transformations of this kind will be used in the fol-
lowing sections.

Now let us consider quantum mechanics. In the most
general formulation,®~!'?> measurements are described by
operation-valued measures. Let T (4) be the Banach space
of trace class operators on the Hilbert space 4 of the sys-
tem; T'(4) is the space spanned by statistical operators.
Let = be a o algebra on a space Q (for instance, for s
real-valued observables we take =R® and X is the o
algebra of Borel sets). An operation-valued measure
F(N), NEZ, is a set of linear operators in T (£), with
the following properties: (i) F(N) is o additive on =; (ii)
F(N) is completely positive; and (iii) # (L) is trace
preserving (normalization), i.e.,

Ti[.7(Q)X]=Tr(X), VXET ().

(2.6)

@

(2.8)

(2.9)

Then, for the system prepared in the state p (statistical
operator), the probability of obtaining the result zEN (z
denotes the measured quantities) is given by

P(N |p)=Tt[F(N)p] . (2.10)

Moreover, operation-valued measures give also the
change of the state due to the measurement: indeed

p'=F(NP/P(N |p) 2.11)

is the state of the system after the measurement, when the
result was z€ N. In this respect operations give a general-
ization of the Von Neumann reduction postulate. The
usual scheme of QM (observables represented by self-
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adjoint operators , . .-.) can be restated in the language of
operations and represents only a particular kind of mea-
surement in QM. '

Properties (i)—(iii) guarantee that Eq. (2.10) defines a
probability measure on 2 (a positive, o additive, normal-
ized measure) and that p’' [Eq. (2.11)] is a statistical
operator (a self-adjoint, positive operator with trace one).
In particular, property (ii) implies the positivity of quanti-
ties (2.10) and (2.11); however, complete positivity is
mathematically more restrictive than positivity of (2.10)
and (2.11). This condition is now largely used in axiomat-
ic open system theory?* and measurement theory'"!? and
can be justified by physical considerations.'"?* As in the
following, I have no need of using explicitly complete
positivity, I refer to the existing literature for its defini-
tion (see, for instance, Ref. 23).

Using operations and the language of GSP’s, continu-
ous observations can be introduced in QM, avoiding prob-
lems such as the “Zeno paradox.”?* For any time interval
(t1,t;) of measurement, we assume there exists an
operation-valued measure 7 (1,,¢;;N), NEZ, ;) where

2(1,,1,) is the sub-o-algebra in E’ generated by the cylinder

sets (2.2) with the restriction that the test functions hY(¢)
have support only in the interval (¢;,¢,). When at time ¢,
the system is prepared in the state p, the quantity

P(N |p,t1)=Tr[?(t2,Zl;N)ﬁ], NEE(t]’tZ) N (2.12)

is the probability of finding the result zEN in the mea-
surement interval (7,,7,) and

p'=F (t5,t;N)p/P(N | p,t1) (2.13)

is the state at time ¢,, conditioned upon the result zEN.

In order to have a consistent description when different
measurement intervals are considered, we must also re-
quire the following property:

.97(t3,12,M)3“(t2,tl;N):f(t3,t1;MﬂN) ’

VNEE(,],,Z), VMEE(tZ,t3); 11<t2<t3 . (214)

Let us explain the meaning of this condition. If we intro-
duce the conditional probability
P(MNN |p,t;)
P(N |p,ty)
_ Tr[F (23,6 ;M NN)p]

== >

Tr[ .7 (t5,t1;N)p]

P(M |N;p,t;)=

(2.15)

the condition (2.14) allows us to write
P(M |N;p,t;)=P(M |p',t)=Tr[F (t3,t;;M)Pp'] ,
(2.16)

where the state p’ is given by Eq. (2.13). Roughly speak-
ing, Eq. (2.14) means that the description of measure-
ments referring to the time interval (#,,z3) is the same as
the description obtained by considering measurements in
the interval (¢,,¢,) followed by measurements in the inter-
val ( ty,1l3 )

In this setup measurement and dynamics are intimately
connected. Indeed, consider the operator

@(tz,t])E?(tz,tl;E,) . (2.17)

To take in & (- - - ) the total set E’' means that no regis-
tration of the result of the measurement is made in the in-
terval (7,2,); here E’, the dual of the function space E,
plays the same role as € in the general case. By property
(iii) we have

P(E'|p,t;)=1, (2.18)
and, so, by Eq. (2.13),
ﬁ\(tz)z@(tz,tl)ﬁ (2.19)

is the state at time ¢,, when no selection is made in the in-
terval (¢,¢,). Therefore, Eq. (2.17) gives the dynamics of
the system. We assume %(t,¢y) to satisfy an evolution
equation

%%(t,to)zf(t)@(t,to) , (2.20a)
%( to,to)zl 5 (220b)

where the generator .#(¢) is a linear operator in T (4)
with the structure

; A 1 m A A '
L(t)= —-é[ﬂm,-]—;—z S D, [0,.[0,.°]1]

rr'=1

—;’-ﬁ—rélE"'[Qn{le] , 2.21)
Ho=H1', 0,=0!, 2.22)
D, =D,,ER, E,=—E,,ER, (2.23)
D+iAE>O0 . (2.24)

Here, [2,@]:23—32, {2,3} =AB +BA4 and we have
introduced the matrices

D=Dy)msms E=Ep)mxm - (2.25)

The argument ¢ in H(t) means an explicit time depen-
dence (we are working in the Schrodinger picture).
Equation (2.20) is the operator form of a generic quan-
tum master equation. The expression (2.21) for .Z(¢) is
equivalent to the structure studied by Lindblad,?® which is
the most general one in the case of bounded operators;
moreover, all known master equations can be rewritten in
this form. In principle, one could consider a unitary
dynamics for the system and the external world; then, by
suitable approximations, one obtains the master equation
(2.20a) for the reduced dynamics of the system; the gen-
erator .Z’(¢) turns out to have the structure (2.21). In par-
ticular, the explicit expressions for the operators @, and
the matrices D and E depend on the interaction between
the system and the external world. Conditions
(2.22)—(2.24) guarantee that % (t,t,) transforms statistical
operators into statistical operators; in particular, Eq.
(2.24) guarantees complete positivity of the dynamics.
Roughly speaking, the first term on the right-hand side
of Eq. (2.21) gives the reversible (Hamiltonian) part of the
dynamics, while the second and the third terms give the
dissipative part (they can describe diffusion, damping,
etc.); however, note that the splitting between Hamiltoni-
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an and dissipative parts is, in general, not unique.”® In
our case the dissipative part is due to the interaction with
some reservoir and with the measuring apparatus itself;
however, it is not possible to distinguish within the for-
malism the contributions of these two sources of noise. In
the following we shall see that if dissipation is not present,
no continuous measurement is possible.

Given the dynamics, we have to introduce explicitly the
measurement. Technically, it is useful to work with the
characteristic operator ¥ (t,,t;;[¢]) (the analog of the
characteristic functional of a GSP) defined as the mean
value of exp(iz,) with respect to the operation-valued
measure .7 (t,,t; *), i.e.,

y(tz,tl;[qp])EfE,exp f dt z(1) (1) | F(ty,t1;dz) ,
(2.26)
where dz means an infinitesimal set in E’. The charac-

teristic operator is the functional Fourier transform of the
measure ¥ (£5,¢1; *).

First, for ¢=0 the integral in Eq. (2.26) gives
F(t,,t1;E’), so that, by Eq. (2.17), we obtain
U (t,ty) =G (1,t9;[0]) . (2.27

Moreover, just as the trace of an operation-valued mea-
sure applied to a state p gives probabilities, the trace of
% (--+) applied to p gives the characteristic functional of a
GSP; in particular, the quantity .

L([:p]lp)EtliT Tr{ 9 (1,0;[p]
is the characteristic functional corresponding to a con-
tinuous measurement in the interval (0, + o0 ). Probabili-
ties (2.12), which are the quantities containing all the
physical information, are obtained from L ([@]]|p) via
Eq. (2.3); moments are directly given by Egs. (2.4).

