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Gauge-invariant description of massive higher-spin particles by dimensional reduction
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We study the dimensional reduction of free massless higher-spin theories from five dimensions to
four-dimensional space-time. The fifth dimension is assumed to be compactified to a circle of ra-
dius 1/m. For spin s, the resulting four-dimensional theory describes massless fields of spin s,
s —1, s —2, . . . , together with an infinite number of massive'fields of spin s. These correspond to
a member of a class of theories given by Zinoviev which are gauge-invariant descriptions of massive
higher-spin particles. We show that in our theory massive modes have gauge invariance associated
with them. We also show that Schwinger's source constraints are obtained as source constraints due

to gauge invariance. These results have been shown for spins s = 1, 2, 2, and 2 . We also discuss in

the context of our work interacting higher-spin theories and Fronsdal s source constraints for a
smooth massless limit.

There exist satisfactory constructions for relativistic
wave equations for free massless as well as massive parti-
cles of all spins. ' But in the presence of interaction with
external fields, higher-spin (s) 1) theories exhibit well-
known problems like noncausal wave propagation, change
in the number of degrees of freedom, the presence of com-
plex energy modes in the presence of a homogeneous mag-
netic field, etc. Moreover, higher-spin theories do not
have a smooth massless limit. However, a consistent
massless spin- —', theory was found in supergravity. This
was later extended to the massive case by means of the
super-Higgs mechanism. The problems mentioned above
still exist for other spins and await satisfactory resolution.
Thus, although for free massive particles the Singh-Hagen
equations are satisfactory, it is likely that the interacting
theory should have an underlying gauge invariance for it
to be consistent. VA'th this possibility in mind, we seek a
gauge-invariant description of free massive higher-spin
particles. We show that dimensional reduction of mass-
less gauge-invariant theories from five dimensions gives
rise to the desired gauge-invariant massive theories in four
dimensions.

The study of spontaneously broken gauge theories and

supergravity can point to the specific properties of mas-
sive gauge-invariant theories useful in the formulation of
theories of higher spins. These have been summarized by
Zinoviev. The first property is the appearance of Gold-
stone fields which transform inhomogeneously under

gauge transformations and which provide the necessary
degrees of freedom for a massless particle to become mas-
sive. The second is that, as the mass of the gauge field
goes to zero, the Lagrangian for a spin-1 field breaks up
into Lagrangians corresponding to massless spin-1 and
spin-0 fields. Hence, in order to have a gauge-invariant
description of massive high-spin particles, it is essential
that in the m~0 limit the massive spin-s Lagrangian
decompose into those of massless helicities +s,
+(s —1),. . . .

It was first suggested by Schwinger that a description

of all massless particles with helicities +s, +(s —1),. . .
should be contained in the account of a massive particle
with spin s, which forces the m —+0 limit to have the na-
ture discussed earlier, and he applied it to the case of
spin-1 and spin-2 particles.

This approach has been incorporated by Zinoviev in
gauge-invariant massive theories of higher spin up to spin
3. He considered the most general Lagrangian for a mas-
sive high-spin field along with all lower-spin fields with
arbitrary parameters. By demanding invariance of the
Lagrangian under a transformation in which the massive
high-spin field undergoes a gauge transformation and oth-
er lower-spin fields inhomogeneous transformations like
those of Goldstone fields, values for the arbitrary parame-
ters are obtained to the extent possible.

In this paper, we obtain the same results by dimensional
reduction of the massless theory from five dimensions and
show that the resulting theory has the following features.

(i) Massive modes have gauge invariance associated
with them.

(ii) They have the appropriate massless limit discussed
earlier, as required by Schwinger.

