
PHYSICAL REVIEW D VOLUME 32, NUMBER 12

Meson electric form factor on the lattice
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Theoretical aspects of calculating the electric form factor of lattice hadrons are presented. We

use the staggered formulation of lattice fermions and deal specifically with SU(2) color; however, the

techniques described are easily adaptable to other situations.

I. INTRODUCTION

Recently there has been considerable interest in Monte
Carlo investigations of hadron size and internal struc-
ture. ' Electromagnetic properties provide clean and ex-
perimentally accessible information for this purpose. '
We have shown, in Ref. 1, that a lattice computation of
the electric form factor and the rms charge radius of ha-
dronic states is feasible. Results were presented for the
electric form factor of the pseudo-Goldstone meson
within the staggered formulation of lattice fermions.
It was found that the quarks in a lattice Ineson are indeed
localized in a compact object significantly smaller than
the lattice volume. In this paper we present a detailed
derivation of the formulas for the three-point function
and the electric form factor used in Ref. 1. We consider
only the pseudo-Goldstone meson state and use SU(2)
color, There are no difficulties, in principle, to extending
these considerations to SU(3) color and to other lattice
hadron states.

An advantage of the staggered fermion scheme is that a
remnant global chiral symmetry is preserved. ' The
pseudo-Goldstone boson associated with the spontaneous
breakdown of the global axial symmetry (in the massless
limit) can be interpreted as the generic pion. The con-
struction of correlation functions for hadronic states with
good quantum numbers in this formalism is not straight-
forward. It is usually done by using nonlocal flavored
Dirac quark fields made up of staggered fermion fields on
hypercubes in the lattice. ' For some states, in particu-
lar, for the pseudo-Goldstone (pion) state, it is known that
the mass can be determined from a two-point function of
operators which are local combinations of staggered fer-
mion fields. This is advantageous for numerical calcula-
tions. The main result of this paper is that pionic matrix
elements of the electromagnetic current for low-
momentum states can also be calculated using operators
which are local in the staggered fermion fields.

II. DERIVATION

—Up (x —ap )X~(x —a„)]

where

+(ma) gX (x)X (x),
x,f

a„(x)=a„(x+a„)=

1, p=1
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( —1) ' ' =3
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The particle content of the theory is usually given in
terms of flavored Dirac quark fields (q fields). These are
related to the X fields by a linear transformation:

q„'(z) = g I „'[U„(z)] "X„(2z+2)), (2)

q ~'(z)= QX~(2z+2l')[U„(z)] "I
q
',—aa

7l'

where (r„=r„,r5=rir2r3r4)
I 1 I2 ~3 I4I ~=Zl X2 Z3 Z4

and

(3)

(4)

associated with the staggered fermions is not useful for
constructing charged states since an "electric charge" de-
fined within these flavors is not conserved. There does
exist a conserved vector current within this formulation; it
has the effect of assigning identical charges to all four
staggered fermion flavors. We therefore introduce two
sets of the four flavors, labeled by u and d, with charges
q" and q, q

"—q = 1. The staggered fermion action with
gauge fields and a two-component g field is

SF( U) = —, g a„(x)X~(x)
x,p,f=Q, d

X [U„(x)X~(x +a„)

In this study, we will want to model a non-flavor-
singlet meson with a net nondynamic electric charge.
Specifical)y, we will be considering the pseudo-Goldstone
meson (the generic pion) associated with the remnant con-
tinuous axial global symmetry present in the staggered
scheme of lattice fermions. The usual flavor structure

U„(z)=[U&(2z)] ' [U4(2z+21i+2lz+'93)]

g& is a lattice vector such that q&
——0 or 1 for each p in-

dependently. Grouping the 7 variables into hypercubes as
in (2) and (3) puts the action (1) in a form that allows one
to identify interpolating fields with given quantum num-
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bers (up to parity mixing).