For a large class of continuous observations the charac-
teristic operator is determined by the differential equa-

tion!3—1°

2 S (5l =H (13907 (11051 @) (2.29)
with the initial condition

D (totos[@])=1 (230

The generator % (z;¢(t)) is a linear operator in T(4) and
must be such that the probabilities constructed via Eqgs.
(2.28) and (2.3) are actually positive (and normalized).
The structure of this generator determines the type of the
measurement. Essentially, it can contain a “Poisson” and
a “Gaussian” contribution;?! the pure Poisson case corre-
sponds to the counting processes studied by Davies and
Srinivas,”>?> while the Gaussian case has been studied in
Refs. 13 and 15 and is suitable for observables with con-
tinuous spectra. As in the following we shall treat con-
tinuous measurements of position and momentum of an
oscillator, here we consider only the Gaussian case. The
generator for this case has been found in Refs. 13—15,
starting from repeated imprecise measurements and then
taking the limit to a continuous sequence of measure-

) (2.28)

ments in a suitable way. We have

4+ DAL

j—l

F(t;p(t))=L

n A
+“%:S[A4:]¢J

2 @ ()l

iLhj=1

u¢b 1,

(2.31)

where .Z(t) is the generator of the dynamics introduced
above [it must appear in % (t,@) because of Eq. (2.27)]
and

= ﬁ 0,C,;, j=1,...,n (2.32)
1v1j=,§=‘,1 OM,, j=1,...,n (2.33)
Fj=T;ER, C;ER, M,;ER, (2.34)
I'>0, detI' >0, (2.35)
D+i#E—(C+iM)I~/(CcT—iMT)>0. (2.36)

Here we have introduced the matrices
I'=(Tij)uxn » (2.37a)
C=(Cj)mxns M=(M;))mxn; (2.37b)

the superscript 7" denotes the transpose.

As we shall see, the operators éj are associated with
the continuously measured quantities so that Eq. (2.32)
says that these quantmes must be linear combinations of
the operators Q, appearing in the dissipative part of
ZL(t). Mathematically, there is no relation between n
(number of measured quantities) and m (number of opera-
tors appearing in the dissipative part of the dynamics).
However, in the physically interesting cases we expect to
have m >n (m =n when dissipation is wholly due to the
measurement). Another link between the measurement
procedure and dissipation is given by Eq. (2.36), which is
the mathematical condition that guarantees the positivity
of the probabilities one obtains by Egs. (2.28) and (2.3),
for any initial state p. If this relation is violated, we do
not have true probabilities and, therefore, a meaningful
theory.

Now, the characteristic operator is only a mathematical
tool without a direct physical meaning; in order to clarify
these considerations and to gain insight into the role of
the various terms introduced above, we must consider
physically meaningful quantities such as mean values and
correlations. Moments can be easily calculated by using
Egs. (2.28) and (2.4) and the formal solution of Eq. (2.29),

t
G (11,10l @D)=Texp | [, "di 7 (t39(0) (2.38)
here T denotes the time-ordered product.
For mean values we obtain
(z;(0))=Tr[C;p(0)] , (2.39)

where



PO=2(1,0)p . (2.40)

We can interpret Eq. (2.39) by saying that the measured
observables are associated with the self-adjoint operators
c ;> this equatio’r\l is the standard quantum formula for the
mean value of C; at time ¢ when the dynamics is given by

% (t,0). However, recall that %(¢,0) contains also a per-
]
([zj,(t1) =<2, (£1)) ][2;,(£2) = {2;,(£2))])
hZ
= 11128(”

+%9(t1—t2)[Tr([C

++6(t, —t,)[as above with L=t j1e2j,],

where
0 for t<0,
6(t)= {5 for t=0, (2.42)
1 for t>0.

The first term in Eq. (2.41) is a white-noise contribution
[cf. Eq. (2.6)]; it can be interpreted as an internal noise of
the measuring apparatus affecting the accuracy of the
measurement. This contribution is essentially due to con-
dition (2.14); we can say that this condition implies the
internal noise of the measuring apparatus to be white.
When this is not a reasonable approximation for the inter-
nal noise of the measuring apparatus, Eq. (2.14) cannot
hold and some “memory” of the past history of the sys-
tem must be introduced. In this case an alternative way
to proceed is to retain Eq. (2.14), but to include in the
“system” the part of the measuring apparatus responsible

J

(AzP= 3 IR
Jpia=1
_ ﬁz + o T
== J, dra@)Th@)
t
+ 2 f dt, fola’tzhjl(tl)hjz(tz)[Tr([le—
Jpiz=1

—1i Tr(éjl@(tl,tz)[

If we wanted to have the variances of the nonsmoothed
variables, we would let the function h(#) go to a & func-
tion, but in this limit the first term goes to infinity. The
stochastic process is a true generalized one, and only the
time smoothed variables have finite variances. If we con-
sider the time averages

lf””rd tz;(t),

s
we must take

( (t1)>]@ tl,tz {6]2-—<Z]2(t2)>,ﬁ(t2)} )-—lTr(/C\'“‘?/(tl,tz)[
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turbatlon due to the measuring apparatus. Note that for-
mally C can be any self-adjoint _operator; however, it is
not true that for any observable CI the Gaussian genera-
tor (2.31) is a reasonable choice. For instance, for an ob-
servable such as the number of particles in a certain re-
gion a generator of the “Poisson” type must be used.

For two-time correlation functions we have

M;,p(12)]]

(2.41)

for the “non-Markovian” behavior.

The terms multiplying the step function also require
some discussion. The first is a kind of “quantum sym-
metrized correlation function” sometimes introduced in
the literature at a phenomenological level (see for instance
Ref. 26) and contains all the internal fluctuations of the
measured system. The second term gives a correction to
these fluctuations due to the particular measuring pro-
cedure adopted. To change AAlj does not change the
dynamics or the observed quantities C what changes is
the way in which the C s are measured The operators
M can be taken to vamsh however, the “best” measuring
procedure is in some sense the one characterized by the
equality sign in Eq. (2.36). In this case, if Es40, then
M-£0 and the operators M i do not vanish.

Finally, let us consider the variances of the time
smoothed variables (2.1):

dtldtzhjl(tg )<[Zj1(t1)—<zf1(t1 ))][ij(tz)—<Zj2(t2)>])hj2(t2)

(2, ()% (11,6){C;, — (2, (12)),p(2,)}

M, ,p(t2)D] . (2.43)

hj(6)=8;X g7, ,()/T,
where X, )(t) is the characteristic function of the interval
(a,b). Then, for small 7, we obtain

1 r7+7
A;f7 dt z;(1)

2
ﬁ C Y 125(F
] = Ty +Tr{[C; —(z;(7)) ]?p(7)}

—éTr{[é,-,ﬁi]ﬁ(T)} .49
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The first term is due to the white noise, the second is the
usual quantum-mechanical variance, and the third is a
further contribution (not necessarily positive) due to the
measuring procedure, as seen above. Note that for very
small 7 the first term in Eq. (2.44) diverges; this means
that we always need a finite time of measurement in order
to collect sufficient information about the measured quan-
tity.

About the first term in Eq. (2.43), note also that if we
have no dissipation (D=0,E=0), by Eq. (2.36) this term
grows to infinity and we have no sensible measurement.
In other words we can say that the coupling to the
measuring apparatus gives a dissipative contribution to
the dynamics: the more precise the continuous measure-
ment, the more dissipative the dynamics.

III. THE MODEL
FOR THE GRAVITATIONAL-WAVE DETECTOR

A gravitational-wave detector can be schematized as a
harmonic oscillator (for instance, the fundamental acous-
tic mode of a massive bar) interacting with the gravita-
tional field. The dynamics of such systems, when dissipa-
tion is included, was studied in a coherent quantum-
mechanical way by Lindblad,?” and in Ref. 14 1 applied to
these linear models the theory of continuous measure-
ments. A preliminary analysis of continuous measure-
ments (including measurement of QND observables) on a
gravitational-wave detector was given in Ref. 18.

As stressed in Ref. 2, in order to have a more complete
view of the problem, it is useful to include in the quantum
analysis also the first stage of the measuring apparatus
(the meter®*). Our aim is to apply the formalism of con-
tinuous observations to some observables of the meter and
to deduce from this measurement information about ob-
servables of the detector and ultimately about the gravita-
tional force.

The meter is essentially an electrical circuit. This is a
very complex system from a quantum point of view.
However, in some physically interesting cases (see, for in-
stance, Ref. 2), it can be schematized as a generic quan-
tum one-dimensional linear system. Even in more compli-
cated cases, this schematization can give a qualitative idea
of the effects induced by the meter into the results of the
measurement.

Hence, we have two coupled linear systems: system 1 is
the detector, system 2 is the meter. The generators of the
dynamics for these two systems, when no coupling is

present, are given by?” 1418
i 25 l A A
f(k): - Z[H (k):'] - 4ﬁ2 Difjk)[Q i’k})[Q ;'k)a.]]
i7/k A PN
'—_Eeij[Qg'k)’{Q}k)’.}]) k:1’2 ’ 3.1)
where
0P=2W, 9P =p® (3.2)

(£® and p ¥ are the canonical position and momentum
operators for the two systems),

ﬁ(k)z_;_@;k)Bi(jk)’Q‘-(ik) , (3.3)

Bi;k)=B}ik)eR’ Dl_(jk):DJ(ik)ER’ ’}/kER , (3.4)
0 1

€=1_1 0" (3.5)

D 4 ifiy,e>0. (3.6)

In these equations summation (from one to two) over re-
peated lower indices is understood (elsewhere we shall use
also matrix notation). No summation convention is ap-
plied to the upper indices, which distinguish the detector
and the meter.