(iii) Source constraints which we obtain from gauge in-
variance are the ones obtained by Schwinger by demand-
ing that in the zero-mass limit the amplitude for the ex-
change of a massive particle of a certain spin should

decompose into amplitudes for the exchange of massless
particles with that spin and also lower spins. Thus, pre-
cisely the features discussed by Zinoviev are present. In
contrast with Zinoviev's procedure, our method has no ar-
bitrariness, and once we start with a gauge-invariant
theory from five dimensions, dimensional reduction au-
tomatically ensures that the massive theory obtained has
all the features mentioned above. Of course, we are led to
one member of the class of theories obtained by Zinoviev,
as our method has no arbitrary parameters.

We next describe the procedure of dimensional reduc-
tion which has been applied in Kaluza-Klein theories, in
which there has been a revival of interest in recent times.
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Consider the action for a massless vector field in five-
dimensional space-time,

I= f dxW(
= ——,

' f d'xF~~F"~ (A,B =0, 1,2, 3,5),
where F~~ ——a&A~ —a~A&. We define Az on a product
manifold M(4)&&S(1), where S(1) is a circle of radius
1/m. We perform a Fourier decomposition of the field,

1/2

Ag(x&, x )=
277

Az"'(x")exp(imnx )

(@=0, . . . , 3), (1.2)

where the infinite set of Fourier coefficients Aq"' depend
only on the coordinates of M(4). Substituting (1.2) in the
action, we get

2n /mI=——' f dx f dx (m/2m)
0

Though we do not consider a general covariant theory in
five dimensions, the process of dimensional reduction is of
the same nature as in the Kaluza-Klein theory. We start
with five-dimensional space-time in which one dimension
is assumed to be compactified to a circle of radius 1/m.
Fields are defined on the product manifold M(4))&S(1),
where M(4) is four-dimensional Minkowski space-time
and S(l) is a circle, which inherits the natural product
metric. Fields are expanded in Fourier series where the
expansion coefficients are fields depending only on coor-
dinates of M(4). The extra coordinate is integrated over
in the action, and in the resulting theory the mass scale
for the fields is inversely proportional to the radius (1/m)
of S(1). When the massless theory defined in five dimen-
sions has gauge invariance, the four-dimensional massive
theory which results from dimensional reduction also has
gauge invariance. The zero mode (n =0) in the Fourier
series of the theory for spin s consists of massless parti-
cles of all helicities of magnitude &s, in integral steps.
For each nonzero mode ( n&0), when the gauge is fixed
suitably, only a massive spin-s theory is obtained.

We apply this procedure for spins s=1, 2, —,', and —,'.
We see no difficulty in extending this procedure to other
higher spins. This paper is organized as follows. Section
I deals with spin-1 and spin-2 theories. Section II deals
with spin- —,

' and spin- —,
' theories. We conclude with a dis-

cussion of our results.
We use the metric g = (+ 1, —1, —1, —1, —1) in five

dimensions. Our notation is that upper case latin indices
take values in the five-dimensional space-time, and greek
indices in four-dimensional space-time. In four-
dimensional space-time our metric and notation are those
of Bjorken and Drell.

I. INTEGRAL SPIN

A. Spin-1 fields

From (1.2), because of the reality of fields in five dimen-
sions we get A~

"'——Az'"'. The action is then

f d4x y ( '/"")y'")+a y~(~)any(~)
n=0

+m n a*("'a"'"'+imna'""'a"y'"'
IJ P

(1.5)

where A ~5"' = —A (")=P("'. This action is similar to the
one occurring in Stueckelberg's formulation and was also
considered by Schwinger. ' The action has an invariance
under the transformation

5&(")=imn A(")
(1.6)

which is, of course, obtained from the gauge symmetry of
the five-dimensional theory. Thus we have, for each
mode with n&0, a free massive vector action, which is
nevertheless invariant under gauge transformations (1.6).
That the action (1.5) does describe a free massive vector
field for each of the nonzero modes can be seen by choos-
ing a gauge P(")=0 (n&0), whereupon the action reduces
to that of the Proca field.

