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Isometrics of homogeneous Godel-type spacetimes
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The isometrics of homogeneous Godel-type Riemannian spacetimes are reexamined. An extension of
the Raychaudhuri-Thakurta-Rebouqas-Tiomno analysis is made. It is shown that the m =20 case admits a
seven-parameter group of motions. Comments on the unique Godel-type causal model are made. The
isometrics for the degenerate Godel-type metrics (0 = 0) are also obtained.

INTRODUCTION BASIC EQUATIONS AND RESULTS

In 1949 Godel found a solution of Einstein's field equa-
tions with a cosmological constant for incoherent matter
with rotation. Despite its various striking properties, the
cosmological solution discussed by Godel has a well-
recognized historical (and even philosophical) importance,
and has given rise to a noticeable stimulus to the investiga-
tion of rotating spacetimes. In particular, the search for
Godel-type rotating models has received considerably more
attention in recent years, and the literature on those kinds
of rotating solutions is fairly large today.

However, apart from Godel's paper, the problem of the
spacetime homogeneity of Godel-type manifolds was con-
sidered only in 1980 by Raychaudhuri and Thakurta. 3 They
found the necessary conditions for a Riemannian Godel-
type manifold to be homogeneous in space and time
(hereafter called ST homogeneous).

Two years later Rebouqas and Tiomno investigated the
homogeneity of Riemannian spacetimes of Godel type, and
proved that the Raychaudhuri-Thakurta conditions are also
sufficient for a Godel-type Riemannian manifold to be ST
homogeneous. However, not only Raychaudhuri and
Thakurta but also Rebouqas and Tiomno have assumed ex-
plicitly or implicitly that the vector field u™=50is a left-
invariant vector field on the Lie group of isometry, viz. ,

~ttu = [K, u] = 0

where K stands for a generic Killing vector field. In other
words, they have restricted their study to the time-
independent Killing vector fields.

Our major aim in this paper is to extend these investiga-
tions so as to include the time-dependent isometrics. It
emerges from our study that among the new Rebouqas-
Tiomno solutions, the special one with m =26 is peculiar
not only as far as its causal properties are concerned, but
mainly because it has a seven-parameter maximal group of
motions (67), while the remaining nondegenerate Godel-
type solutions have a G5 only. As neither Raychaudhuri
and Thakurta nor Rebouqas and Tiomno have discussed the
limiting case 0, =0, we also examine the isometrics for this
degenerate Godel-type manifold, showing that there is a
six-parameter isometry group, G6.

This may be written as

dS = 'g (g) (jy) 9 ~ 8(0) ~(1) ~(2) ~(3)
2 (A) (B) 2 2 2 2

where q(~)(~) is the Minkowski metric and where the one-
forms 8" =e "dx are clearly

=dt+H(r)dg, 8 ' =dr, ti =D(r)d@, 8 =dz

Denoting a generic Killing vector field by E ~)
= (T,R,P, Z), the ten Killing equations in the Lorentz frame
defined by 8( ) can be written as

Vr=o T, —Z, =O

R, =O, Z, —R, =0

Z, =O

D ( T„—RE) —H, P = 0

DPs+ Zy —HZ& = 0

+HrR —D

Ry HRs DrP +DPr = 0

Py HPi+DrR =0

(6)

(10)

where the subscripts denote partial derivatives.
Let us first consider the general solution to Eqs. (4)—(6).

From (4) and (6) one obtains

T=ze(r, @)+a(r, @)

Z = te(r, @)+K(r,y),
where 8, a, and K are arbitrary functions of their arguments.
Similarly, from (5) and (6) one finds

Jt = z~(t, y) +g(t, y),—

Z = r~(t, y)+~(t, y),
(14)

Consider a four-dimensional Riemannian manifold en-
dowed with a Godel-type metric:

ds = [dt+ H(r)d@] —dr —D (r)dQ —dzz
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It seems worth emphasizing that the extension of the in-
vestigations of Raychaudhuri and Thakurta and Rebouqas
and Tiomno in this case has given rise to the present class
of Godel-type ST-homogeneous Riemannian manifolds with
a maximal group of isometrics containing seven parameters.
Moreover, the present class corresponds to the unique
causal Godel-type solution found by Rebouqas and Tiomno.
In other words, the breakdown of causality of Godel-type
was avoided through a more symmetric model. '

Second and third cases. II. m ( 0, 0 &0. III. m = 0,
0 &0. As far as these two cases are concerned, a similar but
fairly lengthy analysis shows that in both cases there is no
additional Killing vector field besides those discussed by
Rebouqas and Tiomno.

