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A new method of deriving the Lee-Weinberg equation is presented. This method makes the ap-
proximations clear and suggest how they can be improved. A nearly exact formula for the number
of heavy neutrinos left over after the annihilation process is given.

I. INTRODUCTION

An important problem that arises in determining the

present particle content of the Universe is the calculation
of the number of particles of each species that have sur-
vived the creation and annihilation processes that took
place in the early Universe.
"~ In 1977 Lee and Weinberg (LW) wrote a seminal paper’
on the heavy-lepton content of the Universe. The starting
point of their discussion, their Eq. (2), is an equation
governing the annihilation of heavy neutral leptons L,L
into light leptons (vv,ee,. . .) in an expanding space-time:

ﬁil____l.i _ 2 2
2= 3Rn {ov)(n*—ny?) . (1)

The notation in this formula, which was written down
without derivation, is as follows: #n is the number of
heavy leptons per unit volume with n, the corresponding
number in thermal equilibrium, R is the universal expan-
sion factor, and {ov) is a thermally averaged annihilation
rate which LW do not define precisely. The heart of the
"LW paper is the numerical and approximate analytical
solution to this formula. This analysis has the important
conclusion that if a heavy lepton has a mass greater than
a few MeV, then unless its mass M >2 GeV, the present
heavy-lepton number density is so high that the energy
density exceeds the observed bound derived from the ex-
pansion rate of the Universe. While Lee and Weinberg do
not imply that their formula (1) is ab initio exact, subse-
quently it has entered the literature? as the “exact”
Boltzmann equation for the process. In this paper we
shall show precisely how formula (1) arises from a justi-
fied approximation to the correct Boltzmann equation.
We shall also present a simple and accurate approximate
solution to the formula. We have chosen the LW process
as a paradigm. At the end of the paper we shall describe
briefly other processes to which the same methods are
applicable. ' '
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II. BOLTZMANN EQUATION

To simplify our exposition, we shall explicitly work in a
spatially flat universe described by the Robertson-Walker
interval

ds?>=R (t)’dx*—dt? , (2)

but it should be clear that our results also apply when
space is curved in a homogeneous, isotropic manner. We
describe the momentum of particles by the momentum
vector p measured in a local Lorentz frame. Thus, for ex-
ample, the energy and momentum of the heavy leptons
are related by

E(p)=(p*+M?»'/%. (3)

In the absence of collisions, the motion along a geodesic is
described by

dp_ R, ' 4

dr~_ R°P° @
where the overdot denotes a derivative with respect to the
comoving time f, and where A is an affine parameter
which is conveniently chosen to give

_ar

T da
The Boltzmann equation describes the time evolution of
the phase-space density f(p,t) of the heavy leptons. (We
assume, of course, that this density is homogeneous and
isotropic so that it depends only upon p = |p| and ¢.) In
the absence of collisions, the phase-space density is con-
stant along a particle’s world line,

S(p(A+dA),t (A+dA))=f(p(L),t(R)) . (6)

In view of Egs. (4), (5), and (6) it is easy to see that, taking
account of collisions, we have the well-known covariant
Boltzmann equation

(5)

d R
E— ——Ep-
at Rp
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FIG. 1. Elastic collisions with light leptons (/) maintain the

heavy-lepton (L) phase-space distribution in mechanical

thermal equilibrium at temperature 7'(¢).