The dynamics of a system k generated by an operator
Z® of the form (3.1) is extensively studied in Ref. 27.
Let us recall some results. The first term in Eq. (3.1)
(Hamiltonian part) gives the main features of the motion
of the system. We set

i =(detB®)172 (3.7)

Then, if detB*® >0, Wy 1S a positive real number and, in
this case, the system k has an oscillatory behavior with
angular frequency wy. A simple choice for the matrices
B'® is, for instance,

mka)k2 0

(k) __
BY=1 0 1/m

, k=12. (3.8)

The second term in Eq. (3.1) gives diffusion (both for po-
sition and momentum); the matrix D'*’ has the same role
as the diffusion matrix in a classical Fokker-Planck equa-
tion. This does not mean that the diffusion here has a
classical origin; it can be due to purely quantum phenom-
ena. The third term gives damping (in the physical case
Yk >0). Condition (3.6), which is equivalent to

D¥ >0, DY >0, detD® >#y,?, (3.9)

is needed to ensure that the dynamics transforms statisti-
cal operators into statistical operators. It is a mathemati-
cal formulation of the well-known fact that in QM we
cannot have damping without diffusion.

Now we introduce the interaction of system 1 with the
gravitational wave (treated as a classical external force).
This interaction is described by the term

L= /01011, (3.102)
where
f(t)=f(t)u; (3.10b)

f(t) is the unknown gravitational force and u describes
the coupling to canonical position and momentum. If the
gravitational wave couples only to position (as it does
when the detector is a mechanical oscillator), we have
U= 1, Uy =0.

Let us introduce now a generic quadratic, possibly
time-dependent interaction between the two systems

i A A
Z1)=— M0 4,007, 1, (3.11)
where -A(?) is a real 2 X 2 matrix.

Interesting examples of interactions are given by the
following choices for the interaction matrix A(¢):
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Al)=A (3.12)
A(t)=exp(BVer)A , (3.13)
A(r)=g(n)A . (3.14)

These interactions have been introduced in the literature
in connection with gravitational-wave detection; the struc-
ture of the matrix A(#) determines the essential features
of the measurement. Matrix (3.12) describes a time-
independent coupling; this is the standard way of operat-
ing existing gravitational-wave detectors. The measure-
ment scheme with interaction (3.12) is called “amplitude
and phase” measurement.>® Matrix (3.13), when
det A=0, describes the so-called ‘“back action evading”
coupling.? This name comes from the fact that the
behavior of the observable of system 1 entering the cou-
pling is not affected by the action of system 2. This cou-
pling, in principle, allows a precise estimation of the
force; however, it requires unrealizable (today) com-
ponents. The model of Eq. (3.16) of Ref. 2 is of this kind;
the matrices B'*) are given by Eq. (3.8) with w,=0 and
the interaction matrix by Eq. (3.13) with

10

00 (3.15)

The interaction (3.14), with a suitable g (¢), can give better
results than amplitude and phase measurements; more-
over, it is experimentally realizable and a prototype has
been constructed.” For the model proposed in Appendix
D of Ref. 2, A(t) is given by Eq. (3.14) with

(3.16)

B"Y,B? are given by Eq. (3.8) with w,=0 and A by Eq.
(3.15). For the model of Eq. (3) of Ref. 3 A(z) is given by
Eq. (3.14) with A given by Eq. (3.15) and

g(t)=coswt ;

g (t)=cosw;t cosw,t , (3.17)

the matrices B'¥ are given by Eq. (3.8). Also the models
proposed in Ref. 4 could be translated into our notation
with some more complicated interaction matrix A(¢).
Dissipation is considered in Ref. 3, where an external
source of white noise is added to the equations of motion,
and in Ref. 4, where the same treatment as ours is used
with
|

B= f dt !zf(z

k=1

and the functions a'®’
tial equations

(1) are the solutions of the differen-

jta“)(t)= —”2—‘+B“>e aV(5)+ AA(Dea®(r),  (3.25)
%am(t): %—{—Bme a?()+ 1A Tea V(1) — (1)
(3.26)

2
l 2 a(k) Z)T D(k) (k)(t)

D(i) AR Vi B(t)

w;

(3.18)

Summing up, the generator for the dynamics of the two
coupled systems (detector plus meter) is

L=V VL 7 )+ L (1), (3.19)

where the various terms are given by Egs. (3.1)—(3.6),
(3.10), and (3.11).

Now we have to introduce the continuous observation.
Here we assume that the measured observables are the po-
sition and momentum of system 2 (to choose some linear
combination of them gives no more generality). From
this measurement we want to deduce information about
the behavior of system 1 and ultimately about the gravita-
tional force. From the results of the previous section we
have that the generator for the characteristic operator is
given by
L) +— N++[0 P, 1Mp;(0)

F(t;p(t))= {Q(Z) 1o

- %?,(I)F,J¢J(t) . (3.20)
The 22 matrix I is real, symmetric, and invertible and
M is a real 2 X2 matrix. Moreover, condition (2.36) now
becomes

D? +itiy,e—(1+iM)C~H(1—iM") >0 . (3.21)

The matrix C appearing in Egs. (2.32) and (2.36) here is
taken to be the identity, so that the measured quantities
are the @ {295 as wanted [cf. Eq. (2.39) and the following
discussion].

In Appendix A we show how to calculate the charac-
teristic functional (2.28) (which is sufficient for recon-
structing probabilities) for the model we have introduced.
Here we give only the final results. The characteristic

functional can be written as
L([@]]|p)=efTr{W(a(0))p} , (3.22)

where p is the initial state at time ¢ =0, W(a) is the Weyl
operator

ﬁ’(a)zexp za,”Q,”+z (2 Qﬁz)) (3.23)
the quantity /3 is given by
hZ
—a'?(1)TeMe(t)— Tqp(:)Trqp(t) , (3.24)
I
with the final conditions
®(+00)=0. (3.27)

In the Weyl operator in Eq. (3.22) the functions a'¥(¢) are
evaluated at r =0. ‘
The trace appearing in Eq. (3.22) can be explicitly cal-
culated, for instance, in the case of “Gaussian” states.!®!*
Coherent states and squeezed states are in this class.
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IV. MEAN VALUES AND CORRELATIONS

In this section we want to see what kind of physical
picture emerges from the continuous-observation formal-
ism. Here we are interested primarily in testing the
theory we have developed and not in problems connected
with gravitational-wave detection. For this purpose we do
not need all aspects of the general model outlined in Sec.
III; therefore, we specialize to the situation in which no
explicitly time-dependent term is present, and we take

f(1)=0, A(r)=A. 4.1)

In order to compare our results with the usual formula-
tion of QM, we introduce the quantities

o) =Tr[Q Fp(n], (4.2)
o)=L Tr[ {0 P -0/P1),0 -0 ())pn] . (4.3)
Recalling the definitions of the previous section, i.e.,

p)=%(t,0p=exp[(LV+ LD+ ¥ )P, (4.4)
OR—_z0 HP_ph @.5).

we see that Eq. (4.2) gives mean values for position and
momentum of the two systems, while Eq. (4.3) defines
what can be called a covariance matrix. Note that o} 22’(t)
for instance, gives the usual variance for an instantaneous
measurement of X ' and ¢3?(¢) the usual variance for
P ®. Obviously, the matrices (4.3) satisfy the Heisenberg

principle
deto'*¥(1) > # /4 . 4.6)

However, these variances refer to distinct measurements
of position and momentum, not to a joint measurement;
joint measurements of noncommuting observables can be
introduced in QM only by using the general framework
from which we developed the continuous-observation for-
malism. A full treatment of joint instantaneous measure-
ments of position and momentum is given in Ref. 10.