Fourth case. IV. m~0, A = 0. For completeness we
shall examine the isometrics of this degenerated Godel-type
manifold. By trivial coordinate transformation one can
make 0= 0. We start from the general expressions
(16)—(18) and consider the Killing equations (7)—(11)
sucessively, with 0= 0.

Substituting (17) and (18) into (7) one finds that the Kil-
ling equation is satisfied only if X = 0 and

a(r, @)= ra (@)+ c (@),
g(t, @)= ta (@)+ e (g),

(50)

(51)

with a, c, and e arbitrary functions. The components T,R, Z
then become

T = ze(@) + ra (P) + c (@),
R = —zv(@) + ta (@)+ e(@),

(52)

(53)

where we have set m = + 20 for definiteness.
The corresponding Lie algebra has the following nonvan-

ishing commutators:

[K3 K4] = —mK5, [K4,K5] = IK3, [K5,K3] = —mK4,
(49)

[Kt,K6] = —mK7, [K6,K7] = mKt, [K7,Ki] = —rnK6

where u is an arbitrary function. The expressions (52),
(54), and (55) are now easily simplified. If one introduces
the simplified expressions into Eq. (10), one finds that this
equation is only satisfied if

v = const, a = const, p = const= K2,

c = const= Ki, u (r, @)= D„e&+Dcu (g), (59)

where cu is an arbitrary function. Again expressions (58)
and (59) can be used to simplify Kt" i = (TR,P, Z); in doing
so and next using the remaining Killing equation one ob-
tains

a = p = 0, co = const =—K6, (60)

e =K4cos@—Kssinp (K4, Ks= const) (61)

Therefore, the solution for m &0 and 0 = 0 turns out to be
given by Eqs. (52)—(55) together with the conditions
(56)—(61); in the coordinate basis, the six Killing vector
fields can be written as

Ei = 8i, E2= B„E3=zg, + tQ,

K4 = cos QB, —D,D 'sin $84, (62)

K4 = —sin @8,—D,D 'cos @9&, K6 = 9&,

with the nonvanishing commutators

[K] K3] Kz, [Kz,K3] —K]

[K4,K5] = —m K6, [K5,K6] = K4, [K6,K4] = Ks
(63)

We notice that when rn = 0 =0 the line element (I) is
clearly Minkowskian. It admits the Poincare group.

Finally, we should mention that the Killing equations, as
well as all vector fields we obtained, were checked through
the computer program KILLNF, written in the symbolic ma-
nipulation language sHEEP.

Z = te(@)+ r v(@) +p(4),
while Eq. (8) gives immediately

P = —zD '(te&+ r v&+ p&) + n (t, r, @),
with n an arbitrary function.

Now Eq. (9) implies

= const = K3

n (t, r, p) = tD '(ra4, + c~) + u(r, @),

(54)

(55)

(57)
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where e, g, and 7r are arbitrary functions. Comparing (13)
with (15) one has

Finally, we substitute (27) and (28) into (10); the result-
ing equation is satisfied only if

Z = r [rid. (p) +~(@)]+rv(p)+ p(g),
which, together with (13), enables us to rewrite (12) as

(16)

and

f&@+f= —D u„+D, u, = const = q (30)

7' = rz ~(@)+ z ~(@)+ i(r, @) . (17) g~+ (20/m) h = h~ —(20/m) g = [1—(2Q/m) ]h

Alternatively, (16) can also be used together with (15) to
identify e, and then we rewrite (14) as

R = —rzZ(y) —zv(y)+g(r, @) . Integrating (30) we obtain

= [I —(2&/m)']g =0 .

(31)

Equations (16)—(18) do not depend on the metric functions
D (r) and H (r), and are the general solution to Eqs.
(4)-(6).