When the five-dimensional theory is coupled to a source
J~, the constraint on the source due to gauge invariance
obtained by dimensional reduction is

8 J"'"'=imnJ'"',
P

where J"'"' is the source of 3"'"' and J5"' —=J'"' is the
source for (t("). As m~0, J~(") and J'"' are independent
sources. This is the source constraint obtained by
Schwinger. " The massless limit ( m ~0) of the theory for

- each n is as demanded by Schwinger; i.e., it comprises
only a massless vector and a massless scalar field. Hereaf-
ter we shall refer to the massless limit required by
Schwinger as the "correct" massless limit.

B. Spin-2 fields

We start with the action for a massless second-rank
symmetric tensor field in five dimensions,

I= f d x W(," 2)
—=d x( —'a~h~ca"h —ash" a hey

where

F&"&' ——B&A 5"' —imnA&"' .

Integrating over the fifth coordinate we get

I = —— d + (F "F" "'+2F' "'F" '"') . (1.4)= —
4 X p5

n, s = —oo

(~(n)FPv(s) +2F(n)glJ, 5(s)
)pv JM5

&&exp[im (n +s)x ],
+a h" ash ——,'agha h),

(1.8)

where h =h "z. The action in (1.8) is invariant under the
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gauge transformation

Sh„,=-,'(a, A, +a,A„) .

hgii(x", x')

m

2'

' 1/2

h~i)(x")exp(imnx ) . (1.9)

As before, we make a Fourier decomposition Using (1.9) in (1.8) and integrating over x, we get

I= I d x ~+ [B h '"'8"h" '"'—2()Q & '"'(Yh'"'+(B h"" '"'dP'"'+c. c. ) —() h*'")P'h'"'
P VA PP P P

+2&P " '+h'g —2() h"'"'P'h "'—[8+55"'(() h"~n) —()"h(n))+c.c. ]P5 P v5 5 55 JM

[2&mn (h p (n)~h (n)

+hvar(n)gp

(n) +~ hen(n)h (n))+ ] 2 2(h

v(n)hvar(n)

he(n)h(n)) )
pp 5 55 p 5 VA, ) (1.10)

where h' '=h&"' '. Upon taking the m ~0 limit in the above action it is obvious that the correct massless limit is not
present, as there is no kinetic energy term for the scalar field h55, and also terms off-diagonal in fields are present. But
by redefining the fields as

(n) ~(n) (n) & (n)hpv~hpv b'av 2 7)ppt55

and identifying

we obtain the Lagrangian (after omitting primes)

[() h""'(3"h '"' 2BJz""'"—'cd'"' +(B h"'*'"'BP'"'+c.c. ) —() h'"'8"h'"'
p VA. PP P

S'"'"'F~"")+ 'a—~*(")a»(")+—mn( —2&~*(")a h'"'+3W"*(")aP(")—2I '")a W&(")+c.c. )PV 2 P'V PP P

+m 2n2( hn(n)hPv(n)+h n(n)h (n)+3pn(n)(()(n)+ 3
h v(n)(t(n)+ 3 pn(n)h (n))]

PV 2 2 (1.12)

The above Lagrangian has manifestly the correct massless limit, and it has gauge invariance under

2 P

(iy(")=i.mn A'"',

(1.13)

where A(")=A5"'.
When we couple h„'"„', A„'"', and P(") to external sources T"~"), T"'"', and T'"', respectively, and demand invariance of

the action under (1.13), the constraints on the sources obtained are

B„T"~")= —,
'

mn T""',
(1.14)

8 T"'"'=— mnT" " mnT'"'— —
P 2

These are the source constraints demanded by Schwinger' for the correct massless limit.

II. HALF-INTEGER SPIN

A. SPin-2 fields

Let us consider the massless Rarita-Schwinger action in five dimensions:

I = I d~x W(," )= I d xi[/ y.BQ„—(@ y)(B g) —(P B)(y g)+(g.y)y. ()(y g)],
I

which has gauge invariance under

ni) „=a„e.
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In (2.1) dot products denote five-dimensional scalar products, and y":(—y",iy ). We make a Fourier expansion,

Pg(x",x )=(m/2n. )'~ g fg'(x")exp(imnx ) .