The quantities (4.2) and (4.3) can be explicitly calculat-
ed (see Appendix B). The mean values (4.2) satisfy the
differential equations

%Q(”(” 6.B(l)_ﬁ Q(l)(t)—i—}\.GAQ(Z)(t) (4.7a)
d ~2) @_ Y2 |~@ T
EQ ()= |eB*”'—— |Q'“ () +AeA'Q (4.7b)
We introduce the 4 X 4 matrices
eBV_ 1L A€A
2
G= R (4.8a)
reAT eB@_ 12
2
R(#)=exp(Gt) ; (4.8b)

then, using the 2 X2 blocks R%™)(¢) of R(z), the solution
of Egs. (4.7) can be written as

2
Q¥ =3 R™(1)Q¥1) . 4.9)

s=1

With the same notation the covariance matrix (4.3) be-
comes

2
z R(kr)( t)a,(rl)(o)R(sl)( t)T

rl=1

a.(ks)(t):

P 2
+5 [ dt" 3 R*t —1)eD TRt —1)T

r=1
(4.10)
When all the eigenvalues of the matrix (4.8a) have a

negative real part, the system exhibits approach to equili-
brium: for any initial state

im p(0)=p, 4.11)
t—+ o

where pq is the Gaussian state defined by mean values

";’_ lim Q*¥(1)=0 (4.12)
and covariance matrix
o= lim o)1)
—+o
= 2 f dt R*¥(1)eDVe™R(1)T . (4.13)
r=1
The matrices aé’;” are equivalently given by the equation
eDVeT 0
Gow+0uG'=—7| p@er|> @142
where G is given by Eq. (4.8a) and
( ‘1] D gl ‘1]2>
Oeq= U(eél) a_(eéz) (4.14b)

Consider now the continuous observation, first in the
simple case of a single oscillator. This situation is
described by the characteristic functional (3.22)—(3.27)
with A=0 (no interaction between the two systems). The
continuously measured observables are the position and
momentum of system 2:

2 () =x2(1), zy()=p2(1) . (4.15)

The solution of Egs. (3.25) and (3.26) (for A=0) is
given by [cf. Egs. (B13)]

+
a(Z)(t)zft dt/R(ZZ)(t'__t)T‘p(tr)’ a(])(l)=0 (4.16)
with
R*(t)=exp (¢ eB(Z’—%
- sinw,t
1at/2 cosm,t +eBP— | | (4.17a)
25
22=detB? . (4.17b)

Then, by Egs. (2.4) we obtain
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(z()) =Q?(1)=R?(1)Q?(0) ,

([z(ty)—(z(¢1)) [ z(25)

+06(t,—1t;)

where now we have

0'(22)(t)=R(22)(I)0(22)(0)R

2
—A{zt,)) 1) = %—I‘S(t, —15)+6(t; — 1, )R, —1,)

t
@)+ 5 [ dt'RPD(1)eD PR (1) .

(4.18a)

0.(22)(t2)+ _g_eM
0(22)(t1)+gMTeT R2 ¢, —t)7, (4.18b)
(4.19)

The mean values (4.18a) coincide with the quantities Q'?)(¢) [Egs. (4.2) and (4.9) for A=0] as stated by the general re-
sult (2.39). In the correlations (4.18b) we can identify the following contributions:

(1) the term containing the & function, which gives the unavoidable internal white noise of the measuring apparatus;

(2) the terms containing the matrix 0'??(¢), which give the usual internal fluctuations of the system;

(3) the terms containing the matrix M, which can be interpreted as a correction to the covariance matrix due to the

way the measurement is performed.

The variances (2.43) for the time smoothed variables become now

# e +
(AzyP="= [77 dth(@)Th()+2 [

To gain insight into the meaning of this equation, consid-
er the time average of position in the interval (7,7 +7) for
the case of a free particle, i.e., choose

h (t)=X(7?+,r(t)/T, hz(t):o (4.21)
B?¥=B%=0, BY=1/m, y,=0. (4.22)
With this choice Eq. (4.20) gives
- 2
A— [Tarx 1) | =A2D)+42, (4.23a)
T t
where
A= ‘22’(t)+ oD+ r S0 BT, (4.23b)
4m?
# # h T 2
Aj?= E;‘F11+'2‘M21—6—mM11+gDzz—§7;7—1D12
2
+ Dll . (4.23¢)

10m

We have written the variance (4.23a) as a sum of two
terms: the first is due to the usual covariance matrix o??
at time 7, the second is due to diffusion and to the charac-
teristics of the measuring apparatus. Once the averaging
interval (7,74 7) has been fixed, one can ask what is the
best measuring procedure. It is possible to minimize the
variance (4.23a) under the constraints (4.6) and (3.21); for
T=0 the minimum is reached for

6
F“:W”—n—ﬁ‘, F12=0, 1/F22=0, (4.243.)
My =(2)2, My=M, =0, My,,=0, (4.24b)
1/ P
Dy=6|3r J L"TZ— D, =0, Dy=0, (4.24c)
<€2’(0)=%, s B(0)=0, o(0)=T" (4.24d)
T

“dty [ deyh(e) ROz, 1)
tJo 2 1 1 2

0(22)(t2)+1;—eM h(t) . (4.20)
[
In this case we obtain
1/2
2oy T a1 (31 #r AT
AA(0)= o’ Ayr= 3155 om ~0.83 o (4.25)

Therefore, the two contributions are of the same order of
magnitude and the variance can be made as small as one
wants by taking 7 sufficiently small. However, if for a
small 7 we make the choice (4.24) for the measuring pro-
cedure and the initial conditions, then A,X(7) grows rapid-
ly in time; in fact, from Eq. (4.19) we have

o0 =03(0) 4 0\ (0)r +0(0)-— +D‘” S
m 6m
(4.26a)
2
P (=0 P 0 +o 0L +DF-L-, (4.26b)
m 4dm
(222)(t) 0(2%‘2)(0)+_;_D(121)t , (4.260)

and from Egs. (4.24c¢), (4.24d), and (4.23b) we obtain

1/2
_ ™ | C3 5, t 3 5 t?
AD =" L1424/ 2L 2|2 L
A7) m[2+(+4\/31) + T =
5 1/2t3
= Ll 4.27
NHE e

Another interesting example is that of a harmonic oscil-
lator decaying to its ground state; it is described by the
master equation

)= —iwida "a,pu +yapna '~ 22 1ata po)
(4.28a)
0,>0, ¥,>0. (4.28b)

If we introduce position and momentum by the equations
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ol IR CANE
2m2w2
1/2 (4.29)
fim,w
pP=i 2“ @'—a), my>o0,

we can write the generator of the evolution operator in the
form (3.1)—(3.6), with

maw,? 0

0 1/m2

D2 — iy, B2
b a)2

B?= (4.30)

As det(D'? +i#y,e)=0, Eq. (3.21) cannot be satisfied:
this means that we cannot have a joint measurement of
position and momentum when, under measurement, the
dynamics is given by Eq. (4.28a). Vice versa, we can say
that the interaction with the measuring apparatus for a
joint measurement of x‘®(z) and p‘®(#) modifies the
dynamics, and we cannot have decay to a pure state but
only to a mixed state.

However, if we go back to the general formalism of Sec.
II, we see that we can introduce continuous measurement
]
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of x'?)(¢) alone. Using the results we have obtained up to
now, we modify the diffusion matrix by taking

ﬁ?’zmza)zz 0
D?= p (4.31)
Y2
0 ——+€
myw,
and choose
l/ﬁj/zm 2007 0
= 4.32
0 1/€ ]’ ( )
mM=| o 0 4.33)
—1/m 2007 0

Then, to recover the dynamics (4.28a), we take into ac-
count only the results for the measurement of x‘?(¢) and
let € go to zero. Note that the matrices D? I, and M
satisfy Eq. (3.21) with the equality sign; this means that
the noise is the minimum compatible with the given
dynamics.

For mean values and correlations we obtain

: _ sinw,t
<x(2)(t)>=e 721/2 COSﬂ)zt Q(IZ)(O)+__2_Q(22)(O) , (434)
myw;
([X(Z)(tl)—<x(2)(tl)>][x(2)(t2)—<x(2)(t2)>])
%
= 8(t;—t
2mywyy) (6 —t2)
Y2 22) # . (22)
+0(t;—ty)exp | ———(t;—1;) | {coswy(t;—1t,) |07 (ty)— sinw,(t; —1,) 015 (¢;)
2 2m2(o2 myw;
Y2 .
+6(t, —t)exp ——2—(t2—t1) (as above with t;<t,) , (4.35)
where
.2 .
_ sin“w,t sinw,t _
(=" |0%(0)cos?w,t +053(0)- 7 22 o32(0) Z coswst | + (1—e™ 7, (4.36a)
my w, myw-, 2m2w2
e[ [00)
0(1222)(t)=e 72 o —mzwza(IZIZ)(O) sinw,t cosw,t —|—0(1222)(0)(cos2a>2t —sinwyt) | . (4.36b)
2002
I
At equilibrium we have (x2, )x(Z)(t2)>eq= FY——n 8(t,—1,)
20272
c@= lim %)= # ,
ot oo 2m 0, (eq)_l
4.37) =0 75“1 —t,) . (4.39)
0(le2q>= lim 0'(,222)(t)=0 , ‘ 1 2
>+ Note that the contribution 5 #M,, = —7#/2m,w, cancels
and Eqgs. (4.34) and (4.35) become exactly the contribution of %% in the terms containing
the step function so that only the term containing the &
(xPA2))eq=0, (4.38)  function survives.
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If we consider the time average of x‘?)(¢), we obtain
2
sl gy | AL a0
T 2m2a)2 YT

This equation gives the uncertainty in our knowledge of
the random variable

1 -
; f?t-i-fdt

as obtained through the considered measuring procedure.
For 7 <<1/y, we have a very big variance [cf. Eq. (2.44)]:
the measuring apparatus has not had enough time to col-
lect information about the measured quantity. For an
averaging time 7 of the order of the decay time 1/y, we
obtain the usual variance o\%; however, note that o\5? is
the variance for an instantaneous measurement of posi-
tion, while Eq. (4.40) gives the variance for the time aver-

(z(1))=Q™(r),

([z(t1)—(Z(tl))][z(t;)——(z(tz)>]T)=—l"8(t1—t2)+6(t1——t2) 4 3 R

k=1

+9(t2—t1) ’ 2 (T(Zk)(t R 2k)(t2__t )T+ ZMT TR(22)( __tl)T

where Q?(z) and o'*(r) are given by Egs. (4.9) and

(4.10). Equation (4.43) has the same structure as Eq.
(4.18b), but now we have a more complicated dynamics.