A. The two-point function

The latin indices are generic including spacetime, Dirac,
flavor and color. Since the transformation from q to X is
linear, (9) leads to

A m+ interpolating field" is given by

9 A(z)(vsrs )QA(z)

= —, g ( —1)"X~(2z+g)X~(2z+q),

where ( —1)":—( —1) " " and z =(z, t, ). Consider this
pion's zero-momentum lattice propagator:

M +(t, ) = g (0
~

T(P(z)P (0))
~

0) . (7)

M, (t, )= ——,'Z-' g ( —1) 1+v
I

Z7 YJ7 7J

X(X'(2 + )X",(2 + )

XX g(g')Xg(g') ),
where

—S —SF
( . )—:fdUdXdXe ' ( . ).

(12)

Treating the q, q as field-theoretic variables, we have

(V ~(XsXs )e5'= ep(Xs—Xs )e~ (8)

T(0.( it~)p—,( it~) ' '—) Io)
=Z-' f dUdgdge (g.(t~)g, (t~) ), (9)

where g=g y4, Z is the normalization integral and

t0 Opj=@p t4 OpI=0 (10)

In contrast, the independent Grassman integration vari-
ables g and g anticommute:

Ik apl =IN Ppj=tk kpI=0.

We now use the fundamental identity for zero-
temperature field theory'

The X,X fields are now being treated as integration vari-
ables.

Let us now shift the position on all the starting points
of the propagator (12) to the origin. This shift entails the
assumption that one may do an even-odd lattice-point
redefinition on unit hypercubes. This is allowed in the
quenched lattice vacuum with periodic or antiperiodic
boundary conditions on the quarks. However, coupling
the time boundaries together leads to difficulties when the
charge operator is introduced since the amount of charge
that flows in the forward time direction now depends on
the value of t, . Thus, we will prefer to adopt nonperiodic
boundary conditions in the time directions for our numer-
ical simulations. For the following derivations we will as-
sume, for simplicity, a lattice of infinite time extent.

Performing the shift to the origin on starting positions
as well as the g4, g4 sum, (12) becomes

M +(t )= —2Z g ( —1)"([2X~(x,2t~)X~(x, 2t ) —X~(x,2t + 1)X~(x,2t +1)

—X g (x, 2t, —1)Xg (x,2t, —1)1Xp(0)Xp(0) ), (13)

with ( —1)"—:( —1) ' ', x denoting spatial positions in the original lattice.
We write the action (1) as

Sp.( U) = g X M pXp,
a,P

(14)

where the fermion matrix M~p is proportional to the unit matrix in u, d flavor space. Explicitly,

M„g;yg=(tn&)&~y&gg+ g g&„(&)I[U„(x)1"&.,s, —.—[U„(x—u„)1" &&ad+a I

in the space-time (x,y) and color (A,B) indices. From (15) one may show that

M„'g.yg ——( —1)"+"Myg. g .

This component statement may be written as a matrix relation and inverted to yield

[M '.~;sa1*=(—1)"+'M 'ya'~ .

We also have that'

o.2Mo2 ——M*

(17)

(18)

where o2 acts in color space.
Using standard fermion integration formulas, setting detM=constant, replacing the gauge field integral by a Monte

Carlo average over configurations, and using (17) above now gives
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M +(t, ) = g I2 trM '(x, 2t, ;0)[M '(x, 2t„0)] +trM '(x, 2t, + 1;0)[M '(x, 2t, +1;0)]

+trM '(x, 2.t, —1;0)[M '(x, 2t, —1;0)] I, (19)

where the trace and Hermitian-conjugation symbol refer
to color space.

We see from (19) that the pion propagator can be ex-
pressed in terms of the quantity

I

In the future it will be important to learn how to develop
methods in the Kogut-Susskind formalism to enable
higher momenta measurements.

