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The cylindrically symmetric partial-wave amplitude for scattering of an electron on an impenetrable infi-
nite solenoid of finite radius is studied for small magnetic-flux values and an electron wavelength much
larger than the solenoid radius. The result of a recent study for the Born series expression of this ampli-

tude is discussed.

I. INTRODUCTION

As was first noted by Feinberg,! the Born approximation
fails to give the angular behavior of the Aharonov-Bohm
amplitude? for scattering of an electron on an infinite
magnetic-flux line (flux ®, we put a= —e®/hc). Instead
of the correct behavior, e'"’/z/sin%9=cot%0— i, the Born
approximation gives in order « the result cot—}o. 9 is the
scattering angle. The reason for this discrepancy is
known*>* to be the fact that the isotropic m =0 cylindrical-
wave Born contribution, with perturbation «?/r?, vanishes in
order a, and is hence absent from the first-order Born ap-
proximation. At the same time this perturbation gives a
divergent matrix element. The true m =0 contribution goes
as |a| for small «, and is hence nonanalytic at zero.

In a recent paper Aharonov, Au, Lerner, and Liang® stud-

ied the Born series for the case of a flux cylinder (solenoid)
with an infinite barrier of radius R. They show that
although the lowest-order m =0 Born approximation, which
converges for R=0, is of order a?, as expected, the Born
series is essentially an expansion in powers of «In(2/kR),
where k is the momentum of the electron. Summation of
the Born series and going to the limit R =0 would then give
rise to a leading contribution proportional to |«|.

Although Ref. 5 qualitatively explains the behavior of the
m =0 amplitude, the quantitative result is incomplete as a
consequence of some unallowed approximations in the
study of the scattering integral equation for the m =0 wave.

The purpose of this Comment is to study the behavior of
the m =0 partial-wave scattering amplitude for small « and
kR and in particular how the o behavior for kR =0 goes
over into the |a| behavior for kR =0. This is done in Sec.
II. In Sec. III we complement the Born series treatment of
Ref. 5.

First, we remark on the symmetry of the scattering solu-
tion: Although the scattering equation is invariant under
rotations around the z axis (the axis of the flux cylinder), it

is not invariant under reflection in a plane through this axis,
]

So(a,kR ) =

I'(1+a)explalln(2/kR) —iw/2]} —T(1—a) expl— alln(2/kR ) — iw/2]}

unless one combines the reflection with a change of sign of
«.5 This implies for the scattering phase shifts 8, (a)
=8_-m(—a). In particular, 8¢(a)=28,(—a), the m=0
phase shift is an even function of «. In the R =0 limit we

have the well-known result (assuming |a| < 1, see below)
dma)=— %a sgnm for m=0, and §y(a)= — -%|a| .

A further remark is that since the scattering cross section
is periodic in o with period one—more precisely one can
show for the scattering solution that (r,0,a+1)
=e/ "9y (r, 9, a)—one can restrict the study to values of
a such that |a| < +. ‘

II. BEHAVIOR OF THE AMPLITUDE
FOR SMALL a AND kR

The expression for the m = 0 amplitude, or rather the cor-
responding S -matrix element, is (see e.g., Ref. 4)

V2mik fola kR ) +1=So( o, kR ) = ¢ 20* %
o HE (kR)
— _ y—inlal el 21
" HIY *R) @1

Using standard relations for Hankel functions one can write

HOZ (kR) _ HZ (kR)

So(a,kR) = — -
olakR) HD (kR) HY (kR)

2.2)

Since H? (kR) is, for kR#=0, an entire function of «,
(2.2) shows that So(«,kR ) is for kR =0 an even function of
a with a power-series expansion convergent up to the first
zero of HY(kR) as function of «. Assuming
In(2/kR ) >> 1 one can derive from (2.5) below a radius of
convergence approximately equal to «/{[In(2/ykR)]?
+ 7%/4}V2 (for the constant y see below). From the small-
kR exzpression for H!? (kR) we get, ignoring terms of order
(kR)?,

