
PHYSICAL REVIEW D VOLUME 32, NUMBER 12 15 DECEMBER 1985

Generalized Klein-Gordon equations in d dimensions from supersymmetry
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The Wess-Zumino model is extended to higher dimensions, leading to a generalized Klein-Gordon equa-

tion whose propagator is computed in configuration space.

In general, when extending field theory for an arbitrary
number of dimensions, the kinetic part of the evolution
equation is kept as the usual second-order Klein-Gordon
equation. This is not a unique generalization. There are
other prescriptions which emerge naturally when one tries to
make a straightforward extension of supersymmetry in
higher dimensions. ' %e adopt here the extension which is
called "alternative I" in this reference.

This kind of extension may look reasonable, in spite of
the ghost which appears, when one thinks about the diffi-
culties that are encountered when not adopting it, as is usu-
ally done.

It is with this idea that we shall take the simple %ess-
Zumino model and extend it to higher dimensions. To
avoid unnecessary technicalities, we shall take the number
of dimensions as

d =4v

As usual, we define

A (x) = y(x)

. =e, F(x)

As in four dimensions, the variation of the highest com-
ponent under a supersymmetric transformation is a diver-
gence, so the Lagrangian for a chiral superfield can be writ-
ten in the usual way as

L = @@ l D + c @'
l F + H.c. + interaction terms

As the mass dimension of L is d, from the first term of the
Lagrangian we deduce ([x] means the dimension of y)

The number of components of a Weyl spinor' is

2d/2 —1 22 p —1

The generators of simple supersymmetry obey the usual
commutation relations. To these generators there corre-
spond co Grassmann variables 0, and the co conjugates 9 .
Just as in four dimensions, we can define superfields and
represent the generators as derivative operators acting on
them. Also, in the usual way, we can define the covariant
derivatives D and D leading to the definitions of chiral
fields as the solutions of

[c]=-Cd

2

So we can write

c = —'m""
2 (10)

Now we can use (4) and (5) to write (7) explicitly in com-
ponent form. Noting that

D.y=0 .

From this, from

@=exp 88 &..—@0(x, &)

al - a
go= x —e e *y. . . .. (x)

s=o ~ ~

L, = yo@olD+40tl~otl40ID+402

+ 2
m" '$0@olF + 2

m" '@0@0+inter. terms, (12)

we deduce

g~tu/2g + qa~ao/2 —1 g pa+ &

y
1 2~re/2 —2 g /tl y

1 2+ ' ' ' +F~Faa 2
1 1 2 2

+m" AF+Q Q . . . e
t

1 ala2 al a"+ + H.c. (13)
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can be added, just as in four dimensions (see Ref. 8, p.
343), as gauge-fixing terms, we arrive at

a1a1 ol Ql 1 ciu

(14) W= VCI "/2V)D (24)
5~, 8 Bpj6 = + 6~p p

from which we deduce

1 ci& 1 Ale . Q ]~Gl/2

a1a1 a a (15)

From the Lagrangian (13) we immediately get the wave
equations

m "/'I: + "/2W = 0, Z + m "/2g = 0, (16)

cu/2~ ~1 ' ' '
~&a ~ cu/2 —1;0 ~1~~1 ()/a . a2 cu

a1

/6 Q . . . e ' "—m" $,=0etc.
a1a1 a2 ''' a

(17)

(18)

(o""-m")X=o . (19)

Except for d = 4(c0 = 2) the wave equation (19) does not
coincide with the Klein-Gordon equation. Expression (19)
means also that the free propagators should contain the fac-
tor

Equation (16) reduces to the usual ones in four dimensions
(see Ref. 6).

For arbitrary v, we can eliminate F" from (16), take the
derivative 9 of (17) and use (18) to eliminate ct.

etc. In this way, we obtain for any field component X the
free equation of motion:

which means that the free equation of motion for the Abeli-
an gauge field V is

o "/'V =0, (25)

leading to the propagator (20) with m = 0

1= 1
pccc (~2)m/2

(26)

The resultant propagators (20) and (26) show then that it is

interesting, or convenient, to gain some confidence with
their use. The Fourier transform of (26) is easily found
(see Ref. 9):

W(P) =2'"-" 2"r 2 ——" R 4"-
2

(27)

n = ~ —4v = 22v —1 4v 2d/2 —1 (28)

which &s negative for d = 4 but positive for any integer value
of v greater than one, except v=2(n =0).

