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-Is there a solution to the Rarita-Schwinger wave equation in the presence
of an external electromagnetic field' ?
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The method of characteristics is applied in order to obtain the retarded Green's function for the

Rarita-Schwinger (RS) wave equation coupled minimally to an external electromagnetic field. The

retarded Green s function is Taylor expanded in terms of singularities around the characteristic sur-

faces and the coefficients of singular terms are calculated. In general, when the above method is ap-

plied to a hyperbolic partial differential equation, the equations satisfied by the coefficients are

singular but compatible in the sense that iteration is possible. In this paper, we shall show that in

the case of the RS equation in the presence of an external electromagnetic field, this compatibility

does not exist implying that the existence of the solution is doubtful.

I. INTRODUCTION

The Rarita-Schwinger (RS) wave equation, a vector-
spinor which describes massive spin- —, particles when

coupled minimally to an external electromagnetic poten-
tial, exhibits certain ill effects. It was shown by Johnson
and Sudarshan that the field anticommutator is not posi-
tive definite in all Lorentz frames. ' This implies that the
anticommutator is frame dependent and that the Lorentz
invariance of the theory is violated. Later this problem
was related by Velo and Zwanziger to the noncausal
behavior of the RS wave equation in the presence of an
external electromagnetic field.

Wave equations are in general hyperbolic partial dif-
ferential equations with well-defined characteristic sur-
faces whose slopes determine the speeds of the propaga-
tion of the solutions. In the case of the RS equation, there
are two distinct surfaces, one of which falls outside the
light cone for a range of the external field. This implies
that the solutions propagate faster than light and that the
Lorentz invariance of the wave equation is questionable.
The Poincare invariance of the quantized RS field coupled
to a classical electromagnetic potential was investigated

by Mainland and Sudarshan. They found that the gen-
erators of the Poincare group satisfy the appropriate com-
mutation relations with the field components. Therefore,
when the equation is examined as a hyperbolic partial dif-
ferential equation, one is faced with the problem of non-

causal propagation, but when the methods of quantum
field theory are applied, there seem to be no ill effects.
Therefore, it is fair to say that the difficulty lies in the
structure of the classical wave equation with constraints.
The constraint equations, in the free-field case, are im-

posed to eliminate all the unwanted components of the
field. However, when the interaction is present, the con-
straint equations do not seem to eliminate the unwanted
components completely. In the RS equation, the difficul-

ty arises with the spin- —,
' component of the field.

In this paper, we shall investigate the existence of the
solution to the RS equation when an external electromag-

netic field is present by calculating the fundamental solu-
tions, the retarded Green's functions.

We shall begin by discussing the general method of
characteristics to calculate the retarded Green's functions
for hyperbolic partial differential equations where we ob-
tain a set of singular ordinary differential equations along
the bicharacteristic lines. To ensure a solution, these
equations have to be compatible. In the case of the RS
wave equation, we will show that this compatibility is
lacking. Therefore, one is forced to conclude that the
solution does not exist.

We shall use the notation of Bjorken and Drell, and
the y matrices have the usual representation. We shall
take y to be iy y'y y so that (y ) =1.

II. CONSTRUCTION OF THE FUNDAMENTAL
SOLUTIONS

Given a hyperbolic partial differential equation

LQ=O,

the retarded Green's function satisfies

LG (x)=5 (x)

(2.1)

(2.2)

with the boundary condition

G~(x)=0 for x &0 . (2.3)

L is a well-defined hyperbolic partial differential operator
with definite characteristic surfaces, u;(x ) =0. In general,

P has many components, L. is a matrix, and (2.1) is a sys-
tem of partial differential equations. Here by x we mean
space and time.

According to the theory of the hyperbolic partial dif-
ferential equations, we can assume that the solution to
(2.2) has the following form:

G (x)= g 5"(u)E"(x)+R(x), (2.4)
n=N

where u =0 is the characteristic surface and 5"(u) is the
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oo n

Z(x) =e(u) g, g"(x),
0 n!

(2.5)

where e(u ) is the step function.
By substituting (2.4) into (2.2) and separating the coeffi-

cients of different singularities, we obtain the following
set of equations:

nth derivative of the Dirac 5 function. If there is more
than one characteristic surface, then (2.4) has to be
summed over the number of the surfaces. The remainder
term R can be Taylor expanded around the characteristic
surfaces, i.e.,

If F can be written as

F=Af
then (2.8) becomes

A(e f )—=0

(2.9)

(2.10)

and e can be found. This is what is meant by the compa-
tibility condition. Field equations for spin-0, spin- —,, and
spin-1 particles all satisfy this condition. ' However, as
we shall show in the next section, the Rarita-Schwinger
wave equation in the presence of an external electromag-
netic potential lacks this internal consistency.

Ae =0,
AP-'+OP=0,
A P '+OH -'+P~"=-0,

Ae +Or +Pe '+Qe =0,

Ag +Os +Pe'+Qe + . . =0.

