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The cylindrically symmetric partial-wave amplitude for scattering of an electron on an impenetrable infi-

nite solenoid of finite radius is studied for small magnetic-flux values and an electron wavelength much

larger than the solenoid radius. The result of a recent study for the Born series expression of this ampli-

tude is discussed.

I. INTRODUCTION

As was first noted by Feinberg, ' the Born approximation
fails to give the angular behavior of the Aharonov-Bohm
amplitude for scattering of an electron on an infinite
magnetic-flux line (flux 4&, we put n = —e4&/hc). Instead
of the correct behavior, e 'ei'/sin

~
8= cot—,

'
0 —i, the Born

approximation gives in order o, the result cot2 0. 0 is the

scattering angle. The reason for this discrepancy is
known3 4 to be the fact that the isotropic I = 0 cylindrical-
wave Born contribution, with perturbation n /r, vanishes in
order n, and is hence absent from the first-order Born ap-
proximation. At the same time this perturbation gives a
divergent matrix element. The true m = 0 contribution goes
as (n ~

for small n, and is hence nonanalytic at zero.
In a recerit paper Aharonov, Au, Lerner, and Liang' stud-

ied the Born series for the case of a flux cylinder (solenoid)
with an infinite barrier of radius R. They show that
although the lowest-order m =0 Born approximation, which
converges for R&0, is of order a, as expected, the Born
series is essentially an expansion in powers of nln(2/kR ),
where k is the momentum of the electron. Summation of
the Born series and going to the limit R = 0 would then give
rise to a leading contribution proportional to ~u~.

Although Ref. 5 qualitatively explains the behavior of the
m =0 amplitude, the quantitative result is incomplete as a
consequence of some unallowed approximations in the
study of the scattering integral equation for the m = 0 wave.

The purpose of this Comment is to study the behavior of
the m =0 partial-wave scattering amplitude for small n and
kR and in particular how the o. behavior for kR &0 goes
over into the ~n~ behavior for kR =0. This is done in Sec.
II. In Sec. III we complement the Born series treatment of
Ref. 5.

First, we remark on the symmetry of the scattering solu-
tion: Although the scattering equation is invariant under
rotations around the z axis (the axis of the flux cylinder), it
is riot invariant under reflection in a plane through this axis,

I

unless one combines the reflection with a change of sign of
n. This implies for the scattering phase shifts 5 (n)
= 5 ( —n). In particular, 50(n) = 50( —n), the m = 0
phase shift is an even function of o.. In the R =0 limit we
have the well-known result (assuming ~n~ ( 1, see below)

II. BEHAVIOR OF THE AMPLITUDE
FOR SMALL a AND k8

The expression for the rn = 0 amplitude, or rather the cor-
responding S-matrix element, is (see e.g. , Ref. 4)

I 25p (a,kR )
42rrikf0(o. , k, R ) + 1 = So(n, kR ) = e

(2.1)

Using standard relations for Hankel functions one can write

H (kR) H (kR)
H."' (kR )

(2.2)

Since H~'1 (kR ) is, for kR &0, an entire function of o. ,
(2.2) shows that So(n, kR ) is for kR e0 an even function of
o. with a power-series expansion convergent up to the first
zero of H~'1 (kR ) as function of a. Assuming
ln(2/kR )» 1 one can derive from (2.5) below a radius of
convergence approximately equal to r/(7[I (2n/ k y)R]
+ n 2/4}'i' (for the constant y see below). From the small-
kR expression for H~'1 (kR ) we get, ignoring terms of order
(kR )'

5 (n) = ——a sgnm for m ~0, and 5O(n) = ——l~ I

2 2

A further remark is that since the scattering cross section
is periodic in o. with period one—more precisely one can
show for the scattering solution that g(r, 8, n+ 1)

e'~" e'p(r, 8, n)—one can restrict the study to values of
n such that (n(» —,'.