Up to now we have considered mean values and correla-
tions for the variables of system 2. However, system 2 is
only a stage of the measuring apparatus (the meter), while
we are interested in the behavior of system 1 (the mea-
sured system). If we assume

det As£0 , (4.44)
Eq. (4.7b) can be written as
(g T)y—1.T | &
Qn=—(ANe" | g
eB? -T2 1Qu0 |5 a3

this equation enables us to obtain the position and
momentum of system 1 by starting from the position and
momentum of system 2. Indeed, we can introduce the
new variables

y(t)=% (AT)=1€T | L 5(1)— |eB® 20|, (4.46)

which represent the position and momentum of system 1
[y1(6)=x1(t), p,(t)=pV(2)] as continuously measured

age of position in an interval of duration 7 obtained via
continuous measurement. For 7>>1/y, we have a very
precise estimation of

1 pt+r (9
va de x(r)

but a time average of xm(t) on a large interval gives very
little information about x ?(z) itself: the time average of
the position of a damped oscillator in a large interval is
zero with practically no uncertainty.

Now, let us go back to the case of nonvanishing cou-
pling (A+40). The solution of Egs. (3.25) and (3.26) [for
A(t)= A] can be written as [cf. Egs. (B13)]

W= [ 7RO 1) Tgls") . (4.41)
Then, by Egs. (2.4), we obtain
(4.42)
—1,)0%2(8,) + ﬁRm’(tl —1,)eM
k=1 2
, (4.43)

through the interaction with the meter. In Sec. II [Egs.
(2.7) and (2.8)] we have seen how the derivative process
can be introduced; here we proceed in an analogous way.

“Denote by 7(z) the generic test function associated with

y(z). Recalling that test functions must vanish at the ends
of the measuring interval with all their derivatives, we
have, by Eq. (4.46)

[T drmy”
o tq(t)'y(t)

1 + T
= [, | (AT T (0T AT
% B2 | | 2r) . (4.47)

Then, if in the characteristic functional for z(¢) we take

pl)=— L B2 _ Y2 | A-1n(n)

A

eA“‘—%n(t)—i—

(4.48)

we obtain the characteristic functional for y(¢). The re-

sult is
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L,([7]]p)=ePTr{ W(a(0))p} , (4.49)
a(k)(t): ”}1:‘82k€A—17](Z)+ ft+°° dth(lk)(tr_t)Tn(t/) , (4.50)
B=—1 f ’ E a®()TeDWeT, (k)(t)_%a(Z)(t)TeM eA—l%n(1)+ B‘z’—%e A-n(2)

dn(’ (AT)~1eT L n(t)T(AT)-! |[B?® _ V2 Y2 1| |p
2A d it 2
14 2 12 -1
X |€eA E'I](t)-{- —76 A7 'n(t) (4.51)
From this characteristic functional we obtain for the mean values
(y(2))=Q"(z) (4.52)

as it must be, and for the two-time correlation functions

([y(t) =y [y — <y 1)

2 .
—_ (AT)-leTTeA- 18(t, —t5)+ i(AT>—1(%13‘2’1“e—ﬁeT1‘B‘2)+eTMT—Me>A—1z3(t1—tz)
T a2 A2
+2;\2(AT)—1 2B 2T |r 1B e | M B(z)_l’z}_e _#lB2_ 7;2 T IMT4 DQ)]A"lB(tl—tz)
2
+t —1)] 3 R“k)(tl—tz)a(kl)(t2)+iR(12)(t1—tz)e D? —#M B‘”—%e A"‘}
k=1
N 7, 1 a7 2) @ _ Y2 1|7 | TR(12) T]
+ 9ty —1;) 2 o R R (1, —1;) +—2—}:—(A) D% —# B — € M7 1Rty —1)) [' (4.53)

Equation (4.53) is much more complicated than Eq.
(4.43): in it appear not only the 8 function, but also the
first and second derivatives of the 8 function. This fact is
simply due to the “propagation of errors” from z(¢) to
y(2): indeed y(?) is obtained from z(¢) by means of Eq.
(4.46). Moreover, note the close analogy between the non-
singular terms in Egs. (4.43) and (4.53).

A much simpler situation appears when the characteris-
tic times for the evolution of system 2 are much shorter
than the characteristic times of system 1. Mathematical-
ly, this situation can be realized®® by making the substitu-
tions

B(Z)—>B(2)/7L2, D‘Z)—>D(2)/k2, ’}/2—>’}/2/A2 ,
(4.54)
A—A/A, T—AT
|

(y(t))=Q"(z) ﬁ(m(t)Q(l)(o)
(Iy(e) =yt y(e2) = Cy(e2)) 1)

2~ ~
:%I‘S(t1 —1)4+0(t; —1,) R M1 —1,)

6““(t2)+§6M

T

and taking the limit A—0; this is known in the literature
as the weak-coupling limit (see, for instance, Ref. 28). If
the limit is to exist, the real part of the eigenvalues of
(eB'Y —y,/2) must be negative; more explicitly, we must
have

¥2,>0, if detB? >0, (4.55a)
or
y2>2(|detB? )12, if detB® <0 . (4.55b)
Using the results of Appendix B, Egs. (B14)—(B25), we
obtain in the weak-coupling limit
(4.56)
+60(t,—1ty) | e+ gﬁﬂ TIRM(,—t)T, (4.57)
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where
RI(t)=exp E—J’—H, (4.58a)
5 -1
B=B'"— 7/72-1-2@22 AeBPeTAT | (4.58b)
) -1
_~ Y2 2
T=vi+72 |7 F@ | detA, (4.58¢)
F=AN"! B<2>—122—eT r Bm—%e
1 2 Y2 1 go Y2 7|
— ~f= = |B¥— =€’ |M
aM BTl 2
+ Lp@ ] Al (4.59)
#
a(ll)(t)zi(Il)(t)g-(ll)(o)ﬁ(ll)(t)T
t ~ ~ —~
+3 [, drR()eDeR V)T, (4.60a)
-1
D=D"+A |12 _ep?
-1
x eD?e” 121—B<2’6T AT, (4.60b)
-1
K’I'—'—‘A B(2)_ﬁeT
2
x %D‘Z)—M B(”—Izie AL, (4.61)

With some algebraic manipulation and using Eq. (3.21),
one can prove that

IT'>0, D+i#ye>0, (4.62a)

Dtitpe—(1+iM)T ~1(1—iM")>0. (4.62b)

These results are clearly the same as for a direct con-
tinuous measurement of the position and momentum of
system 1 alone. This is a general result of the formalism
of Sec. IL?° The interaction with the measuring apparatus
has changed the dynamics of the measured system (both
the Hamiltonian and the dissipative parts) and has given
rise to the terms T' and M, directly connected with the
way x‘U(¢) and p‘P(¢) are measured. Note that, even if
we started with M=0, we obtain M=0. When D"'=0
and y,=0, then the dissipation in system 1 is wholly due
to the interaction with the measuring apparatus. More-
over, in this case, if we start from the “best” measuring
procedure on 2, i.e.,

D? +itiy,e=(1+iM)T "1 (1—iMT), (4.63)
we obtain the “best”” measuring procedure on 1, i.e.,
D+ifiye=(1+iM)T ~(1—iM) . (4.64)

However, for a physically realizable meter (a transducer

from mechanical to electrical quantities) the approxima-
tion of very short characteristic times is probably not a
good one, so we cannot take the weak-coupling limit. On
the contrary, short characteristic times are typical of an
amplification stage. Therefore, the model of Sec. III gives
a sensible description of the measuring chain:
detector + meter + amplifier.