Following steps similar to the above with the definition

G(0;t) =— g trM '(x, t;0)[M —'(x, t;0)].. =1 (20) G(p;t)=— pe ' '"trM '(x, t;0)[M '(x, t;0)]t,. =1
x, c

which is just the correlation function for the local interpo-
lating field ( —1)"+'X (x, t)X"(x,t). It can be shown for
this correlation function that' '

we expect to have

(25)

G(0;t) —Z(0)e +( —1) Z'(0)e
t»1 (21)

The mass I, denotes the exotic state 0+ . Since evi-
dence for such a state is absent both in the physical world
as w'ell as in our Monte Carlo simulations, we will drop
the second term in (21). Then by inserting a complete set
of states in (7), and by using (21) in (19), we establish that

N,
~
(0

~
$(0)

~

sr+(0) ) (
(22)

2(1+e )(1+e )

Z(0) =

where N, is the number of elementary spatial cubes on the
doubled lattice and the ket

~

m.(0) ) denotes a zero-
momentum single-pion state.

We also need the two-point function for states with
nonzero momentum' p

—Et
G(p;t) —Z(p)et»1

I

assuming the continuum
=(I +p )' . This gives

(26)

dispersion relation Ez

Z( )= -Ea E a2(1+e ' )(1+e ' )

(27)

B. The three-poirit function

In this section we discuss matrix elements of the con-
served vector (electromagnetic) current. The current
operator can be derived using the fact that the action (1)
is invariant under the global transformation

1

MP+(t, )= g (0 T[e 'P' *)P(z)gt(0)]
~

0) .
Z

(23)
X(x)~e' X(x),

X(x)—+X(x)e

(28a)

(28b)

However, upon shifting of positions to the origin this
propagator becomes awkward to work with. It is easier to
deal with an expression which assigns a different phase
factor to each point in the original lattice. Therefore in
(23) we make the replacement for the fields P(z), P(0)

i P (2z)y(z—).
—,
' g( —1)~e ""*+~'X (2z+q)X"„(2z+q) .

rl (24)

In the continuum limit for
~ p ~

&&~/2a the two descrip-
tions should coincide since the spatial cubes over which
the different phase factors are distributed are small com-
pared to all significant length scales. In practice, this lim-
its our Monte Carlo form factor results to low momentum
values, which is sufficient to extract the charge radius.

for each flavor f. The equivalent transformation for the q
fields is

q (z) e in( 1s 1)q (z)

q( ) q( )e
—'Q(1 1)

(29a)

(29b)

When the transformation (29) is made local on the dou-
bled lattice by assigning distinct phase factors, Q(z), to
each hypercube, we may use

5Sp (u)

i6[bpQ(z)]

where b,&Q(z) =Q(z +a& ) —Q(z). We give the explicit ex-
pression for the current operator only for the time com-
ponent (the charge density):

j4(z) = —g —,a4(g )[X(2z+g, 2t, + 1 )U4(2z+ g, 2t, + 1)X(2z+g, 2t, +2)

+X(2z+ g, 2t, +2) U4 (2z+ g, 2t, + 1)X(2z+g, 2t, + 1)] . (30)

Notice the nonlocality of this charge density as well as the fact that it is positioned between hypercubes in time.
As was mentioned previously in connection with the nonzero-momentum two-point function, it is easier to deal with

expressions that assign phase factors to points in the original lattice. We therefore use (24) and make the replacement
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pe ' j4(z) )—+ g e'& "j4(x, 2t, , +1),
Z$ X

J4(x t) =———,~4(x) [X(x,t) U4(x, t)X(x, t + 1)+X(x,t + 1)U4(x, t)X(x, t)]

Such replacements should not affect the low-rnornentum physics.
The three-point function from which we will extract the electric form factor is

A(pq t, t)=, ,. (0 T pe 'I(t(zt) X e ' qzje(zt)t) (0) ()l .
Z2 zi,f

Using (31) and (24) we get

A(p, q, t, , t, )= ——Z ' g e ' '( —1)"+"(Xz(2z2+g)X&(2zz+g)p(x~, 2t, +1)Xe(rt')Xe(g')),
Z2, X),

(31)

(32)

(33)