So(u, kR ) = I'(1+a) exp(n[ln(2/kR ) —i rr/2]] —I (1 —n) exp( —u[ln(2/kR ) —in/2]j
I (1 + u ) exp (ot [ln (2/kR ) + i vr/2] ] —I ( I —n ) exp (

—n [ln (2/kR ) + i 7r/2 ][
(2.3)

32 3328 1985 The American Physical Society



32 COMMENTS 3329

The standard infinite product representation

1(I+u) =e-c.

easily leads to
Q [(1+u/n)e i"]
n=1

sinho, z' —c3o.' cosho. z
So(u, kR ) =

sinhnz —c3o. cosho. z
(2.5)

where C = lny = ln1.7811. . . = 0.5772. . . and

c3= —g 1/n'=0. 4007. . .=1
n=1

Introducing (2.4) into (2.3) one obtains, ignoring order u,

where z = ln(2/y kR ) + i m/2

Expressing the hyperbolic functions of complex argu-
ments in hyperbolic and trigonometric functions of real vari-
ables, and going to the phase shift [see (2.1)] we have, still
up to terms of order a5,

Sp(u, kR ) = —arctan[tan(u7r/2) coth[u ln(2/ykR ) —c3u3]] .

(2.6)

Recall that in (2.5) and (2.6) we have ignored terms of or-
der (kR )2 and u . It should be observed that although
(kR ) « 1, we can well have ln(2/ykR ) not much larger
than 1; e.g. , if kR = 10 we have ln(2/ykR ) = 4.72.

Expanding (2.5) to relative order u, assuming kR ~0, we
have

I —i
'—ln(2/ykR)+ —,, +0( ')

ln(2/ykR ) +i m/2 3 [ln(2/ykR ) ] + m /4
(2.7)

In the limit kR 0, i.e., ln(2/ykR ) ~, we get from
(2.3)

S (u, 0) =e '
~ ~, or 5 (u, 0) = ——(u( (2.8)

If u 0 in (2.3) or (2.7) we get

ln(2/ykR ) —i n/2
ln (2/y kR ) + i 7r/2

(2.9)

III. COMPARISON WITH AND DISCUSSION
OF RESULT IN REFERENCE 5

The expression (39) in Ref. 5 for the Aharonov-Bohm
contribution to the scattering can be written

J2vrik [fp(u, k,R ) fp(0, k, R ) ]

= Sp(u, kR ) —Sp(0, kR ) = —i m u —u
(kR/2).
I'(1+u)

(3.1)

Ignoring order u' in (2.6) we obtain

5p(u, kR ) = —arctan[(m/2) (u) coth[)u( ln(2/ykR ) ]]

(2.10)

Equation (2.10) shows the transition between the two limit-

ing cases (2.8) and (2.9) as ~u~ ln(2ykR ) goes from large
values ( )& 1) to small values ( « 1). Quantitatively,
(2.10) shows that for (2.8) to be a good approximation we
must have ~u~ ln(2/ykR ) & c, where c is at least 2 or 3.
This means kA ( e ' I; thus for small o, the flux line limit
kA = 0 is reached extremely slowly.

I

[We have introduced factors u'2mik and —i7r omitted in
(39) of Ref. 5; also, u & 0 is assumed in (3.1), in the gen-
eral case ~u ~

should be substituted for u. ]
Equation (3.1) gives the correct limit —imu as kR 0,

and also qualitatively the o. behavior as o. 0 for kR &0,
but does not address higher corrections.

For small u we can use I (1+u) = e c . Introducing for
short p= ~u~ ln(2/ykR) we can then write (3.1) as

—in(u((I —e i') (3.2)

On the other hand, from (2.5) we get, ignoring order u2,

Sp(u, kR ) —So(0,kR ) =
sinhnz z

i rr lu I

—(P cothP —1)1 (3.3)

Here besides u « 1 we have assumed ln(2/ykR ) )) I, so
that in/2 is ignored in comparison; p=

~ ~uln(2/ykR) can
take any (non-negative) value.

For small p, (3.2) gives —iu2vr ln(2/ykR) compared to
the correct value —i u2(m/3) ln(2/ykR ) obtained from
(3.3) [cf. also (2.7)]. Equation (3.2) fails also for large p:
(3.3) gives for p &) 1 the expression

—i7r(u](1+2e s —1/P)

to be compared with (3.2). This means that the approach to
the line flux limit is much slower as kR 0 than suggested
by (3.2). The difference goes inversely as p instead of de-
caying exponentially.