V. ESTIMATION OF THE GRAVITATIONAL FORCE

In this section we want to discuss the problem of es-
timation of the gravitational force, using the general re-
sults of Sec. III. Let us denote by R'*)(t,¢,) the formal
solution of Egs. (B9)—(B10), when the interaction matrix
is time dependent; then Egs. (3.24)—(3.27) give

a®n= [T arR¥ 0Tl . (5.1)

Inserting this result into Egs. (3.22) and (3.24), we obtain
the characteristic functional for the continuously mea-
sured quantities z(z) [z,(t)=x(1),z,(t)=p?(#)]. In
particular, for the mean values we have

2
(z())=3 R¥(1,0)0Q¥(0)
k=1

+ fotdt'R‘z”(t,t’)eTf(t') . (5.2)

By inspection of Eq. (3.24), we see that only the mean
value of z(tz) depends on f(¢); therefore, we can introduce
a new stochastic process y(#), independent of the gravita-
tional force, by setting

2= [ d'RO (1) T ) +y(0) (5.3)

Thus the output z(#) is composed of a deterministic signal
(the term containing the force) plus a noise y(z). This is
the typical situation considered in classical estimation
theory.?” Note that the noise in our case has a quantum
origin, but at this stage we have a purely classical prob-
lem: the estimation of the signal in the given noise.

The solution of the problem depends on what is a priori
known about the force. In Ref. 30, Holevo uses our
theory of continuous measurements in the simpler case of
a single harmonic oscillator (treated in Ref. 14) and as-
sumes the force to be

f(1)=1(6,g,(2),0,8,(1))

with g;(¢) and g,(¢) known; then he treats the two-
parameter estimation problem for 6, and 6,. Instead, in
this paper we treat the case of two harmonic oscillators
(detector and meter) and consider the force to be

f(t)=f(t)u

with u known (i.e., it is known how the gravitational field
couples to the detector), but f(¢) unknown. We have a
“waveform” estimation problem.

Following the terminology of estimation theory, we de-
fine an unbiased estimator for f(¢) to be any functional

F(t)=F([z];?) (5.5)

(5.4)

of the measured quantities z(z), whose mean values gives
the force
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(F(t))=f(1), Vf(1);

if F(z) depends linearly on z we speak of a linear un-
biased estimator. If the estimator F(#) is not unique, one
can determine the “best” choice using some optimality
criterion. For the most used criteria, when the process is
Gaussian (as it is in our case when the initial state is
Gaussian), the best unbiased estimator is linear.

Given a certain estimator F(t), one can obtain its
characteristic functional Ly[7n] from the characteristic

functional L ([@]]|p) of z by using the dependence (5.5)
-

(5.6

.t Lot # T L (R Toqy (K)o T () )T
InLp[n]=p=i fo dt f(t)hn(t)—5 fo dt -2‘¢(t) Co(t)+5 3 at) eD™e'a (1) +%ia'* (1) eMe(2) | ,

where one component of @, say ¢,, is an arbitrary func-
tional of 7, and a'*(¢) and @,(¢) are linear combinations
of n(¢) and ¢,(¢) and their derivatives (they can be ex-
plicitly calculated as sketched in Appendix C). The
dependence of ¢, on 17 can be determined by imposing
some optimality condition.

From Eq. (5.8) one can calculate the variances of the
time smoothed variables

+ o0
fo dt F(t)h (1)

for an arbitrary test function A (z), so obtaining the “pre-
cision” of the estimate of

+ 0
fo dt f(Dh (1)

(for instance one can consider the Fourier components of
the force). The first result is that this precision does not
depend on the initial state p of detector and meter [be-
cause of Eq. (5.7)], but only on the dynamics of the sys-
tem and on the chosen measuring procedure. This is not a
strange result: a classical model for the detecting ap-
paratus would give the same qualitative result. Indeed, if
we want to estimate a force acting on a classical particle
by measuring the position x(z) of the particle, we find
that the estimate does not depend on the initial distribu-

of F(¢) on z. In Appendix C we show that Eq. (5.6) im-
plies that

aV0)=a?(0)=0, (5.7)
so that
Tr[ W(a(0))p] =1

and Lr[7n] does not depend on the initial state p. More-
over, we have

(5.8)
k=1

|

All the variants of the model introduced in Sec. III can
be worked out. However, we limit ourselves to discussion
of two simple cases: the “back action evading” coupling
(3.13) and the time-independent coupling (3.12). More-
over, we take for the matrices B'® the expressions (3.8)
and consider the case in which the force couples only to

W je,

ulzl, HZZO. (5.9)

First we study the case of the coupling (3.13), with A
given by Eq. (3.15); explicitly, the interaction Hamiltonian
is

H ()= 2X,(1), (5.10a)

& & (1) o (1 Sinoat '
X, (t)=x"coswt —p "' ——— . (5.10b)
miwq
The quantities a'*(¢) and ¢@,(¢) are calculated in Ap-
pendix C [Egs. (C2) and (C16)—(C19)]. The quantity
@(t) is an arbitrary linear functional of %(¢), which we
write as

+ 0
@a(t)= fo dt'n(t')K(t',1) .
Then, using Egs. (5.11), (C17), and (C19), we can write

(5.11)

tion in phase space, egsentially because the fo.r(?e. is linkeFi f +eo dt ¢(t)Tz(t): f to dt n(OF (1), (5.122)
to the acceleration which does not depend on initial condi- o Y
tions. where
]
+oo d Y2
_ ’ ' (2)(pry__ (2)f 41 F 2 (2) 40
F(t)= fo dtK(t,l){p (t')—m, P (¢ + 5 x (t)] ]
mimyw, d3 (2) 71 d2 (2) 2 7’22 Y172 d 2) 71 2 722 (2)
— | —x — —x 2t —— | xP O+ = — 0.
A sinw,t dt3x (6)+ > ) dtzx (O+ o "+ " + ) ™ (6)+ ) "+ i (2)
(5.12b)

Equation (5.12b) gives the depehdence of the estimator F(t) on the measured variables [x‘®(¢) and p

and momentum of system 2].

2)(¢) are position

By inserting Egs. (C2) and (C16)—(C19) into Eq. (5.8) we obtain the characteristic functional for the estimator F(z).
Here we consider only the case of a very large coupling between detector and meter (A— o0 ); the existence of this limit is
due to the structure (3.13) with det A=0 (back-action-evading interaction). Moreover, in this case, the best choice is to
take @,(¢)=0, because the terms containing @, give a positive contribution to all variances. From the results of Appen-
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dix C, we see that in the strong-coupling limit we have

aP()=0, @(t)=0,
cosw ¢

a1 (1) = —m g —— n(:) as () =n(t)
sinw

Therefore, the characteristic functional (5.8) becomes

. too
InLplnl=i [, dt f(om(e)

From Eq. (5.15) all the moments of F(z) can be obtained
via Egs. (2.4). Note that if D'"'=0, all correlations van-
ish and the force is estimated without uncertainty. Thus
we agree with the conclusion that a “back-action-evading
coupling” allows a precise estimation of the force (cf.
Ref. 2).

The simplest case of nonvanishing dissipation is when
the matrix D'V is given by Eq. (3.18) (for i=1). With
this choice, when the interaction is off, system 1 decays to
its ground state [cf. Egs. (4.28) and (4.30)]; recall that in
this equilibrium state

oS =Tr{(p <p<1))eq peq}—zﬁmlwl' (5.16)

If we denote by A,? the variance for the estimate of
+
[, dirwn
we obtain from Eq. (5.15)
h*(t)

sinw,t

+
Ap2=Ltm 0y, fo dt (5.17)

For instance, if we consider the time average of f(#) in

the time interval (7,74 7) [so that A (¢) is the characteristic

function of the considered time interval divided by 7], we
obtain

. 2
1 T+7 Y1
A f? dtf(t)] =%ﬁm1w1-7—

sinw /w1

— = . (5.18)
sinwf sinew (7 +7)

Note in Egs. (5.17) and (5.18) how the uncertainty in the
estimation of the force is linked to the equilibrium vari-
ance o5 for the momentum. This does not mean that
we are considering an equilibrium situation: when the
time-dependent interaction is on we have no equilibrium
state. Rather both of the quantities (5.16) and (5.17) de-
pend on the dynamical features of the system and, so,

they must be connected.

It is interesting to note that for the case w7 << 1, Eq.

(5.18) can be obtained from a very simple argument. Dur-
ing the time 7 the force changes the value of the measured
quantity

X, =xWcosw, ¢
—(pV/m w,)sinw,t

[cf. Eq. (5.10b)] by an amount

+ o0
—Ti' fO dtnz(t) D(111)+2D(112)m1a)1

(5.13)
(5.14)
2

cosw ! cos‘wt
— 4 Dm0 ——— (5.15)

sinw ¢ sin“w ¢

[

SXlg—(fT/mlwl)sin(olT . (5.19)

Consider now the variance of X; defined as usual as

Tr{[X,()—(X,(0)) 1%p(0)} ;

it can be easily calculated. During the same time the

internal fluctuations increase this variance by an amount

2 ﬁyl'r

(AX )"~ .
2m1w1

(5.20)

Setting Eqs. (5.19) and (5.20) together yields Eq. (5.18).