32

I'(1+a)explalin(2/kR) +iw/21} =T (1 — a) exp{— alIn(2/kR ) + iw/21}

(2.3)
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The standard infinite product representation

r(1+a)=e"C / TT [(1+a/n)e==/n]

n=1

easily leads to
F(l+a)=e (1 +cra’+csa*)[1—c3a®+0(a®)]
In1.7811...=0.5772 ... and

, (2.4)
where C =Iny =

3 1/n=04007. ..

wl.—

Introducing (2.4) into (2.3) one obtains, ignoring order o,

sinhaz* — c3a® coshaz®

So(a. kR ) = 2.5
ola ) sinhaz — c3a° coshaz @3
J

_InQ/ykR)—im/2|y _; 27 |\ 2/ kR ) +

In the limit kR — 0, i.e., In(2/ykR ) — o, we get from

(2.3)
So(a, 0) =™, or 8y(a, 0) = = Tl . (2.8)
If «a— 0in (2.3) or (2.7) we get
So(0,kR ) = IR2/YKR) = im/2 2.9)

In(2/ykR) +inw/2
Ignoring order o® in (2.6) we obtain

8o(a, kR ) = —arctan{(w/2) |a| coth[|a|In(2/ykR )1} .
| (2.10)

Equation (2.10) shows the transition between the two limit-
ing cases (2.8) and (2.9) as |a|In(2ykR) goes from large
values (>>1) to small values ( << 1). Quantitatively,
(2.10) shows that for (2.8) to be a good approximation we
must have |a|In(2/ykR) > ¢, where c is at least 2 or 3.
This means kR < e~¢/!e!; thus for small « the flux lme limit
kR =0 is reached extremely slowly.

III. COMPARISON WITH AND DISCUSSION
OF RESULT IN REFERENCE 5

The expression (39) in Ref. 5 for the Aharonov-Bohm
contribution to the scattering can be written

27k [fo(a,k,R) — fo(0,k,R )]

(kR /2)"

=So((x,kR ) "So(O,kR ) = - iﬂ[a—am

3.1
J

¢0(I‘)=ao[No(kR )Jo(kl‘)'—.]o(kR )No(kr)] + a?
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where z =1In(2/ykR ) + im/2 .

Expressing the hyperbolic functions of complex argu-
ments in hyperbolic and trigonometric functions of real vari-
ables, and going to the phase shift [see (2.1)] we have, still
up to terms of order o,

80(a,kR ) = —arctan{tan(aw/2) cothla In(2/ykR ) — c3a°1} .

(2.6)

Recall that in (2.5) and (2.6) we have ignored terms of or-
der (kR)? and o’. It should be observed that although
(kR )? << 1, we can well have In(2/ykR) not much larger
than 1; e.g., if kR = 1072 we have In(2/ykR ) =4.72.

Expanding (2.5) to relative order a2, assuming kR =0, we
have

3¢3 Q.7

[In(2/ykR) 1>+ =%/4

I INoCkr ) JaChr') = JoCkr)No(kr 1 o)

+0 (a")] .

I
[We have introduced factors V2mwik and —iw omitted in
(39) of Ref. 5; also, a > 0 is assumed in (3.1), in the gen-
eral case |a| should be substituted for «.]

Equation (3.1) gives the correct limit —iwa as kR — 0,
and also qualitatively the o? behavior as o — 0 for kR =0,
but does not address higher corrections.

For small a we can use I'(1+a) = e~ C2,
short 8=

—imlal(l1—e™B) .

Introducing for
lalIn(2/ykR) we can then write (3.1) as

(3.2)
On the other hand, from (2.5) we get, ignoring order o?,

. * ¥*
So(a,kR ) — So(0,kR ) = Sinhez _ 2
sinhaz z

- —iwlal-}g-([i‘cothﬂ—l) . (3)
Here besides o << 1 we have assumed In(2/ykR ) >> 1, so
that js/2 is ignored in comparison; 8= |a|In(2/ykR) can
take any (non-negative) value.

For small B8, (3.2) gives —ia?mIn(2/ykR) compared to
the correct value —ia?(w/3)In(2/ykR) obtained from
(3.3) [cf. also (2.7)]. Equation (3.2) fails also for large 8:
(3.3) gives for 8 >> 1 the expression

—imla|(1+2e~%8-1/8) ,

to be compared with (3.2). This means that the approach to
the line flux limit is much slower as kR — 0 than suggested
by (3.2). The difference goes mversely as B instead of de-
caying exponentially.

