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Asymptotic scaling in Hamiltonian calculations of the O(3) cr model
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By extending Hamiltonian variational techniques of a previous paper, we are able to calculate
mass gaps in the asymptotic scaling region of the O(3) o. model.

I. INTRODUCTION

II. GENERAL THEORY

Our Hamiltonian is

H = —/3+L„+ g(1—Pn P„+))
. . n n

(2.1)

where the sum is over the one-dimensional spatial lattice
sites, p~ is a unit vector at lattice site j, a is the lattice

Reliable techniques for extracting the mass spectrum of
asymptotically free theories in the scaling region are cru-
cial for testing the validity of QCD at low energies. So
far, the attack on this problem largely has been via Monte,
Carlo simulations. Even in pure Yang-Mills SU(3) simu-
lations for the P function in 3 + 1 dimensions, the region
of asymptotic scaling (the one- or two-loop regime) has
not been reached. '

In this paper, we report on an extension of a variational
technique (introduced in a previous paper to be referred
to as I) which allows us to get reliable mass estimates in
the one-loop scaling region for the O(3) cr model in 1 + 1

dimensions. As far as we know, no other techniques have
allowed reliable penetration of that deep scaling regime.

Our technique, based on the Hamiltonian formulation,
chooses as a trial wave function an optimal linear com-
bination of states occurring in H

~
go), where H is the

Hamiltonian and
~
go) an original trial wave function.

We extend the results of I by going to one more order in
H, on a sufficiently large lattice. (We require much
smaller lattices than in comparable Monte Carlo calcula-
tions. ) Our results are in excellent agreement with contin-
uum scaling formulas. We also discuss the results in the
context of the finite-size scaling arguments of Fisher and
Brezin.

As a byproduct, we obtain approximate wave functions
for the ground state and first excited state. Although it is
unlikely that these approximate wave functions reliably
capture all details of the true wave functions, they are
close enough to give reliable energy estimates. We intend
to investigate features of the wave function in a later
work.

In the next section, we briefly review the techniques of I
and indicate how they are extended. Our results are
presented in Sec. III. In Sec. IV, we discuss finite-size
scaling effects. Section V contains brief conclusions.
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where
~

0) is the strong-coupling vacuum defined by

LJ ~0)=0 forall j.
We had found that

H
I g~)

(2.4)

contained a linear combination of four additional topolog-
ically distinct states, providing a five-dimensional basis
for minimizing the ground-state energy.

Similarly, in the triplet sector, our s'tarting point was

g0; exp ~&4. 4.+i
J n

(2.6)

where a is an isospin index. H tb, ) contained a linear
combination of six additional states.

In this paper, we extend our results to the basis states
contained in H

~ g, ) and H g, ) which are 26 and 60
dimensional, respectively. (The singlet basis states are
listed in the Appendix. ) The calculation consists of di-
agonalizing the Hamiltonian H in the 26- and 60-
dimensional subspaces, respectively, and interpreting the
lowest eigenvalues as (over) estimates for the energies of
the ground state and zero-momentum first excited states,
respectively. The mass gap is the difference between these
two energies.

As explained in I, this is a completely analytic calcula-
tion, but the matrix elements of the Hamiltonian H are
such complicated functions of k that they are evaluated
by a FORTRAN program, based on formulas produced by a
REDUCE program. The numerical evaluation is by far the
most time consuming. For example, for each value of A, ,
the 26&&26 matrix evaluated on a 16-site lattice required
45 min on a RIDGE-32, while the 60)& 60 matrix required
20 h. Each of these were evaluated at several values of A, ,

Small P is the weak-coupling regime. The lattice is intro-
duced to regulate the divergences of the continuum
theory. We choose free boundary conditions
Po ——PL+ &

——0 where L is the number of lattice sites.
In I the original trial function in the scalar sector was

(2.3)
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TABLE I. Lowest-lying energies in the singlet and triplet sectors on a lattice of size L = 8 as a func-
tion of coupling. These are minimized in spaces of dimension 5 and 26 for the singlet and dimension 7
and 60 for the triplet. The mass gap is the difference between triplet and singlet energies.