Let us study now an example of a standard detecting
apparatus; we consider the time-independent coupling
(3.12) with A given by Eq. (3.15). The interaction Hamil-
tonian in this case is simply

H=2Mz2 (5.21)

Moreover, we take the simple diffusion matrices given by
Eq. (3.18). This is the situation discussed in Sec. IV [Egs.
(4.28)—(4.33); now with interaction between the two sys-
tems] and corresponds to the zero-temperature case. As
shown in Sec. IV, p®(t) is not measured, so that g,()=0
Then we take

I'y=1/fymy0,, My =—1/myo,,
(5.22)
M, =M;;=M,,=0

[cf. Egs. (4.32) and (4.33)]. This choice corresponds to the
minimum noise compatible with the given dynamics.

Following the procedure given in Appendix C, we ob-
tain

V(1) = _d r
(t)= ml{ dtn(tH_ 2 7(t)
(5.23)
aS () =n(1),
o) =—mym; l—g (0-L2ea )] :
(5.24)
P ()= g(;
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2
d
mimy | g d £=nt)—y, L)
=An(t) ———— | =5 L) —y,—L(t 2 Vg "
@i(t)=An(z) | D) —ya 50 dt dt
2 1/12
— 2 e . 5.26
¥ w22+7’72 ;(z)}, (5.25) T e o (520
: First, by proceeding as for Egs. (5.12), we obtain the es-
where timator F(¢) for the force
I
1 d* d? 74yl d>
F(t):kx(z)(t)——xmlm2 [Fxm(t)—l-(?’l+}/2)—(}t—3x(2)(t)+ l—4——+7/17/2+a)12+w22 Et—z—x(”(t)
Yi+72 d 71 72
2 V1V2+V20. 2+ 105 E-t-xm(t)-i— T+w‘2 T+w22 x| . (5.27)

Then, by inserting Egs. (5.22)—(5.26), into Eq. (5.8), we obtain the characteristic functional for F(t)
+ o0
InLp[n]=i fo dt f(t)n(t)

2 2
At Yimy dy(t) Y1 2l
- dt —
> o l 20, [ d l + Ty e
2 2 2 2
my | d>n(t) Y1 —72 ) N 7(t)
720, dr? B 4 torto dt
2 2
Y1 2 V2 2 A2A(e)
S —— |t
+ 4 + (a)) 4 n (1) | + 27/2602"'22
mim [arew |° o vt o aew 1y et sl (5.28)
20270, dr? 4 2 dt 4 2 : :

The simplest way to study this characteristic functional is to use Fourier expansion. Consider a finite interval mea-
surement (0,7") and set

172
sinQ,7, Q,=22 . (5.29)

n()= 2% T

n=1

2
T

Inserting this expression into Eq. (5.28), we obtain

Ly, - )= TT explifuna —38%(Q,)1,°1, (5.30)
n=1
where
5 2
fn= |5 fo dt f(1)sinQ, ¢ , (5.31)
#iy m, 7’12 #im 7/12—7’22 7’12 7/22

AZ O)= 92 2 _ 94_ 2 2 2 2 2

( ) 2601 +a)l + 4 V@100 o 4 +a)[ +w2 + 4 +w] @2 4

2 2
A% #im*m, 23 72 28 71
Q4 2| == _ 2 QZ s 2 ﬂ4 21— _ 2 QZ AN 2 .
2yamaws T Ny, | | 4 O T T2 T T e [ T e

(5.32)
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Equation (5.30) gives the characteristic function of the
joint probability for the Fourier components of the esti-
mator; these Fourier components are statistically indepen-
dent Gaussian variables with variances A%(Q,). Equation
(5.32) gives the so-called power spectrum of the noise*® and
can be used for computing such quantities as the signal-
to-noise ratio and in general for studying the sensitivity
characteristics of the detecting apparatus. The
temperature-dependent case [when Eq. (3.18) does not
hold] can be discussed in a similar way and a
temperature-dependent power spectrum can be obtained.

APPENDIX A

The characteristic functional (2.28) for the model of
Sec. III can be calculated by using the Weyl operator tech-
nique.!*?’ The Weyl operators are defined by Eq. (3.23)
and enjoy the following properties:

a;Zf,ff) =é{A}k),W(a)} , (A1)
J
[0, W(a)]=taPe; W(a) . (A2)

The strategy is to use Weyl operators for converting the
operatorial equation (2.29) into a set of classical differen-
|
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tial equations.
For any operator . in T(/4) we can define its tran-
spose in B (/) (bounded operators in £) by the equation

Tr V(X)) =Tr[(ZTY)X],
(A3)
VXET(4), YYEB(4).
Using this notation, the characteristic functional can be
rewritten as -

L([@]|p)=_lim Tr[I(¥(7,0;[@])P)]
t—+ o

— 1im Tr{( 9 1(7,0;[@])])p]

t— o

_lim Tr[(Z7(7,0;[@]) W (0))p] .

>+ o0

(A4)

Taking the transpose of Eq. (2.38) and differentiating
with respect to ty, we obtain the equation

%W(?,t;[rpl)z—WT(t;q)(t))yT(?,t;[q;]) , (A5a)

GTEHleD=1. (A5b)

The transpose of the generator (3.20) can be easily calcu-
lated by using definition (A3), and it can be written as

2

Ft;90)=LT(1)+ ~ {Q, @ (=210 P, 1My (1) — T—@i ()T 9,(2) (A6a)
fT(t)_-—_f“)T—i—j(Z)T——f‘ t)[Q(l) ]+—AU £)( { ' 7[Q12)a ” { (2) [Q(l) } (A6b)
W= LBRQ R[], 1) 470 IO L0 1, 11— LEey (01,10 1,1} . (A6o)
In the case of a quadratic generator such as (A6), we have
GT(T,1;[@)) W(a(D)= W (a(t))expB() . (A7)
From Egs. (A7) and (A4), by taking
(k)(_+_ 0)=0, (A8)

we see that the characteristic functional can be written in the form (3.22) [where S8=(0)].

To calculate the functions a'*'(¢) and B(z) we differentiate Eq. (A7) with respect to ¢; using Egs. (A1), (A2), (A5a), and
(A6) and identifying the coefficients of the various operatorial terms, we obtain the coupled differential equations (3.25),
(3.26) for a'¥(t) and a differential equation for B(t) which can be immediately integrated; Eq. (3.24) gives the value of

B(t) at t=0.

APPENDIX B

In this appendix we calculate the quantities (4.2) and (4.3). By differentiating Eq. (4.2), we obtain

L oiP=Tr{(.£7Q piw)],

and computing .7 applied to Q (¥,

equations
5;0(11)“): eB(”—% (1) + e Aa?V(1) + o 11(1)
5_’0(22)”)_ 6B(z)_}’z_l o 2(1) 4 Ae ATo12(1) 4 022(1)

we find Egs. (4.7). Using the same procedure for the matrices o

(B1)

%s)(¢) we obtain the

Bmer_l’il, A0 1) ATeT+ LeDWeT (B2a)
BPel— 1’;— ‘+A.o(2l)(t)AeT+ +eDPeT | (B2b)
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4 iy |pm_ Y1
dta' ()= |eB >

moreover, by definition, we have

0.(21)(t):o.(]2)(t)T . (B3)
By .introducing the four-component vector
Q(l)(t)
Q(t)= Q(Z)(t) (B4)
and the 4 X4 matrices
o.(ll)(t) 0,(12)(t)
o(t)= o2y o@p) | (B5)
eBV— xal AeA
2
G= va | (B6a)
reAT  eB? —;—
R(1)=exp(Gt) , (B6b)

we have that the solutions of Egs. (4.7) and (B2) can be
written as

Q(1)=R(1)Q(0) , (B7)
o(r)=R(1)o(0)R(t)T
e.l)(l)eT 0

0 eD(Z)eT

4~§j:dﬂku—4ﬂ

xRt —¢")7. (B8)

By using the 22 blocks R'*)(¢) of R(¢), we obtain Egs.
(4.9) and (4.10).