The collision term C(p,t) has two essentially different

an elastic part Cg(p,t) corresponding to the pro-
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FIG. 2. Inelastic collisions maintain the chemical composi-
tion of the heavy leptons—their overall number density—at the
thermal equilibrium value until the temperature 7'(¢) falls well
below the heavy-lepton mass M.

pieces: C(p,t)=Cg(p,)+Cy(p,1) . 8
cesses depicted generically in Fig. 1 and an inelastic part P £, +Cr(p1) ®
C;(p,t) corresponding to the processes depicted generical-
ly in Fig. 2, The elastic part is a sum of terms each of the form
|
dp’ 1 d’q d’q’' 45(4) 2
Ce(p,t)= ; —2m)*8 " (p +q —p' )T
weo=J G )32E(P)f(27r) 24° (27T>z'° p+q—p'—a)|Tx|
X{[1—f(p,0)][1—-g(g,)]f (p’,0)g(q",2)
—[1—f" 0l[1—-g(qg",t)]f (p,t)g (g, 1)} . )
[
Here the g(g,?) is the phase-space density of a light lepton by the “equilibrium” distribution
which is kept in thermal equilibrium at temperature 7°(¢) 1
by other collision processes which are very rapid in com- fp,t)y=fo(p,t)= (11)
parison to the expansion rate R /R. In the epoch which exp |alt)+ =21 Ep) +1
concerns us, the temperature 7(¢) is much larger than any T(¢)

light-lepton mass so that we can take ¢°= | q| and

1
exp[¢®/T(1)]+1

The effect of Fermi statistics is accounted for in Eq. (9)
by the Pauli blocking factor [1—f][1—g]. Since the den-
sity of light leptons is large, the elastic collision integrals
(9) give rise to a relaxation time 75 that is much shorter
than the expansion time R/R. Hence the elastic col-
lisions keep the heavy-lepton phase-space density close to
(kinetic) thermal equilibrium. To a good approximation,
discussed in Appendix A, this implies that f(p,?) is given

glg,t)= (10)

_.._q__
2r)?

Cilp,t)=
1(p:) f (277)3 2E(p) f 217)3 2q

When fo(p,t) is substituted into Eq. (9), Cg(p,t) vanishes
for any a(t), where a(t) is a time-dependent effective
chemical potential, which must be present in f(p,t) to al-
low the chemical composition, which is not determined by
the elastic collisions, to vary with time.

The distribution f(p,t) of the antiparticles L has exact-
ly the same form (11) but with a(#) replaced with &(z).
We assume, with LW, that in the beginning
a(t)=a(t)=0. Since the evolution equations for f(p,t)
and f(p,t) are identical, at later times we have a(t)=3a(z).

Upon substituting f, of Eq. (11) for f in the inelastic
collision integral, we obtain a sum of terms of the form

(27r>“8“”<p+p 9—9)|T;|?

X{[1=Sfolp,D)I[1—fo(P,1)]g (9,)8 (g,1)

—[l—g(q,t)][l—g(q,t)]fo(P,t)fo(ﬁJ)} .

The time development of the number density and hence of the “chemical potential”

(12)

a(t) is obtained by dividing the
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Boltzmann equation by E and integrating over the momentum so as to obtain

d’p

R(™3 [R(t)3n(t)] 2f Cr(p,t) . (13)

1
)3 E(p)
The skew symmetry of the elastic collision integral (9) shows that it vanishes upon the additional momentum integration

in Eq. (13) reflecting the obvious fact that elastic collisions do not change the number density. Using Egs. (10), (11), and
(12) in Eq. (13), we now obtain

_3d 3
R(p) 7 [R(2)°n(1)]

1 d’p 1 45(4) 2
(27)% T, ,
=2[ 4 (217)3 o d Gay 2E (p) [ 277)3 2q i s (2m3 2g0 2T AP = =D T1 " folp:fopo)

X[1—g(g,n][1—g(g,0)]{exp[2a(r)] -1} . - (14)

Of course, this is just a generic equation whose right-hand side is understood to represent a sum of similar terms.