To trace the origin of the quantitative discrepancy
between the results of the present paper and of Ref. 5, we
look at the integral equation for the m =0 partial-wave
function used in Ref. 5, Egs. (21) and (22),

3.4)

The constant ao should be determined in such a way that asymptotically for large

do(r) = Jo(kr) + foe™/~r

3.5)
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This leads to

apg=

>

i 27 T g o 1
Y S PR Y. 1 .
HeY (kR)I ' S (kr)=—-o(r)dr
and

H® (kR
V2mik fola,k,R) +1=So(a,kR ) = — — ) 4o

COMMENTS 32

1

HEY (kR)

HY (kR)

S INoGR)o(kr) = Jo (kRO No(er) 1 L go(r ) dr

3.6)

The second term on the right-hand side of (3.6) is just So(a,kR ) — So(0,kR ). Using the exact m =0 partial-wave function

[cf. (2) and (4) of Ref. 51,

bo(r) = H(UI—%[MM(kR)J|a|(kr)—J|,,|(kR)N|a|(kr)] , 3.7
we get
e—imlal/2 )
So(a,kR)—So(O,kR)=/aWHO(U(kR)ngl)(kR)fR [NoCkR )Jo(kr) = Jo(kR YNo(kr)] 1
X [N1al (KR )J1q) (k1) = J1a) (kR )N | Ckr ) 1 =—dr (3.8)

The lowest-order, i.e., order o, Born approximation corresponds to using the unperturbed solution ¢o(7),—=o from (3.7)

in (3.6). This gives

. 1
Sola,kR ) — So(0,kR ) = Iazﬂ'm fR

" Now the argument in Ref. 5 is that for kR << 1 we can
ignore the functions Jo(kR) and J|4(kR) compared to
No(kR) and N, (kR) in (3.8). Though this is alright for
the factors H{" (kR) and H(}) (kR ), it is not allowed in
the integrand. The reason for this is somewhat subtle: For
a fixed a0 it is correct that of the two terms multiplying
No(kR) in the expansion of the integral in (3.8) the term

k) [ 1otk NGk Lar

ignored in Ref. 5, vanishes as kR — 0 compared to the term
retained,

N R) [ Joer) 101 Ger) e

The same conclusion is true also for the remaining two
terms, and corresponds to the fact that the result (3.1) gives
the correct limiting value- when kR =0. However, the con-
clusion above is not valid uniformly in « as a also goes to
zero. We shall see below that for « =0 all the terms in the
expansion of the integral in (3.9) glve contributions of the
same order in In(2/ykR ).

Using the indefinite-integral formula valid for any two
Bessel functions Wo(x) and wa(x),’

@ [ WoloIwalx) & x (W) wi () = Wi (a1

(3.10)

" [No (kR )Jokr) = Jo(kR ) No(kr) L ar 3.9)
I
we can derive for (3.8) the expression
Cimtal HE® (kR)  HE? (KkR)
So(a,kR) = So(0,kR ) = — e~ imlel ,
ola kR ) = So(0.kR ) HY) (kR) ~ HY (kR)
(3.11)

as should be [cf. (2.1)].
The integral in the lowest-order Born approximation (3.9)
gives, using the notation kR = € for short,

No(e)? f[ g2 — 2No(e)o(e)

<[ Jo(x)No(x)% +Jo(e) f No(x)zig—

(3.12)
Here the leading In(2/ye) contributions to the integrals are

ff Jo(x)z—dxﬁ ~1n(2/ye) ,

ST 1oN)E <~ Lineyeor
€ b m™

SN~ & Lty

Since No(e) = — (2/7) In(2/ye)Jo(e) this means that the
first and second contributions in (3.12) cancel, and the
whole contribution in leading In(2/ye) order comes from
the third integral. This gives the a? contribution in (2.7).
The approximation of Aharonov et al. consists in retaining
only the first integral in (3.12).
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