The 22 matrices R*(¢) can be defined equivalently
as the solutions of the differential equations

4 R = [eBV_ YL |RIV(4) 4 Ae ARPV(Y) |
dt 2
(B9a)
%Rm)(t)zkeATR“”(tH— GB(z)_l’zl R2V(p)
(B9b)
4 ROD(H—reATRV(1)= |eB®_ Y2 [ROV(y)
dt 2
(B10a)
d 512 m__ Y1 a2 (22)
~d’t°R (t)= |eB ———7 R ()+1e AR (1) ,

(B10b)

with the initial conditions

0'(12)(t)+A.6A0(22)(t)+0(12)(t)

BmeT—l;i ]+ka“”(t)AeT; (B2¢)

[
R(ll)(o):R(ZZ)(O):l ,

(B11)
R(lZ)(o):R(Zl)(O):O .

An equivalent set of differential equations is given by

%R“”(z‘):R“”(t) eB“)—% LARID(neAT
(B12a)
—d—R“Z)(t):AR“”(t)eA—}—R“Z)(t) eB(Z)_ﬁ ,
dt 2
(B12b)
%R(ZZ)(I)=7\.R(21)(t)€A+R(22)(t) EB(Z)_%Z_ ,
(B13a)
%R(Zl)(t):R(ll)(t) e.]3(1)_% +)\,R(22)(t)€AT.

(B13b)

As a fourth-order algebraic equation can be explicitly
solved, the eigenvalues of the matrix G can be found and

R(2) calculated. However, we treat only the weak-
coupling case (4.54) and (4.55). Equations (B12) become
d o () m_ 1 1 a2 T
LRI =RM(r) [eBV— = |+ ,
dtR (1) (1) |e ) +AR (t)eA
(B14a)
d 1 Y2 1
2 RO = LRIy |eB? L2 2 pan )
g (1) 2 (1) |€ > +AR (HeA
(B14b)
Equation (B14b) gives
R")(z)
_ Lot i A po T2 ,
_AfodtR (teAexp |5 |eB®— (t—1")
IR0 (ea [ldrexp | |eBP— T2 |t —¢)
A 0 A? 2

-1

A—0 ?/2
~ AR (reA T—eBm (B15)

Using this result in Eq. (B14a), we obtain the equation



d Y1
__R(ll) ¢ =R(11) t eB(])___
a0t (2) (1) 3
—1
+ €A Zzi—eBm eAT|,
(B16)
whose solution is
R!'"(¢)=exp eB“)~—12L
—1
+ €A Y2 _ 2| €A ] (B17)
Equation‘ (B10a) becomes
A po_ 1 _aTRU2) L g Y2 [geay,
SRP=2eATR (04— | > (1)
—1
A:OGATR“”(t)eA ﬁ——eB‘Z)]
- 2
+7\17 eBm—% R?¥(1), (B18)
which gives
A—0 %
R?2(¢) ~ exp e eB(Z)———22~ t
d ’ (2) _7/_2 ’
+f0dtexp el eB'“’ — 2 (t—1")
—1
e ATRM(1)eA 1/2-3~—6B‘2’
A—0
~exp| =5 eB‘Z’-Zzl ¢ (B19)

]

~ ~ t ~ ~ —~
0'(”)(t)2R(“)(I)O'(H)(O)R(“)(t)—l—% fo dt/R(ll)(tl)eDeTR(H)(t/)T’

BT — Y2
2

o 1()~R "(1)0 12(0)exp _%

.
)\2

eB2_ 12

t
2 2

0?)(t)~exp

)\2
+5 fot/ drexp |T eB(Z)———2~

where
—1

72
eDel | L2 _ B2l

D=D"+A

Y2
L B(Z)
2 €

B(Z)eT_

eDPeTexp |7

-1
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Finally, Eq. (B9b) becomes

d oo 1 @ Y2 (1)
—_ t)=— B ==
dtR()kze 2R(t)
+ %eATR“”(t) : (B20)
which gives
A—0 /)/2 -1
R2V(1) =~ A TTeB‘Z) eAR"(2) . (B21)
Using these results the mean values (4.9) become
Q=R " (nQ"(0), (B22a)
2) ¢ 2 12 2)
QY (t)=exp | |€B Y Q'“'(0), (B22b)
where
R () =exp eﬁ——% ltl , (B23a)
- 7,2 !
B=BV_ |2 120,2| AeBVeTAT, (B23b)
-1
~ ,}/22 2
Y=v1+72 4 +o; detA , (B23c)
w22=detB(2) , (B23d)
—1
Bl —eBV_Yl e |2 _eB?| eAT. (B23e)
2 2 2
For the correlation matrices (4.10) we obtain
(B24a)
(B24b)
Y2
2
B%T—% ] ] , (B24c)
(B25)

APPENDIX C

Consider an unbiased linear estimator F(t) for the force f(¢) [Egs. (5.5) and (5.6)]. The estimator is a stochastic pro-
cess whose characteristics functional Lr[7] can be deduced from the functional for z(z) using the dependence of F(¢) on
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z. Therefore, Lyz[n] is given by Eqgs. (3.22)—(3.27) where @ is a certain functional of 7. Now, by Eq. (5.6), the force
must appear in InLz[7] in the form

. + o0
i [ dr )
by comparing this with Eq. (3.24), we obtain
n(t)=u’ea' (1) . (cn

By a canonical transformation on system 1 and by rescaling f(¢), we can always obtain u; =1, u,=0; so, Eq. (C1) be-
comes '

() =n(1) . (C2)
By using Eq. (C2), Egs. (3.25) and (3.26) become
%a‘l”(t): 72‘ —BY () + BV () —Ad 1, (0)aP (1) + A4, ()P 1) (C3)
g;nmz %JFB‘]‘; (6)— B & (6) = Ay ()21 -+ Ay (1) (C4)
%a‘l”(z) 7;2 — B2 |oP(6) + BRa@ (1) — Ay, (D& 1)+ A A 1 (D) — (D) (C5)
%a‘ﬂt): 72 —= + B2 |2 ()— B2 aP(t) = Ad p ()a{V(2) + A A 1, (D)n(1) — (1) . (C6)
From Eq. (C4), by assuming B 50, we obtain
(1 d Y1 L) 2 (2)
ay ()= o | n(t)+ + By |m(t)—AAn(tay (1) +AA, ()ay (1) (C7)
By, | dt 2

and we insert this result into the other equations.
From Eq. (C3), using Egs. (C5) and (C6), we have

(=) + X (DaiP(e) (C8)
where
—y(n-114 (1 @) Y2— V1 _ B
X()=Y 1) dtAzz(t)—Bz;,_Alz(t)+A21(t)B22 — Ay (2) +B'12 By , (C9)
_ —1 1 d2 ,;/12 2
co=v" o [ Lomo— y,d 01+ |+ |n(0) | +A[det AW () — An(Dpy()+ Az (o) [, (C10)
Y(1)= j Ay () — Axy(DBZ — B A1 (D) + Aoy (1) —73;—”‘ BV 4+BY|. «11)

Inserting Eq. (C8) into Eq. (C6) and using Eq. (C5), we obtain an expression for a\?(1); we do not write the result:
ai?(1) is a linear combination of 7(¢), @(¢), @,(t) and their derivatives at time ¢. Finally, by putting this result into Eq.
(C5), we obtain a link between 7,¢;,¢,; thus, one component of @, say ¢, is an arbitrary functional of 7, while ¢; de-
pends on 7 dlrectly and through qoz In particular, recalhng that test functlons vanish at t=0 with all their derivatives,
we obtain a{?/(0)=0 and, by Egs. (C8), (C7), and (C2), also a;?(0)=a}"(0)=a}"(0)=0.

In order to give an example of these calculations, let us consider the case of Eqs (3.8), (3.13), (3.15), and (5.9). First of
all, Eq. (C2) holds; then Egs. (C3)—(C6) can be rewritten as

%{e—w [cosw,tai”(t)—mlwlsinwltn(t)]} =re "0y (C12)
— sinw,;t
% M 222 000+ coswrtn(n) | | =0, (C13)
1%1 : :
d Y2 sina)l.t
;;a‘,”(t):7a§”(:)+m2w22a‘22>(t)+k ma&"(r)+coswltn(z) ROR (C14)
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d ) V2 ) | SNe))
— t)=— t)—— 1) —q@y(t) . (C15)
dtaz() 2a2() mzal() (%) )
Equation (C13) with the final condition (3.27) gives
cosw t
()= —m o ———n(1) . (C16)
sinw ¢
Then, from Eq. (C12) we obtain
2) mo, Y1 . n(t) d
—_— — t|————n)| . C17
oy (t)= A sinet ®,cosw t + 5 sinw, sinay  dr n(¢) (C17)
Finally, from Egs. (C14) and (C15) we have
P (=m, | La@(t)— L a@(t) | —mrput) , (C18)
2 dt
2
a2 4, 7/ ) 4 7
@(t)=m 7 o (1) — 2% (1) + (t )}—kmz dt(pz(t)— > @5(1) (C19)
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