As it stands, Eq. (14) is very complex. As we shall see, however, the “chemical potential” a(¢) departs from a(z)=0
only when the temperature 7°(z) is well below the heavy-lepton mass M. In this regime the Fermi-Dirac distribution (11)
may be replaced by the Maxwell-Boltzmann form

~exp | —a(t)— EP)

So(p,t)~exp a(t) T (15)
In this case

n(t)=e~*ny(2), (16)
where

E(p)
- _=p 1

no(=2 [ -5 27 )3 P an
.is the equilibrium density of heavy leptons at zero chemical potential. Placing these limits in Eq. (14) we obtain

R()~ ——[R(t n(0)]=(ov)[no(t)*—n (Y], (18)
which is exactly the Lee-Weinberg formula (1) but with the precise identification

_ d’p 2exp[—E(p)/T(2)] d’p 2exp[—E(p)/T(1)]
(ov)= f 2m)} no(t) f (277' no(t)
1
1—g(q,1) 1—g(g,?)
f2)32q0[ q]f(2)3 —[1-g(G,1]
1
X 2m)*8 W p +p—q—9) | Ty |*——
P |71 4E (p)E (p)
(19)

for the thermally averaged cross section.

For general processes, Eq. (19) defines a temperature-dependent effective cross section. In our case, however, the ex-
ponential damping of the heavy-lepton energies constrain | 14 | < V2MT and |p | <V2MT, with E (p)+E (p)~2M. On
the other hand, the energy-conserving & function 8(2M —gq°—g°) requires that the hght lepton momentum q and g be of
order M. This has two consequences. First, since ¢ and g are much larger than p and p, the momentum-conserving &
function can be replaced by 8°%(q +7). Second, since the light-lepton energles are much greater than the temperature,
g(g,t) <<1, g(g,t) << 1, and the Pauli blocking factors [1—g(q,?)] and [1—g(g,?)] can be replaced by unity. Accord-
ingly, Eq. (19) reduces to

(ov)—(ov)y , (20)

where

21

(ou)(,:f 2#)3 2q0 f (27 (217)38(3)(q+q)277'8(2M —q°+7 |T,|24M2
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is the threshold limit of the total annihilation cross sec-
tion for the heavy leptons, L + L -all light leptons, mul-
tiplied by the relative velocity v—0.

The heavy leptons freeze out while the Universe is radi-
ation dominated with the dynamics governed by

. . 172
R T 8
R-"T" Lf/i R (22)
where
p= Npﬁ T (23)

is the energy for the number Ny of massless degrees of
freedom with each spin state of a boson contrlbutmg

N and each spin state of a fermion contributing to
Ng. As LW point out, for heavy-lepton masses of order 1
GeV, the bound that is obtained, the relevant temperature
range is T =10—100 MeV, and so the massless particles
are ¥,V Ve,V vine _et, giving Np=54. We follow
LW in changing variables from the time to the tempera-
ture scaled by the heavy-lepton mass,

x=T/M . (24)

It is also convenient to scale the heavy-lepton equilibrium
density n¢ by the photon number density

_2603) T3 25)
Y 2
and define
Gon=-" o(x)—:—". 26)
Y Y

For temperatures high in comparison with the heavy-
lepton mass, ‘

x>>1: Golx)=+%, 27)

while for temperatures low in comparison with the mass

Va/2 e/, (28)

2§(3 3/2

Using x as the independent variable and also using Egs.
(20), (22), (23), (25), and (26), one now finds that Eq. (18)
can be expressed as

x << l: Go(x)~

dG (x)
o =A2[G(x)*—Go(x)?], (29)
where
172
—% MMp(ov)y
m 7TNF
~0.15MMp(ov)g , (30)
in which
Mp=G~12~1.2x 10" GeV (31)

is the Planck mass.
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III. ANALYTIC SOLUTION

For the LW process, the dimensionless parameter A is

very large. Following LW, the weak annihilation cross
section may be estimated by
Gp*M?
(O’ U)():N A s (32)
21

where N 4 is the number of open channels and the remain-
ing factor is the cross section of the standard model with
Gr=~1.2%10"% GeV~? the Fermi constant. Taking the
open channels to be LL —v,7,, ViV ViV, e et Tt
ui, dd, and s5, with quarks counted thrice to account for
color, one has N =14. Inserting Eq. (32) in Eq. (30) and
using various numbers that are listed above, one finds