Singlet
5-dimensional 26-dimensional

basis basis

Triplet
7-dimensional 60-dimensional

basis basis
Mass gap

7—5 60—26

0.30
0.31
0.32
0.33
0.34
0.35

7.449
7.374
7.298
7.221
7.144
7.065

7.403
7.332
7.260
7.187
7.113
7.038

7.541
7.480
7.419
7.358
7.297
7.236

7.515
7.456
7.396
7.335
7.275
7.215

0.091
0.106
0.121
0.136
0.153
0.172

0.112
0.123
0.135
0.148
0.162
0.177

and the final estimate for the energies was obtained by
searching for the minimum in A, by quadratic interpola-
tion. Some details of the REDUCE calculations will be
published elsewhere.

III. RESULTS

In Tables I, II and III we present results for lattices of
size 8, 12, and 16 indicating for each value of /3 in the
weak-coupling regime the energy estimate based on the
basis generated by H

i P) and by H
i g). One can see

immediately that for the larger lattices, for weak cou-
pling, the small mass gap is the difference between two
large numbers, which must therefore be evaluated quite
precisely. (It is not even guaranteed that the mass gap
turn out positive. )

It should be emphasized that we are in the region of
mass gaps very small compared to an inverse lattice spac-
ing, so that we can hope for a good approximation of con-
tinuum results. However, we expect infrared effects, espe-
cially for the small lattices, to be present.

Several general features can be observed from the re-
sults. The increased basis reduces the singlet energy esti-
mate more than the triplet estimate, thereby increasing the
mass gap. At larger values of /3, this effect is smaller so
that the smaller basis already gives a good estimate of the
mass gap. At small P, the increased basis is essential. We
believe that at the very smallest value P=0.30, even the

26- and 60=dimensional bases do not quite suffice to accu-
rately describe the mass gap.

We can compare our results to the continuum scaling
behavior. The (1+ 1)-dimensional cr model is an asymp-
totically free theory, and to three loops, the relation be-
tween the lattice spacing and coupling /3 is

1 1
a =—exp ———lnt ——,t =P/m. .

A t 4
(3.1)

Defining m (P) to be the expected mass gap in the con-
tinuum

am (/3) = (101)exp ———lnt ——II

t 4
(3.2)

we plot, in Fig. 1, m (P)/m (P) versus P where m (/3) is
the observed mass gap. If m (P) scaled, the graph would
be flat. Note that although P ranges only between 0.30
and 0.35, m (P) falls by a factor of more than 3 in this
regime. It is clear that the O(H ) results for I.= 16 show
excellent agreement with scaling. This confirms the pres-
ence of infrared effects for small lattices, and the need for
large bases in the weak-coupling region for large lattices.

In Fig. 2, we present the results somewhat differently.
We plot lnm(/3) versus 1/P. If one-loop scaling were
correct, this should be a straight line of slope —~. Such a
line is shown on the plot, and gives a good approximation
to the best straight line through the observed data points.

TABLE II. Lowest-lying energies in the singlet and triplet sectors on a lattice of size L=12 as a
function of coupling. These are minimized in spaces of dimension 5 and 26 for the singlet and dimen-
sion 7 and 60 for the triplet. The mass gap is the difference between triplet and singlet energies.

Singlet
5-dimensional 26-dimensional

basis basis

Triplet
7-dimensional 60-dimensional

basis basis
Mass gap

7—5 60—26

0.30
0.31
0.32
0.33
0.34
0.35

11.706
11.587
11.467
11.345
11.223
11.099

11.618
11.507
11.395
11.281
11.165
11.048

11.742
11.639
11.536
11.433
11.330
11.226

11.680
11.581
11.482
11.382
11.282
11.181

0.036
0.053
0.069
0.088
0.107
0.126

0.061
0.074
0.087
0.101
0.116
0.133



32 ASYMPTOTIC SCALING IN HAMILTONIAN CALCULATIONS. . . 3279

TABLE III. Lowest-lying energies in the singlet and triplet sectors on a lattice of size L=16 as a
function of coupling. These are minimized in spaces of dimension 5 and 26 for the singlet and dimen-
sion 7 and 60 for the triplet. The mass gap is the difference between triplet and singlet energies.