(34)

with p(x, t)= gf qfj4(x, t) Th.e usual steps of shifting starting positions and summing on q4, q4 are now performed.
Qne can now imagine doing the g, g' sums with the constraint that (q —g') is a constant vector, yielding

A(p, q;t, ,t, )= —2Z ' g e ' '( —1) '( IX&(xz,2t, )Xz(x2, 2t, )[p(x&,2t, +1)+p(xj,2t, )]
X2,Xj

—X z (xz, 2t,,+ 1)X&(xz, 2t,,+ 1)p(x~, 2t, , + 1)

—Xg(x2&2' —1)Xg(x2&2t, —1)p(x(&2t, )IXe(0)Xg(0)) . (35)

Consider the generic form of a typical term in Eq. (35). We define

~(pqtt tt)—:—Z '( —))'Xe '( —1)'7' (ex&)Xtt" (etxt)gte 'p( t x)tX t(0)eX' ()el(.)
X2 X)

(36)

Notice that this is just the matrix element of the charge-
density operator with local interpolating fields. Express-
ing A, Eq. (35), in terms of A we get

A(p, q;t, , t, )=2[A(p, q;2t, ,2t, +1)

I

x, (0[y(0) [~+(p))(~+(p ) [y'(0) [0)
=2[Z(p)Z(p')(1+e ' )

X(1+e ' )(1+e ' )(1+e ' )I'" (40)

+A (p, q;2t, ,2t, )

+A(p, q;2t, +1,2t, +1)

+A(p, q;2t, —1,2t, )] .

Let us insert lattice completeness

g (np)(np( =1
p, n

(37)

(38)

In order to extract the form factor from (39), it is
necessary to relate the lattice-charge-density matrix ele-
ment to the continuum expression. %'e write continuum
completeness as

(41)

The states
~
np) produce Lorentz-covariant matrix ele-

ments. The continuum limits

two places in expression (33). It is easy to show then that
for t, , (t, t, )»1— N, (2a) p (2~)

(2a) Q -p f d z

(42a)

A(p, q;t...t, , ) (~, )'(0
~
p(0)

~

~+(p) &(~+(p)
(
pt(0)

~
0&

X (~+(p)
~
p(0)

~

~+(p') )
show that the lattice states and spin- —,

' fields used here
have the following correspondences:

—E (2t —2t ) —E .(2t )P Zp Z) P Z)Xe e (39)

with p'=p —q. Assuming the amplitude (33) is real on
the lattice (true to the extent that the summand is an even
function of z~ and z2) we have from (27) that

n)p[Xp, (2 )a2E&] '~
~
np),

q(z)~(2a)' 'f(z),

where P(z) is a continuum spin- —, field. Therefore,

(43a)

(43b)
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(~+(p)
~

p(0)
~

~+(p'))

(~ (p)
~

p'(0)
~

~ (p '))I

N, (2Ep2Ep. )'~

where p'(0) is the continuum charge-density operator.
The electric form factor' is defined as

(~+(p)
~

p'(0)
~

~+(p ')) =(Ep+Ep )F+ (q) . (45)

Since we now know the relation of A ( p, q; t, , t, , ) to

F+(q), we may solve for the local quantity A (p, q;t2, t) )

from (37) when t„(t 2 t ) ) »—1
SE( U, a,"',q) =SE(U) gaf—e'~'*j f4(x, t) .

x,f
(49)

time-boundary conditions on a finite lattice, ' we expect
the ratio to be free of time-boundary effects. Finally, we
note that it is important in calculating the statistical error
in F+(q) from Monte Carlo data to include the covari-
ances between the various factors in (48).