A=~2X% 108M3/GeV3 . (33)

Anticipating that M > 1 GeV, we see that A is larger than
108. The large size of this dimensionless parameter makes
it possible to obtain a simple approximate analytic solu-
tion to Eq. (29) which is of good accuracy. We derive this
solution here for the case of interest where A is constant.
In Appendix B we present the corresponding approximate
analytic solution to Eq. (29) for those cases when the gen-
eral thermally averaged cross section of (19) must be used
and coupling parameter A is temperature dependent.

We first note that by a standard procedure the non-
linear, first-order Riccati differential equation (29) may be
converted into a second-order, linear equation. This is ac-
complished by writing

=1 df(x)
CH=770 ax 34
whose substitution into Eq. (29) produces
d’ A2Gy(x)?
——5 —AGo(x)* |f(x)=0. (35)
dx

Since A is very large, a WKB solution is adequate over
most of the range of x. Taking into consideration the
boundary condition that G— G, when x-— o, which is
equivalent to a(0)=0, this solution is given by

FO=Gox)~Vexp [~ [TaxGotx | G6)
Placing this approximate solution in Eq. (34) yields
G (1)~ Golx)+ - 37
X=Go Xt G

where the prime denotes a derivative. We see that since A
is very large, the scaled number density G (x) closely fol-
lows the equilibrium density Go(x) up to the point at
which the second term on the right-hand side of Eq. (37)
becomes comparable to the first term. Since this occurs
when the temperature T is much less than the heavy lep-
ton mass M, x << 1, and the limiting form (28) can be
used for Gy(x), giving the condition

A
£(3)
for G(x) to be close to Gy(x).

7/2x1%e—1/%5 1 (38)

This is satisfied if
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x>1/InA. As x decreases below 1/InA, G(x) departs
from Gy(x). In the transition region the WKB approxi-
mation breaks down and some other method must be
used. For x —0, the heavy-lepton number is “frozen” at a
constant value, which we calculate below.

To study the transition region it is convenient to change
variables from x to

1

y=— (39)
X

and to write

Flx)=20) (40)
y

Since Gy(x) can be replaced by the limiting form (28) in
this region, Eq. (35) now becomes

d? a2 e

dy?  8L(3)F

u(y)=0. (41)

The WKB approximation breaks down when

, (12 _
A e ™’ <1
2;(3)2 yl/2 ~ "
which occurs for y >y,, with
A2 o e 70

—~1 42)
2637 | po'”? (

giving yo~InA~19. With y in the range of a few units
below yq, x is still quite large and the WKB approxima-
tion (36), which is valid, gives

y A

2 2£3)

172

u (yY=const Xy "*exp %V— - (43)

To pass from this region of y being a few units below y,
to y — o0, we make the replacement

e~ e~

(44)

—
y Yo

in Eq. (41). This is an adequate approximation since the

exponential e ~% varies rapidly and effectively vanishes

when y becomes much larger than y,. With this approxi-

mation, Eq. (41) has the solution

A
2£(3)

_m
2y

u(y)=Kj

172
e ”y] s (45)

where K(z) is the modified Hankel function. Using the
large argument limit of the Hankel function we have for y
a few units below y,

172
-y

y A

_ T
2 7 26(3)

46)
2y

u (y)~const Xy, *exp

which agrees with the limit (43) except that y is replaced
by yo in two slowly varying factors which makes little
difference since y, is large. We conclude that the approx-
imate solution (45) obeys the correct initial conditions.
Inserting Eqgs. (45), (40), and (39) in Eq. (34) yields
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172
1 1| ,d A T -
Glx=7 x{y dy |70 2603) (290 | € H

As shown in Fig. 3, this result accurately matches on to
the WKB approximation for y <y, and then accurately
describes both the rapidly varying region where y passes
beyond y, and asymptotic limit as y— co.