Substituting this in (2.1) and integrating over x, we get, now in four dimensions,

(2.2)

J d x[g"( )(iQ —imny )pn —i(g ("'
yQ g )+(T)("'Qy g(")+if y Q gn)+if( ) cjy.5pn )

+i(4'"'y &y 0'"'+i0'"'y &y'0'"'+if'"'y'&y 0'"' mn—0'"'yy'y 0'"'.)], (2.3)

where y is the usual four-dimensional y, satisfying (y ) = 1 and y =y5. Defining ((t)&"' i/——(")= —g, and by making
a chiral rotation

the Lagrangian from (2.3) is (after dropping primes)

[g&(")(i9—mn)blitz"' —(i P("'y () g(")+H.c. )+it) ("'y(i 9+mn)y g'"'

+(it '"'a y'"'+H. .)+(4 '"'y y.q'"'+H. .)] .

This Lagrangian has an invariance under the transformations

(2.4)

(2.5)

which is obtained from gauge invariance in five dimensions. Equations (2.4) and (2.5) are identical to those given by
Zinoviev. Thus we have for each n&0, a Lagrangian for a massive spin- —, field which is gauge invariant. When the
gauge is fixed so that P'"'=0 for n&0, the Lagrangian in (2.4) reduces to that of the usual massive spin- —,

' theory. Yet,
when we consider the m~0 limit, the Lagrangian does not have the correct massless limit, there is no kinetic energy
term for P(") and also there are off-diagonal terms in the kinetic energy. So, we make the following redefinition which
diagonalizes the kinetic energy terms:

y(n) y~(n) y(n)

After this redefinition, the Lagrangian (2.4) becomes (after omitting primes)

(2.6)

[~kl (g(n)) if (n)gP(n)+ mn ( gP( n)g( n+ f ( ).yny. g( )+n3$ (n)P(n)) + ( imnf ( )n.
yP( )+H c )]

Gauge transformations for the redefined fields are

(2.&)

On coupling g„'"' and P(") with external sources J)'(") and J("), respectively, invariance of (2.7) under (2.8) gives the source
constraint

a gp(n)+ Jp( ) g( )
Iji p (2 9)

B. Spin-2 fields

We generalize the Lagrangian for the massless s = —,
' theory' to five dimensions,

)
—i(p y. () Q 2p y () p 2p B~y p+c+2p '(+y y. () ye/ „+p ~y 8

+yy„()~(t g4y () 4—),
where Pzz is a symmetric tensor-spinor, and P =Pz . The Lagrangian in Eq. (2.10) has gauge invariance under

(2.10)
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with ygg" =0.
As was done earlier, we make a Fourier decomposition of the field

sts„g(x",x )=(m/2m)'/ g Pgg(x")exp(imnx ) .
n =—00

After doing the usual reduction to four dimensions as in earlier sections and making a field redefinition
—i(~y4iy,

%~a e 0~a

we obtain the Lagrangian

(2.11)

X I~(.=5/2)(4'p ) —2&4'"'W'"' —2&0'"'y&y (t}'"'

+ [i (2y ("'a y p'"' 2p"'"—'dpi''"'+2&"'"'&y'0, '"„' 0"""—'y ~ 0'"'

y)s(n)g y(n) y}M(n)g y(n) 2y v(n) py(n) y(n)yy(n))+H ]

+ ~ y
( )n~ (v)n+2y}sv(n)y ypy«+ y (n)y(n)+2y (n).yy y(n) . y (n)y(n)

+( i y(n)y(n))+y(n). yy(n) y(n). yy(n)+H C )]I (2.12)

where p(")=—p("5}———p&'"', g(n}—= i))55', y.p("}=y"p&"', and sts("}=stspz'"'. Equation (2.12) has gauge invariance under the
transformations