We conclude with a discussion of how the three-point
function can be calculated as the derivative of a two-point
function, a technique which has been used in other appli-
cations. ' ' Define a new action

A (p, q;t2, t) )

E a 1/2
, (1+e ' )(1+e ' )

Ea —E,a(1+e ' )(1+e ' )

This gives a new fermion matrix

M«i qh~), E

=M„„.„+,' a,e' 'a, (x)—

E,(t, r, —) E,,i—, -(Ep+Ep )

Z(E,E,.)'~' (46)

This is the result we are looking for. It shows that the
pion-electric form factor can be calculated from a three-
point function involving local interpolating fields. When
q=O the operator in the three-point function A, Eq. (36),
reduces to the total charge. Charge conservation yields a
sum rule (for t2 & t) )

&& ~,yI ~t„.t~t, t+)[U4(x)]

+&i„,t+ A, , i[U4(x —&4)]" I,
for each flavor, f. This new matrix has the properties

M*(a„q)„g yE ——( —1). "M(a„—q)yE xg,

o2M (a„q )o 2 M*( —a„q)———

(50)

(51)

(52)
A (p, O;t2, t) ) =G(p;t2), (47)

a relation noted before in Ref. 3. If periodic or an-
tiperiodic boundary conditions were used in time Eq. (47)
would not have such a simple form.

To extract the form factor from Monte Carlo data it is
convenient to form the combination

' 1/2
A(O, q;t„t))A(q, q;t2, t, ) (E,+I )

6(0;t2)6(q;t2) 2(E~m )
F+(q) .

[M '(at q).~;,E]*=(—1)"+'M '(a~, —q),E;.~ . (53)

In addition, (52) implies

o2 M '(a„q)o2
a a =0

for cr2 in color space. One can show as in (17) that (51)
gives

Notice that the Z(p), Z(p') factors and the time depen-
dence have all dropped out leaving only the matrix e1e-
ment of interest. Since it is the factors Z(p) and Z(p')
which contain contributions from states other than the
vacuum when we do our calculations with nonperiodic

[M '(a„—q)]'
(ja, a =0

(54)

We now go back to the three-point function Eq. (36).
This can be written

A = —Z '( —1) ' g qf f g e '( —1) '((X" ( ~xt 2)X2" ( ~xt 2)X2(0E)X (0E))), (55)

where it is understood the right-hand side is evaluated at a, =0 after differentiation. The notation here is
l

(( . »= fdUdXdX ' ''
( . ).

We can now do the fermion integrations in (55):

A =Z '( —1) 'gq~ f I dUe gdet[M(a", ,q)]oaf

Xdet[M(at, .q)] g e '( —1) 'trM '(a,",, q ~
x2, t2,'0)M '(a...q ~

0;x2, t2) .
Xg

(57)
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Notice the factors of det[M(a"'", q)] above. The appear-
ance of these determinantal factors, which would be im-
plemented in the Monte Carlo part of the simulation,
makes physical sense since the method we are describing
characterizes the effect of the charge operator as a source.
Therefore to be consistent, one must expect to include the
effect of the source on the vacuum. Schematically, such
effects come from current self-contractions. Since one
can show that

(j4(x, t)) =0
for SU(2), configuration by configuration, we assume it
is safe to neglect such effects.

After dropping the determinantal factors and the dis-
tinction between u and d matrices, we find upon using
(S3') and (54), the Monte Carlo statement

A (p, q;t2, t, )

III. SUMMARY

We have outlined here the theoretical ingredients neces-
sary for an extraction of the charged pseudo-Goldstone
meson form factor on the lattice. We have shown that the
necessary amplitudes involve only local combinations of
staggered fermion fields and are thus quite simple to cal-
culate. In addition, we have discussed the application of
the source method in our context and pointed out the use-
fulness of the formula (48) in correcting for time-
boundary effects. Of course in these numerical investiga-
tions, one must make sure that continuum physics is being
correctly represented and that the results are independent
of boundary conditions and other systematic effects. The.
corresponding measurements using the Wilson formula-
tion of lattice fermions will be simpler theoretically, but
of course more computationally intensive.

(q„—qd) g e 'tr[M '(xq, t2, 0)]
1Vc

X2, C

M '(~t, ql x2 t2 0)X
Bcxg

Notice the physically necessary factor of ( q„—qd ) = 1

which has emerged.
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