The behavior of the Hankel function for small argu-
ments now gives the desired low-temperature limit

172
A

4£(3)

T

1
G(0)= Y [ln 290

+v ] , (48)

where y =~0.577 is Euler’s constant. Recalling Eq. (42),
we have

TA?
26(3)?

y0=%ln

+y 1> (49)

where y; is a number of order unity which is not precisely
determined by our fitting procedure. The ambiguity in y;
is, however, insignificant since it gives rise to a relative er-
ror in G (0) of order y,/2In’A. Previous!? rough analytic
fits to Eq. (1) give results analogous to Eq. (48) but with
an arbitrary constant of order unity inside the logarithm.
Instead the approximation given by Eq. (48) is a leading-
logarithmic approximation valid to order 1/In?A. Since A
is so large, Eq. (48) is accurate to within a few percent.
Using the nominal value M=2 GeV or A=1.6X10° in-
side the slowly varying logarithms in Eq. (48), we com-
pute
In(A/9) 19

G(O)sz A

The number density of heavy leptons that remain after

(50

InG t————<

—————

| >
Yo y

FIG. 3. Sketch of the logarithm of the scaled heavy-lepton
number density G vs y =1/x. The dashed line is the WKB ap-
proximation of Eq. (37). The solid line is the result given in Eq.
(47). Note that the two curves join smoothly in the region of y a
few units below y, with, in particular, the slopes of the two
curves very nearly the same in this region.
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the inelastic equilibrating process is no longer effective is
given by

n(8)=n,(NG0) . (51)

This result holds down to a temperature of about 1 MeV.
Below this temperature, as LW point out, the photons are
reheated by electron-positron annihilation,* increasing
their number density by a factor of —1} At yet lower tem-
peratures both R (¢)°n(¢) and R (t)3n,,(t) remain constant,
which is to say that the number of particles within a given
comoving observer volume remains fixed. Thus at our
present epoch we have the number density ratio

6.9

4
0—— 11G(O)z o (52)

n

Ry

The present 3-K blackbody background radiation consists
of about 400 photons per cm>, and the limit on the present
mass density of the Universe is about 2 107% g/cm?.
Thus if there were additional particles of mass u with the
photon number density, their mass would be bounded by
1 <20 eV. Applying this mass density limit to the heavy
leptons and antileptons, we secure’

%G(O)Mz%y—szo ev . (53)

Recalling Eq. (33) for A, we see that we have the bound

M>2 GeV,

in agreement with the computer solution of Lee and
Weinberg, as well as with their approximate analytic solu-
tion.

IV. REMARKS

We have, for simplicity, focused in this paper on the
LW process. It is clear that these methods can also be ap-
plied to processes in which the initial number of particles
and antiparticles is not identical as in electron-positron
annihilation in the early Universe or in which the particle
and antiparticle reaction rates are not identical as in pro-
cesses in which baryons are produced in the very early
J

d3p’ 1 dqg 1 dq’ 1
Cr(p,t)=
E\P f f ( f (277_)3 zq’o

27 2E(p) Y (27) 2¢°

Xfolp's1)g(q'st)exp{[q + E (p)]/T () +a(t)}[$(p’,0) —(p,0)] .

The terms involving ¢ in the inelastic collision integral
C;(p,t) are much smaller than these, because they are pro-
portional to n2¢ instead of n¢, and so can be neglected.
However, there will remain terms independent of ¢ in the
inelastic collision integral that are not compensated by the
time dependence of a(t), because in deriving Eq. (14) for
a(t) we have integrated over momentum p, which we are
not doing here. These remaining terms in the inelastic
collision integral act as an inhomogeneous term for ¢.

