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Low-energy scattering by spherically ‘'symmetric potentials is studied in the light of the shifted large-

dimension expansion technique.

The present approach yields fairly accurate results for the scattering

lengths and reasonable ones for the phase shifts for a class of potentials which can support up to one bound
state. Remarks are made stressing the advantages of using the shifted large-N technique as compared to

the unshifted formalism.

The large-N (N being the spatial dimensionality or de-
grees of freedom) expansion method with a built-in natural
generalization of the quantum theories in which 1/N is a
new expansion parameter has already generated immense
activities by proving its efficacy in widely different fields.!~!°
One of the advantages of using this method is that the
large-N technique is not an expansion in powers of the po-
tentials and, hence, it can be used for problems which do
not manifestly involve a small coupling or an expansion
parameter for doing the perturbation theory. At a mundane
level, the method provides surprising simplicity in obtaining
an approximate solution of the Schrédinger equation. How-
ever, most of the previous works were restricted to bound-
state problems only. Quite recently, one of us (R.S.G.)
with his co-workers suggested an intuitive approach'® to ob-
tain estimates for the scattering lengths for spherically sym-
metric potentials. In this approach, one needs to replace the
actual potential by an effective §-function pseudopotential in
the limit of large dimension and the strength and the posi-
tion of the equivalent 8 potential are determined in terms of
the parameters of the true potential. )

It has been observed that although the results obtained
from this simple-minded prescription exhibit the broad qual-
itative features of the variation of the scattering length as a
function of the strength (depth) of the potential, numerical
agreement of the predicted values with the exact ones is
rather poor, particularly when the strength of the interaction
approaches the optimal strength necessary to produce a
zero-energy bound state. In fact, for all the potentials con-
sidered by these authors, the scattering length becomes in-
finitely large negative at a strength much lower than the
value which is actually required for the appearance of the
first bound state. Moreover, the phase shifts computed ac-
cording to their prescription show significant deviation from
the exact ones.

We suspect that the fact that the position of the effective
8-function potential which was obtained to be completely in-
dependent of the strength of the actual potential'® may play
a crucial role in yielding these serious discrepancies. The
purpose of this Brief Report is to demonstrate that the re-
quired strength dependence can be generated through the
use of the shifted 1/N expansion proposed recently by
Sukhatme and Imbo.” Needless to mention, the shifted
large-N technique has been shown so far to be more effec-
tive and accurate than the unshifted large-N expansion
method for the bound-state properties of a number of po-
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tentials.””> The present extension of the shifted 1/N for-
malism to the scattering domain indicates that it is equally
effective in yielding more accurate estimates of the scatter-
ing lengths and the phase shifts in comparison to those ob-
tained within the framework of an unshifted 1/N expansion
scheme.!® For the sake of illustrating this point, we prefer
to discuss scattering by the Gaussian potential for which a
maximum discrepancy was observed [see Fig. 1(a) of Ref.
10]. The improved results for other short-range potentials
are then briefly mentioned.

The radial Schrodinger equation in N spatial dimensions
for an arbitrary spherically symmetric potential ¥ (r) is

_m & (K1) (K =3
2 2
2m dr 8mr

+ V(r)]u,(r)=Eu1(r) ,

¢Y)

where K =N +2I. Following the prescription of Sukhatme
and Imbo,” Eq. (1) can be recast to the form

d*uy L(L+1) 2m
- +[k2___rz__——ﬁ—2~V(r) u(r)=0, 0))]
in which
k2=2mE/[r? ,
3)

L=(K+s-3)/2,

where K =K — s, s being the shift parameter. For potentials
less singular than 1/r%, the radial function u;(r) behaves as
rL+1 for small r. Accordingly, for short-range potentials,
the product ¥ (r)u;(r) occurring in Eq. (2) will have a max-

" imum which in the limit of large N with the appropriate

scaling can be replaced by the approximate potential'®

Verr(r) = —A8(r—a) , 4
in which the effective strength parameter is given by
A=e"P2a/f"(a)]V? ©)

and the location of the & potential is determined from the
condition

so|

o , 6

r=a

where

)=V + (L +Dlar . @)
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FIG. 2. s-wave scattering phase shift as a function of £ (in loga-
rithmic scale) for the Gaussian potential with depth V=0.4. Exact
values are displayed by the full curve while the shifted and the un-
shifted large-N approximates are shown by the broken and dotted
curves, respectively.

and (14). The phase shifts calculated in the energy range
k=0.001 to 10 for Vy=0.4 and Vy=2.2 are shown in Figs.
2 and 3 along with the results obtained numerically. The
agreement of the shifted 1/N results with the exact ones is
satisfactory at least in the low-energy region. We find that
the phase shifts predicted by the simple approximate formu-
la (10) are accurate by about 5% for k up to 0.5 for
Vo=0.4. The results become gradually inaccurate for a
higher strength of the potential. Furthermore, as the ener-
gy increases, the disagreement becomes more pronounced.
Similar features have been noticed in cases of other short-
range potentials. We guess that this discrepancy may be re-
duced by incorporating the appropriate energy dependence
of the shift parameter in addition to its dependence on the
strength coefficient V. It is rather interesting to note that
although the numerical accuracy decreases in the high-
energy region, our pseudopotential yields the same asymp-
totic behavior, 8y(k) ~— 1/k as k — oo, as one obtains in the
Born approximation.