Singlet
5-dimensional 26-dimensional

basis basis

Triplet
7-dimensional 60-dimensional

basis basis
Mass gap

7—5 60—26

0.30
0.31
0.32
0.33
0.34
0.35

15.9709
15.8075
15.6424
15.4756
15.3072
15.1378

15.8414
15.6895
15.5355
15.3795
15.2214
15.0616

15.9752
15.8307
15.6839
15.5373
15.3892
15.2407

15.8710
15.7334
15.5942
15.4542
15.3129
15.1707

0.0043
0.0232
0.0415
0.0617
0.0820
0.1029

0.0296
0.0439
0.0587
0.0747
0.0915
0.1091

IV. FINITE-SIZE SCALING

The results presented above may be organized in a
somewhat different fashion, to exhibit more directly the
influence of finite-size effects on the mass gap. Only if
those effects are small —or controllable —can we expect
our results to be relevant to the continuum field theory be-
ing modeled. The finite-size scaling theory, introduced by
Fisher, and applied to the ¹ ector model for large X by
Brezin, suggests the appropriate reparametrization of the
mass-gap results. In the limit of large L, P—+P, (where

p, represents a critical point of diverging correlation
lengths for the infinite size system-), finite-size scaling as-
serts

o 8 O(H')
o 12 0(H )

16 O(H )
x l6 O(H)

mc(p) =f(Lm (P)):f(x), —
m~

(4.1)

where mL, (p) is the mass gap on a lattice of L sites, and f
is a universal function. By taking the limit L~ oo (fixed
p) in (4.1), it is manifest that f(x)~1 for large x. How-
ever, the regions of small and large x are both inaccessible
in approximate calculations of the mass gap, for the fol-
lowing reasons.

(a) For small x, the necessity for having L large in (4.1)
forces us to very small values for m (P), i.e., in the deep
weak-coupling regime where both variational and Monte
Carlo calculations will encounter difficulties. In our ap-
proach, for example, if g(P)~0 at fixed L, the vacuum
sector energy is eventually overestimated (relative to the
one-particle sector) to the point of driving the mass gap
negative. In other words, accurate calculation of mL(p)
in this region would require the use of large bases. Of

k~~
x

'X
I

O. 32 O. 34

FIG. 1. Plot of the ratio (calculated mass gap)/(three-loop
continuum formula for the mass gap) vs coupling on lattices of
size 8, 12, and 16, in bases of 26 and 60 dimensions for the sing-
let and triplet. For a 16-lattice, the results for the smaller bases
(5 and 7 dimensions) are also given. Asymptotic scaling implies
that the ratio should be flat.

2.5
I

3.5

FIG. 2. Plot of mass gap vs coupling for a 16-lattice using
bases of size 26 and 60. The solid line is the one-loop scaling re-
sult.
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FIG. 3. Plot of f(x)=(observed mass gap)/(three-loop con-
tinuum formula for mass gap) on lattices of size 8, 12, and 16 vs
x =Lm „(P), where L is the lattice size and m „(/3) is the con-
tinuum three-loop formula for the mass gap. Finite-size scaling
predicts a universal curve.

course, this is precisely the region in which I (P) is con-
trolled by the renormalization group.

(b) For large x, fixed L, we are eventually forced out of
the critical region m (P) « 1. This problem is especially
severe for the O(3) mass gap, as perturbative scaling does
not set in until one reaches mass gaps -0.05. In order to
study this region accurately, therefore, one would be
forced to very large lattices.

It is apparent that approximate methods (whether vari-
ational or Monte Carlo) will only determine f in an inter-
mediate region —yet another example of the "asymptotic
freedom window" frequently discussed by lattice practi-
tioners.

Our results are shown in Fig. 3, where we plot f (x) for
0.5&x&3.5, for lattice sizes L=8,12,16. For x~ 1.7, the
values computed with any of these lattices fall below 1,
indicating a departure from the critical region[I (/3) & mL, (P) in the strong- and intermediate-coupling
regime]. The results for the smaller lattices L =8,12 show
no flattening around f= 1, but for L=16 there is a flat-
tening in-the intermediate region 0.6 & x & 0.9. This "win-
dow" corresponds precisely to the region of scaling dis-
cussed previously. The evidence suggests that we do not
see finite-size scaling for L &16. As pointed out previ-
ously, below x -0.6 for L = 16 we lose convergence in the
variational scheme. For x&2, the values obtained for all
three lattices agree tolerably (the mass gap is simply not
very sensitive to the size of the lattice in this region), but
nonperturbative contributions to scaling result in a consid-
erable deviation from the ideal scaling limit f~1.

It should be noted that we have used free boundary con-
ditions and it may well be the case that finite-size scaling
is adversely affected on smaller lattices by such a choice.

Another feature which complicates finite-size scaling in
the O(3) model is the logarithmic scaling at the critical
point —models with power scaling at criticality (e.g., Ising
models) appear to give a universal f (x) over substantial
regions of x even for quite small lattices.