5P'"}= imn g("},

(2.13)

with y g("}= —g("},which are obtained by dimensional reduction of the gauge transformation for /zan}.
Again, the Lagrangian (2.12) does not have the correct massless limit as the spin- —, fields do not have the complete ki-

netic energy terms and also there are off-diagonal terms in the limit m~0. So, as was done earlier, we make a field
redefinition,

(n) i(n) & i(n) & i(n) & i(n)
&y„W— 4yAP + 2

—ri„A'

y(n) qi(n)

under which the Lagrangian becomes (after omitting primes)

(2.14)

t ~(s =5/2)(4)lv) Y~(s =3/2)((i' )s )+T~(s =)/2)('ti'

+mn[ y (n)y)lv(n)+2y (n)yvy ~}l(n)+ i
y (n)y(n) )5

(y (n).y)(y.y(n))

+ && mls(n}y(n)+(5y(n). yy(n) & y(n)y)slav(n)+ & y( )y.yn(n)+H C )
)s y(n)q(n)]I (2.15)

This evidently has the correct massless limit. It is invariant under the transformations

5Pp = T~(Bp+Emnyp)g + T~lmngp (2.16)

5g("}=imn g("},

with y.g'"}= —g("}. After choosing the gauge in which g("}=0 and P&"'——,
'
y„y P'"'=0 for n+0, the Lagrangian is

~~kin (y(n)) 15
&g (n)yg(n}+mn( y (n)yPv(n)+2y Pv(n)y yPy(n)+ i

y (n)y(n)

ss g (n)y(n) + &

y (n)y(n}+ 5 g (n)y(n) )] (2.17)
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where X'"'=y P' '. The Lagrangian for any n&0 in
(2.17) is the Lagrangian given by Zinoviev and it corre-
sponds to the usual Lagrangian for a massive spin- —,

' field.

DISCUSSION

(i) The mechanism of mass generation in high-spin
theories obtained by dimensional reduction of massless,
gauge-invariant five-dimensional theories can be under-
stood as utilizing a generalization to higher-spin fields of
a feature of the Higgs mechanism occurring in the case of
spin 1. Just as in the Higgs mechanism, where a scalar
field corresponding to the Goldstone mode provides the
necessary extra degree of freedom to make the vector field
massive, in the case of a higher spin s, all fields of lower
helicities +(s —1), +(s —2), . . . provide the necessary ex-
tra degrees of freedom.

(ii) Massive higher-spin theories developed in this paper
also have the correct massless limit as stipulated by
Schwinger. Source constraints due to gauge invariance
for s= 1 and s=2 are the ones obtained by Schwinger for
the zero-mass limit of the massive theory Fro. nsdal' on
the other hand, has obtained conditions on the sources for
a smooth zero-mass limit of field theories. In contrast
with Schwinger, who demands that in the zero-mass limit
the amplitude for the exchange of a massive spin-2 parti-
cle, for example, should decompose into those of massless
fields with helicities +2, +1, and 0, Fronsdal demands
that the amplitude for the exchange of a massive s=2

particle should reduce in the limit m ~0, to that of mass-
less spin 2 alone. If in our approach we choose p„=0,
T=O in the m ~0 limit of the spin-2 theory (and analo-
gously sources corresponding to all lower helicities for
other spins to vanish in the massless limit), we find that
Fronsdal's conditions on the sources are automatically
met.

(iii) Interacting theories of massive high-spin fields ob-
tained by a smooth deformation of theories with massless
fields interacting in a gauge-invariant way with external
fields may be devoid of the usual problems of the high-
spin theories. This possibility, in fact, is the main motiva-
tion of our work. In this context mention should be made
of the consistent theory for massive charged spin-2 parti-
cles obtained by dimensional reduction of the original
Kaluza-Klein theory. ' It will be interesting to seek con-
sistent theories for massive high-spin particles by dimen-
sional reduction of massless theories having gauge-
invariant interactions. Work along these lines is in pro-
gress.
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