To trace the origin of the quantitative discrepancy
between the results of the present paper and of Ref. 5, we
look at the integral equation for the m =0 partial-wave
function used in Ref. 5, Eqs. (21) and (22),

@p(r ) = ap[Np(kR )Jo(kr ) —Jp(kR )No(kr ) ] + u —J [No(kr )Jp(kr') —Jp(kr )Np(kr') ]—,@p(r')dr'
2 R

(3.4)

The constant ao should be determined in such a way that asymptotically for large r

yp(r ) = Jp(kr ) + fpe'"'/Jr (3.5)
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This leads to
r

ap = 1 —i n —t Hpt ~ (kr )—$p(r ) dr
l

Hp' (kR ) 2

and

142rrik fp(o!,k R ) + 1 = Sp(n, kR ) = ——

&&&
+ n 7r

&&& ~l [Np(kR )Jp(kr ) —Jp(kR )Np(kr ) ]—@p(r ) dr
H()~'~ (kR ) Hpt'~ (kR ) "" r

(3.6)

The second term on the right-hand side of (3.6) is just Sp(n, kR ) —Sp(0, kR ). Using the exact m = 0 partial-wave function
[cf. (2) and (4) of Ref. 5],

Ie
—in [a)/2

+p(r) = t, &
[NI I(kR )JI I(kr) —JI I(kR )NI I(kr)] (3.7)

HIP kR

we get

e
—i~ I a f/'2 OO

Sp(a, kR ) —Sp(0, kR ) =i n rr (, ) (t) J [Np(kR )Jp(kr ) —Jp(kR )Np(kr ) ]
Hp (kR )HI

I
(kR R

x [NI I(kR )JI I(kr ) —JI I(kR )NI I(kr ) ] dr—
r (3.8)

The lowest-order, i.e., order a, Born approximation corresponds to using the unperturbed solution Pp(r) =p from (3.7)
in (3.6). This gives

Sp(n, kR ) —Sp(0, kR ) =i n rr
&&& 2 J) [Np(kR )Jp(kr) —Jp(kR )Np(kr)] dr—21

[Hpt'i (kR ) ] R I'
(3.9)

' Now the argument in Ref. 5 is that for kR (( 1 we can
ignore the functions Jp(kR ) and JI I(kR ) compared to
Np(kR ) and NI I(kR ) in (3.8). Though this is alright for
the factors Hq"~ (kR ) and HIt'I~ (kR ), it is not allowed in
the integrand. The reason for this is somewhat subtle: For
a fixed o.&0 it is correct that of the two terms multiplying
Np(kR ) in the expansion of the integral in (3.8) the term

f OO
1

JI I(kR) Jl Jp(kr)NI I(kr) d»—
ignored in Ref. 5, vanishes as kR 0 compared to the term
retained,

OO
1

NI I(kR ) J „Jp(kr )JI~I(kr) dr—
The same conclusion is true also for the remaining two
terms, and corresponds to the fact that the result (3.1) gives
the correct limiting value- when kR =0. However, the con-
clusion above is not valid uniformly in n as o. also goes to
zero. We shall see below that for o. =0 all the terms in the
expansion of the integral in (3.9) give contributions of the
same order in ln(2/ykR ).

Using the indefinite-integral formula valid for any two
Bessel functions Wp(x) and w (x),

n' Jt Wp(x) w (x) = x [ Wp(x) w
' (x) —Wp (x) w (x)],

(3.10)

we can derive for (3.8) the expression

H (kR) H (kR)
(3.11)

as should be [cf. (2.1)].
The integral in the lowest-order Born approximation (3.9)

gives, using the notation kR = e for short,

Np(t ) &t Jp(x ) 2Np(6) pJ(E )

x JI J,(x)N, (x) "+Jp(.)'J~ N. (x)'dx dx
X X

(3.12)
Here the leading ln(2/ye) contributions to the integrals are

Jp(x )' = 1n(2/ye)

f+ OO

Jp(x)Np(x) = ——[ln(2/ye) ]
dx 1 2

Jg X 7T

Jr N, (x)' "=,—[ln(2/y. )]' .x ~ 3

Since Np(e) = —(2/7r) ln(2/ye) Jp(e) this means that the
first and second contributions in (3.12) cancel, and the
whole contribution in leading ln(2/ye) order comes from
the third integral. This gives the u contribution in (2.7).
The approximation of Aharonov et al. consists in retaining
only the first integral in (3.12).
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