V. CONCLUSIONS

The results of Sec. III, especially those in Fig. 1, show
excellent agreement with asymptotic scaling predictions.
They emphasize that large lattices are needed for small
masses (large correlation lengths), and that large enough
bases for the variational estimates are required to really
see the scaling behavior. The remarkable finding is that
the computation of expectation values of the Hamiltonian
appears to be accurate down to mass gaps on the order of
0.05/a even though the wave functions involved contain
structures with direct coupling between spins separated at
most by 3a. We conjecture that this will be true for other
local operators, but very likely not for bilocal (see below)
or multilocal operators.

In other words, computation of (t/js, ~H
~ t/s, ) seems

much less sensitive to the detailed structure of the state
than a naive estimate in terms of the explicit spin-spin
correlation structure of

~ t/s, ) would indicate. We also
realized in I that for fixed basis size, going to very large
lattices can give poor results because the overlap of the
approximate wave function and the true one gets worse
and worse. It is crucial to understand the interplay be-
tween basis size and lattice size, especially for weak cou-
pling.

As emphasized in the Introduction, the variational
method allows us to find the ground-state wave function
as well as the ground-state energy. From this, we could in
principle compute many other physical properties. For
example, we could estimate the mass gap by looking for
the exponential falloff of the expectation value of

with ir for some fixed i We intend .to compute this quan-
tity, but expect it to give a worse estimate of the mass gap
than our direct Hamiltonian approach. (In particular, it is
likely that the correlation length estimated by this pro-
cedure does correspond roughly to the most extended
structure in the wave function. )

One could also estimate the mass gap if the lowest ex-
cited state in the scalar sector were formed by two triplets,
sufficiently far that they would not interact. Then the
lowest excitation energy in the scalar sector would be 2m,
where m is the mass gap. Our results have not yet yielded
any stable estimate for this excitation energy. It is still
too large, keeps decreasing as we increase the basis, and
does not scale appropriately. One reason is that 2m is the
onset of a branch point, rather than a pole, in the propa-
gator, and the excited state value we obtain numerically is
the effect of the whole cut, most of whose contribution
comes at a higher energy than 2m.

We are sufficiently encouraged by our results for the
(1 + 1)-dimensional cr model, that we are now beginning a
study of the spectrum of (3 + 1)-dimensional SU(3)
Yang-Mills theory.
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APPENDIX

To illustrate the type of structures encountered, we list
the 26-dimensional basis used in the scalar sector.

Let

I
13& =XI"0' +i& +i'4'+3

I
~&

I
14& =&4 4i+ikt+I 4i+z4i+2 0'i+3 I

~&

I
15 & =+4' '0 + i 0'+z I

~ &

I
16& =XI"0+t4 +z'I ~& (A

I17)= gy, 'y, „ lx),

I18&= X4 '0+i g(AJ'O'J+t'1'

I19&= g4 0 +i QPJ 4, +i4~+t 4j+2

I

A, ) =exp XgP; it'i;+t IO), (A 1)

where
I
0) is the strong-coupling vacuum. Then our basis

states are

(A2)

I
20) =

I
21)=

I
22) =

I23)=

I
24)=

I
25) =

I

g4 4'+t QPJ"4'J+z

g4g'its+ id'I+i'4g+z
r

g(4 4 +il' QPJ'WJ+z

+i4t+t'4' . +z

g4; 0;+t4;+i 0t+z gttpj PJ+z

(A4)

I

g & =X(4"4'+ il'(4' +i'0 +z~ I
~-& *

19&=X&;.0;+i&; 0;+z I
~),

I
1o&=&&; &;+zf +i 0 +z I

~&', '

I
11&=X& 0'+3

I
~&

I12&=gy; y;+zy;+zy;+3IA),

I26&= g4 '0; z

The first five states occur in H
I

A, ), the rest in IIz
I

A, ) .
We see that the connected structures extend over at most
three lattice sites. These are all translationally invariant
states, but we have used free boundary conditions PJ =0 if
j&1 or j & N Thus

I
16. ) is obtained from

I
2) by omit-

ting the term i =N —1 in the sum occurring in
I
2).

iSee, e g , Proceedi. ng. s of the Lattice Gauge Theory Conference
1985, edited by Dennis Duke (Florida State University, Tal-
lahassee, 1985).
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