The function P(t, r, @,z) is yet completely arbitrary. How-
ever, it was shown by Rebouqas and Tiomno4 that all ST-
homogeneous Riemannian manifolds endowed with a
Godel-type metric (1) are given by

(i) H = [1—cosh(mr)], D = —sinh(mr), (19)20 1

m m

f (@)= ~4sin@ + x5cos@ + q (x4, ~q = const)

u(r) = qD —v3D„—K\/(20 ) (K3, Kl = const)

(32)

(33)

(Ia) g=h =0

(Ib) g = a cos@+ b sing, b = a sing —b cosP

(34)

As far as (31) is concerned, we distinguish two different
classes of solutions, namely,

with m =const& 0, m =40, with a, b=const (35)

(ii) H =, [cos(p, r) —1], D = —sin(p, r)2Q =1.
p JtL

(20) Class la. In this class Eqs. (26)—(29) together with
(32)—(34) give

whenever m = —p, &0,

(iii) H= —Qr, D =r, if m =0 (21)

where .0 = const in all cases. Therefore, for ST-
homogeneous spacetimes we have H, = —2QD, and then
(7) gives

T = ~l + 2D [~3D„+(x4sin@+ ~5cos@)D]

R = ~4cos@—~5sin@

P = —~3mD —(x4sin@+ ~scos@)D,

Z =Kg

(36)

(37)

(38)

(39)

2QP = —
l,, (r, $) +g, (t, $) —2zk($) (22)

T = a(r, @), R = —vz+g(r, g)

2QP = —T„(r, @)+g,(t, @), Z =~z+ vr

(23)

(24)

Inserting (23) and (24) into (9) one finds that the last
one is satisfied only if v = 0 and

Equations (16)—(18) and (22) are the general solution to
the Killing equations (4)—(7) for all ST-homogeneous
Godel-type metrics. They depend on six arbitrary functions,
which will be determined by the remaining Ki11ing equations
for each different class of Godel-type ST-homogeneous
Riemannian manifolds, as follows.

First case. I. m & 0 and 0&0. In this case the functions
H and D are given by (19). Substituting (16) and (22) into
(8), after some rearrangements, one learns that the Killing
equation (8) is satisfied only if X = e = 0, v = const, and
p= const—= vz. Equations (16)—(18) and (22) then simplify
to

The Killing equation (11) 'is identically satisfied. Thus the
corresponding Killing vector fields can be written, in the
coordinate basis defined by (1), as

K, = B„K7=B„Kl= (2Q/m) ri, —mug

K4= —HD 'sinful, +cos@rl„—D„D 'sin$ri~

K5= —HD 'cosgd, —sinful, —D,D 'cosPB~

(40)

(41)

(42)

The Lie algebra has the following nonvanishing commuta-
tors:

[K3 K4] = —mKq, [K4,K5] = mK3 [K5 K3] mK4

(43)
It should be noticed that the expressions for all Killing

vector fields are time independent.
Class lb. Making use of (26)—(29) together with (32),

(33), and (35) we obtain the tetrad components Kt"l of
seven Killing vector fields, which in the coordinate basis can
be written in the form

f(t, @)= f&(P) + g (g) sin(20 t) + h (P)cos(2Q r), (25)
K~ = ~r. K2= ~z. K3= Br mQ (44)

l, (r, @)= T = 20 [Df (@)—u(r) ] (26) K4= —HD 'sin @8,+ cos @8,—D,D 'sin $8&, (45)
where g, h, and v are arbitrary functions. The remaining
components of K " can now be simplified to give

R = f~(P)+g(@)sin(20t)+h($)cos(20r) (27)

P = u, (r) —D„f(P) +g (@)cos(20 t) —b (@)sin(20 t)
(28)

Z =Kg

K5 = —HD 'cos $8, —sin $8, —D,D 'cos @8&,

K6 = —HD 'cos (mr + @)8, + sin(mr + @)6,

+ D 'cos(mt + @)8@,

K7 = —HD 'sin(mt + @)rl, —cos(mt + g) 8,

+D 'sin(mt+@)B~,

(46)

(47)

(48)