We conclude that the shifted large-N technique, ‘which
has proved its efficacy in dealing with the nonrelativistic
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FIG. 3. s-wave scattering phase shift as a function of k (in loga-
rithmic scale) for the Gaussian potential with depth V=2.2. Exact
values are displayed by the full curve while the shifted and the un-
shifted large-N approximates are shown by the broken and dotted
curves, respectively. )

bound-state problems, seems to play a vital role in providing
a consistent description of the scattering phenomena. To
our knowledge, this observation has not been made earlier.
Our work extends the scope of applicability of the idea
behind the shifted large-N method proposed by Sukhatme
and his co-workers. One of the merits of our approach is
that it brings significant simplicity in the computations of
scattering lengths and phase shifts for a number of useful
potentials without sacrificing the elegance of an analytic
treatment. Furthermore, the present method, although far
from being rigorous, exhibits certain promising trends which
require careful examination. It is certainly worthwhile to in-
vestigate the phase shifts for the Coulomb plus short-range
potentials.'* In recent times, nice results have been ob-
tained for the energy-dependent effective range function
which predicts the phase shifts correctly even at high ener-
gies.!> The present method can be extended to obtain an
equivalent representation for the effective range function
for any arbitrary angular momentum state.

This work has been supported in part by a research grant
from the Natural Sciences and Engineering Research Coun-
cil of Canada to one of us (Y.P.V.).
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For the Gaussian potential V (r) = — Voe""2 with the ap-
propriate scaling u= @K, we obtain from Egs. (4) to (7) the
effective pseudopotential in the limit of large K (i.e., large

N),
- _2'2" 1% 7
% 24K

and next substituting the value N =3, the approximate po-
tential in three dimensions is obtained to be

_ 1/2
“KAT_ s(r—+(1/@)V?)

o€

Vs = —\s(r—a) ,

with
A= Vo(m/2u)V2expl — (3+21—5)/4] ,
1/2
a=_l_ 34+2/—s (8)
2 “

The partial-wave phase shift for the § potential is given by'!
tand; = kxa’j;(ka) 1%/[1 + k xa%j;(ka)y(ka)] , )

which for the s wave takes the form

tando= A sin?(ka)/[k — A sin(2ka)/2] , (10)
and the corresponding scattering length is given by
ase=—1a?/(1—ra) . 11)

It may be seen from Eq. (8) that although the effective
strength A of the pseudopotential depends on both the
depth (V) and the range (u) parameters of the actual po-
tential, the position a of the approximate Dirac-8§ potential
remains independent of V,. This feature seems to be un-
realistic in a sense that it is quite natural to expect that the
location of the effective potential should also alter as V),
changes. Unlike in the case of the unshifted 1//N expansion
calculation,'® we find that due to the appearance of the shift
parameter s in a, there is a scope to adjust this parameter to
obtain the desired strength dependence of the position
of the effective 8 potential. For bound-state problems,
prescriptions have been suggested””® to fix up the shift
parameter in terms of the potential parameters. For the
scattering states, it is true that apparently there is no first
principle to ascertain the functional dependence of s on V.
However, it is found that an intuitive choice

s=In(1+aVy) (12)

yields a dramatic improvement of the values of the scatter-
ing lengths in comparison to those obtained by the unshift-
ed 1/N technique.'® Furthermore, it leads to estimating the
phase shifts over a wide range of energies with improved ac-
curacy.

To determine the parameter « in (12), we employ the cri-
terion that the scattering length becomes infinitely large
negative at Vo= V,, where V) is the minimal strength of the
attractive potential necessary to support at least a zero-
energy bound state. From Eq. (11), we then require

A Vp)a(Vy) =1 13)

For the Gaussian potential, a stringent analytic lower bound
V,=2.684 was obtained by Glaser, Martin, Grosse, and
Thirring.!?2 Using this value in Egs. (8), (12), and (13), we
finally get the shift parameter for the Gaussian potential
(with w=1),

s=1n(1+4.4439V,) 14

BRIEF REPORTS 32

As we have already mentioned that the functional depen-
dence of the shift parameter on the potential strength has to
be made in an ad hoc manner, Eq. (12) is not adequately
motivated and so one should try with alternative choices.
The shift s =5, at Vo=V, has been chosen in such a way
that s=0 at Vy=0. In fact, there may be many interpola-
tions between these two points—Eq. (12) being one of
them. Another simpler choice is the linear form, s =aV,,
which in conjunction with Egs. (8) and (13) gives

5 =0.9299V, . (15)

Using either of the two forms (14) or (15) in Egs. (8) and
(11), we compute the scattering length (in units of
2m/k*="1) for different strengths of the potential and the
results are compared with the exact values graphically in
Fig. 1. For the sake of assessing the improved accuracy of
the present approach, the scattering lengths obtained as a
function of V, in the framework of the unshifted 1/N ex-
pansion method are also depicted. The surprising improve-
ment of the present approximation with logarithmic depen-
dence of s on Vj is quite apparent from the diagram. As a
specific example, we like to mention that for V=2, while
the unshifted calculation!® predicts a,,= — oo, the shifted
1/ N technique with s given by (14) yields a,.= — 3.30 which
is quite close to the exact value ag,= — 3.48.

For other short-range potentials considered by Sinha-Roy
et al., a similar procedure to that delineated above has been
followed. For the solvable potentials such as those of
Hulthén, Bargmann, and Péschl and Teller, the threshold
depth ¥V, necessary to support a bound state is known
analytically. For the exponential and Yukawa potentials, we
take the appropriate values of V, obtained by us!? using an
iterative trace method. In all cases, we obtain much im-
proved results for the scattering lengths, particularly in the
neighborhood of the first bound state.

The s-wave scattering phase shifts for different strengths
of the Gaussian potential are computed from Egs. (8), (10),
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FIG. 1. Scattering length (in units of 2m/k2=1) as a function of

2

the potential depth for the Gaussian potential V(r)=— Vye ™ "":
exact (solid curve), unshifted (dotted curve), shifted with the shift

parameter (14) (dashed curve), shifted with the shift parameter
(15) (dot-dashed curve).
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