When taking the finite part of (27) (note the pole in the
I functions) we get an additional InR factor. So we have

where R = g; x, 2 —xo +i 0.
The behavior of (27) with R depends on the number of

dimensions through the exponent

P=
p" —m"

1
(+2)ccc/2 (m2) /2cc (20) 6 — for d =41

R

We can treat real gauge superfield V in an analogous way.
In d = 4, and for the Abelian case we have (see Ref. 6)

6 —lnR for d =8

G(R) —R lnR with n & 0 for d=4v, v & 2

(29)

W= e PVD D DpV (21)

"VD., D. „D"D. D. ViD . (22)

Using the identity

n) . cc ( —I)~
s=osI M —s I

A natural supersymmetric generalization of (21) is (see
Ref. 7)

p" —m"

Ca) I
m

, p
(30)

Using now form (27) we get

We see that for v ) 1 the Green's function has a confining
form. It grows with R.

Let us go now to the massive case. We write the propa-
gator P in the form

&&D ~ D D D g cu/2
a1 p g+ 1

a

and noting that the extra terms [as compared with (22)]

CO I
2'"7r'" ~ I'(2v —(co/2) l ) mR

im "R4" ~~ I'((~/2) l ) 2
(31)

"VD D D"D D V, for se —,as+1
Using I (x)I (1—x) = 2r/sin2rx for x = [2v —(cu/2)l], (31)
can be written as

( ) 2r 2 (mR/2) '7r

im" R4",c I'((c0/2) l )I (1+ (c0/2) l —2v) sin((40/2) I7r)
(32)

Each term of the series 3.2 is ill defined near (c0/2)i =integer. We then write [with Z=(~/2)l] each term of the sum in

(32) as
(mR/2)"2r( —1)"

I'I =
I (z)I (1 —2v+z) sin2r(z —n)

Near Z = n we drop the pole term and keep only the finite part

Pfj, = (z —n) F (z)8
Bz z=n

(33)

(34)
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Going back to (32) we obtain for integer cu

1 1

~(p) (4m)'" (mR/2)"'
21 R —p —!—p —!+1—2im"R4" i~t I'((co/2)l)I'((cu/2)l +1 —2p) 2 2 2

(35)

To check that (35) is the Green's function of (19), we apply
the operator 0"!. The first term (!=1) is the fundamental
solution of (25) (see Ref. 9, p. 276), so that the result of
operating with is just a 5 function. For the rest of the
series we use

I'((co+a+2)/2)I'((co+ o+4v)/2) Rr ((n+ 2)/2) I'((a+ 4v)/2)

and the equation obtained by taking the derivative of this
equation with respect to o. . In this way we can show that
(35) is indeed the fundamental solution of (19). The sum
of the pole parts in (32) is then a solution of the corre-
sponding homogeneous equation. The addition of this sum
would then be equivalent to a modification of the boundary
behavior of the chosen Green's function. In four dimen-
sions that ~ould be equivalent to a modification of the

causality requirement for the usual Feynman function.
If we compare (35) with the Fourier transform of the

usual Klein-Gordon equation in, dimension d, i.e.,
W(I/(p' —m')), see Ref. 9, p. 362, we see that it is a sub-
series where only the (col/2) th terms (!=1, 2, . . . ) are
summed up.

This is as far as the configuration variables refer. The
propagator (@@) contains the usual 5(H) = 8" T.hus the
product of two such terms is zero, which leads to the "no-
renormalization" theorem.

The presence of tachyons and ghosts is a problem in the
application of this regularization scheme but, nevertheless,
it is an alternative which should not be abandoned.

One of the authors (J.J.G.) is indebted to Professor
D. Amati for encouraging discussions on the subject.
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