The main point is now that because the collision time
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Universe. The analysis can also be $eneralized to the case
of particles with spin other than 5. We will report on
these matters in subsequent publications.
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APPENDIX A

As noted in the text, the distribution f,(p,?) does not
exactly satisfy the Boltzmann equation, even when «a(t)
satisfies Eq. (14). However, the deviation of f(p,t) from
fo is small. We can describe this deviation by adding a
momentum-dependent term ¢(p,t) to a(z) in Eq. (11) and
expanding in powers of ¢. This gives for f(p,t)

F o) =folp,t){1+[1—folo,01d(p,1)} + O (4?) .

In order that this partition between a and ¢ be well de-
fined we prescribe that to first order ¢ does not alter the
number density by requiring that

(A1)

I @ folp, 01— folp,)]g(p,)=0 . (A2)
The number density is then given by
d3
n=2 [ ZL_fop,0) . A3
n(n=2 [ g foe) (A3)

When (A1) is substituted into the Boltzmann equation,
two types of terms proportional to ¢ are found. One
arises from the left-hand side of the equation, and in-
volves time and momentum derivatives of ¢. The other
type arises from the collision integral Cg(p,?) and is of the
form

m)*8p +q9—p'—q") | Te | *folp,t)g (g,t)

(A4)

Tg, defined implicitly by Eq. (A4), is much shorter than
R /(dR /dt), only a very small ¢ is needed to compensate
for the remaining nonvanishing terms in the inelastic col-
lision integral. We can therefore proceed by neglecting ¢
entirely in the equation that determines a(t), and simply
replace f by fy, as we have done in the text.

APPENDIX B

In the text we obtained an approximate but highly ac-
curate analytic solution (47) to the rate equation (29) in
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which the coupling parameter A is constant. Here we
shall obtain a slightly less accurate solution for the gen-
eral situation where the thermally averaged cross section
(ov) is temperature dependent. In this case the coupling
parameter A depends upon x =7 /M and the rate equa-
tion (29) becomes

dG (x)
dx

This generalized rate equation can again be brought into
linear form. As we shall see, it proves convenient to in-
troduce the variable

E=E(x)=

=AY x)[G (x)*—Gy(x)] . (B1)

1 x ’ !’
" fxo dx'Mx') (B2)

where Ay and x( are constants that will be specified later.
In terms of this variable, the analog of Eq. (34) is to write

) (B3)

G=5"78 xuf(g) d&
so that Eq. (B1) becomes
@ 2Gox (€N |f(£)=0 . (B4)
dg?

For temperatures which are higher than those of the
transition region the WKB approximation again suffices,
giving

FEN~Gotx) ™ exp |~ [T dxAx")Golx") B5)

and

‘;(x) (B6)

2Mx)Gylx)

We again assume that A(x) is very large in the transition
region so that here Gy(x) has the nonrelativistic form
(28). Thus the analog of the transition point y, deter-
mined by Eq. (42) is the condition that

G (x)~Gy(x)+
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7TA,(XO )2

2£(3)?

This condition determines the point x, that we use as the
lower limit of integration in Eq. (B2). We also fix

Ao=A(xq) . (B8)

xpe o1 (B7)

so that §~x —x, for x near x,. Since A(x,) is taken to
be very large, 1/xo~InA(xy) is quite large, and the
behavior across the transition region to x=0 is controlled
by

2
71% ———x1—4exp(2§/x02) F&=0. (B9)
; .
This has the solution
X 2
FE) =Ky (B10)

which matches the WKB approximation (B5) in an inter-
val just above the transition region. Since 1/x,? is very
large, the argument of the modified Hankel function be-
comes very small as x—0, and we can use its limiting
form to compute

fE)=—E/xo* +In2—y (B11)

and from Egs. (B3) and (B2) find that the final scaled
number density is given by

GO)~1= [ dx Alx)+AoxoXIn2—y) . (B12)
Since xg is very small, we may write this result as
G(0)~'= f dx A(x) , (B13)
where
Lol gy, (B14)
Xy  Xxq

The form (B12) reduces to the result (48) of the text when
A is constant.
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