(2.6)

III. THE RARITA-SCHWINGER
WAVE IN AN EXTERNAL

ELECTROMAGNETIC POTENTIAL

Consider the Lagrangian density

W=q. [g i'(~ m) (y—~i'+—~ yi')

+y (C—m)y~]gp, (3.1)

A is a matrix, 0 is a first-order, P is a second-order, and

Q is a third-order differential operator.
The matrix A has to be a singular matrix for e to ex-

ist, i.e,

where P is the Rarita-Schwinger vector-spinor field. We
have suppressed the spinor indices, i.e., g has 16 com-
ponents. m& is defined as I'. 8„+eA„where 3& is the
external vector potential.

The equation satisfied by the retarded Green's function

det/A
/

=0 (2.7)
1s

which determines the characteristic surfaces.
For first-order or second-order partial differential equa-

tions, A solely depends on the highest-order terms. Such
is not the case for }iigher-order (order ~2) partial dif-
ferential equations. Since in field equations one deals
with either first- or second-order partial differential equa-
tions, one can simply insert n" for 8" in the highest-order
terms to obtain the characteristic matrix. The vector
n&=B&u is perpendicular to the characteristic surface
u =0.

Therefore, the singular matrix A guarantees the solu-
tion, e . However, to be able to obtain the other terms of
the expansion, one must solve equations of the form

(2.8)

Unless F has a certain form, this equation has no solution.

[g ~(g' m) —(y vr—~+% y~)+y (3' m)y~]—
X G»(x —y) =g ~5'(x —y)

G =0 for (x —y )~0. (3.2)

The differential operator in (3.2) is not a well-defined

hyperbolic operator since the determinant of the charac-
teristic matrix is identically equal to zero, i.e.,

det
~ g ~n y —(y n~+n y~)+y n yy~

~

=0 . (3.3)

This seems to be a general phenomenon for wave equa-
tions with constraints, i.e., for higher spin, s &1, wave
equations. To get around this difficulty, we contract (3.2)
by y, and then by m, and then substitute the results back
into (3.2). The final result is

2

g~~(&—m)+ ~ + y X~ G»(x —y)= g ~— m w~+ (y m~ —m y~)+ y y~ 5 (x —y),
3772 2 3~ 2 2

(3.4)

yI3 &~ I; P '~ I; ~&P

o & is defined as (i/2)[y, y&] and F ~ is the external
electromagnetic field.

Now, instead of (3.4), we consider the related equation

g ~(g —m)+ m + y X~ D"~(x —y)
2e m

=g q5 (x —y) . (3.5)

The solution to Eq. (3.5), D, is related to the solution of
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(3.4) by the operator on the right-hand side of Eq. (3.4)
(Ref. 7) and the existence of 6 depends on the existence of
D. The partial differential equation (3.5) is hyperbolic
with a well-defined characteristic matrix and is equivalent
to Rarita-Schwinger equation (3.2).

The function D in general has the following form:

m 0
D (x)= g g 5"(u;)e,"(x)

i =]. n=N

where 3 and 0 are 16&& 16 matrices and are given by

A ~=n-yg f'+ n r~,2e
3m2

0 ~=g ~(g' —m)+ m. + y X~.3'
(3.8)

For simplicity, we take the external field to be a uniform
magnetic field in the z direction. Then we have

00 Q.
+e(u;) g g"(x)

n=o n'
(3.6)

where u;=0 are the characteristic surfaces where the
singularities occur.

If we substitute (3.6) into (3.5) and separate the coeffi-
cients of the singularities, we obtain

Since A is singular, it satisfies
2

deti ~
I

=«')' n'+ 2e
(n X)

3P72

2

(3.10)

Ae =0,
Ae '+Oe =0,
Ae +Or '=0,

Ago+Oeo=o,

Ag'+Og =0,
~ ~ ~

(3.7)

where n =n-n.
There are two distinct characteristic surfaces: (n ) =0

which is a sixfold degenerate and
2 2

(n.X) =0
r

2e
n +

3171

which is a twofold degenerate.
The first surface is just the light cone along which there

are six linearly independent solutions given by

0
n yeo

0
0

2r =
0
0

3

n yeo
0

[n y(2n +n H n3Hy —)+2n H(np —n3y )]e z

[n y+(np —n3y )]2niHe 2

[n y+(np —n3y )]2n2He z

[n y(2n3+n3H —npHy )+2n3H(np —n3y )]e 2

r 4

0
n'ye ]

0
0

5r = 0
rn.ye i

0

[n y(2np —npH —n3Hy ) —2n H(np+n3y')]e 3

—[n y+(np+n3y )]2niHe 3

—[n y+(np+n3y )]2nzHe 3

[n.y(2n3 —n, H —npHy') —2n3H(np+n, y')]e 3

(3.11)

where H is defined as (2e/3m )B, and e p, e i, e 2, and e 3

are Dirac spinors given by

The vectors r' are the right-hand solutions of the matrix
A. There are six linearly independent left-hand solutions:

0
0 T nol'= n.ye o,'n&

n yeo, 0,0

eo ——

e2=

0
0

0

0

ei ——

e 3=

0
0

0
0

(3.12)
no

l = n yeo, 00,
n3

A. T
n yeo

~z- no
l = n'ye ], n ye ],0~0

n]

no
l = n yeo, 0, n.yeo, 0

n2

(3.13)
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np
l = n.ye 1,0, n.ye 1,0

n2

This is a singular equation and there is a solution if Oe
has the following form:

np
n -~e „0,0,

' n.ye
n3

e is the transpose of the e vector.
The solution e has the following form:

6

E&p= g r~c7p (3.14)

Oe =AX

If such is the case, then we can write

~(e -' —X")=0
and the solution is

6
e —I yN+g i iN —I

(3.19)

(3.20)

(3.21)

IOP=0 (3.15)

cd are unknown functions to be determined. Contracting
the second equation in (3.7) by l' yields

For the solutions that propagate along the light cone,
i.e., causal solutions, Eqs. (3.7) are compatible, and (3.19)
is satisfied. However, we shall show below that for the
solutions propagating along

which determines o. within a constant. When the right-
hand and the left-hand vectors, (3.11) and (3.12), are used
to compute (3.15), the final expression is

'2

+ (n X)23'
2

=0 (3.22)

6

g M'~[2n m. +(3 n)]oj =0 (3.16) Eqs. (3.7) are not compatible and e ' does not exist.
The second surface which satisfies

cjN
OJ

l r
exp — A .n dr'

p
(3.17)

where M'J is a 6 )& 6 nonsingular matrix. Hence the solu-
tion to (3.16) is given by

[n —H (n02 —n 32)]2=()

is given by u ' = Vt —r', where V is

1V=
(1 H2)1/2 (3.23)

(3.18)

where r is measured from the origin to a point on the
characteristic surface, u =t r=0, and c~ —is a constant
of integration determined from the initial condition, the
coefficient of the 5 function on the right-hand side of
equation (3.5). In the case of a uniform magnetic field,
we can choose a gauge where A n is equal to zero.

To determine e ', we consider

Ae '+Oe =0 .

and r' is defined as (x +y + V2z2)'~2.

When H satisfies

(3;24)

then V is greater than one and the solutions propagate
noncausally in the x -y plane.

The right-hand and the left-hand solutions to the
characteristic matrix are

(n y nH+n3Hy —)e 0

n1 (n.y nH+ n 3Hy )—e 0
np

n2 (n.y nH+ n 3Hy )—e 0
np

n3 (n.y nH+n3Hy )e—o
np

(n y+n H+n3Hy )e i

n1
(n y+n H+n3Hy )e i

np

n2
(n y+n H+n3Hy )e ino

n3
(n y+n H+n3Hy )e

&

no

(3.25)

I' '= [n y noH (2. —H)n3y —] —e O, O, O, [n.yy —n3H —(2 —H)noy ] e 0n.n n.n

I' = [n.y+noH+(2+H)n3y ] e i,O, O, [y n y+n3H+(2+H)noy ] e in.n n'n

Following the same procedure as before, we calculate /Oe:
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1 —H
H

l m
n n+ —,+ H(no —n3 )

r np

m
Il3tl +

alp

m
71 3n

P1p

l m 2 2n m+ —,— H(no n—3 )r' no

r

0-'
=0,

0
(3.26)

where n n is defined as (1 H—)n tr n—&m &

—n2m2 —(1—H )n3n3 and n+ as nt+in2
The solutions to (3.26}are

1 ( I"
I

noH) n+, , (
I

n
I
+noH} "+

W, e' i" i"'+ —sm n r
r' ' r' n3(1+H)

I
n

I
n3(1+H)

I
n

I

(3.27)

where
I

n
I
=(n n)'i .and A~ and 8~ are constants independent of r'. Now if Eqs. (3.7) are compatible, one can always

write

O brett, =A t'Xg~.

For (3.19'}to satisfy, Pot„ for any A, has to satisfy the following equation:

( n3H +n Hy y yy' n.—y)IX&q +[(e +m ) +H(tro tr3y )]—(e Dcrt, +e io~) I

(3.19')

=y 2n tr+ —, (e oo~+e io~)+2mH(no+n3y )(e no~ —e ~otj) . (3.28)r'

The matrix (n3H+n Hy y yy n y—), is a singular ma-
trix along u'=0. Therefore, to be able to determine Xp~,
it is necessary for the right-hand side of Eq. (3.28) to be
equal to zero. This condition is not consistent with the
solutions (3.27} and the differential equations (3.26). We
therefore conclude that X and consequently e ' do not
exist and Eqs. (3.7) are not compatible. Note that when

H=0, i.e., when the interaction is turned off, the solu-
tions, 0' and o. , are no longer coupled and the right-hand.
side of (3.28) is zero.

Therefore, it seems that the Rarita-Schwinger wave
equation is highly sensitive to the introduction of the
external field and in fact ceases to have a solution.
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