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Constraints on Hamiltonian lattice foliiiulations of field theories in an expanding universe
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A consistent formulation of lattice field theories in Robertson-Walker spaces is not possible in
comoving coordinates. For renormalizable lattice theories, physical results do not agree with results
obtained using dimensional regularization. Coordinate systems where such a formulation may be
possible are described. Problems with quantization with these "fixed-distance" coordinate systems
are discussed.

INTRODUCTION

The study of phase transitions in the very early universe
requires an understanding of the behavior of quantum
field theories near their critical points. To properly treat
this system, one should quantize these theories in a curved
(Robertson-Walker) background characteristic of an ex-
panding universe. Such a quantization has been studied
extensively for free-field theories and much work has been
done on perturbative calculations for interacting theories. '

However, a study of the critical behavior of these theories
requires nonperturbative methods. In flat spacetime, the
most successful approach has been to consider a lattice
version of the theory which then maps the problem into
an analogue statistical-mechanics problem for which
methods of solution are more common. There are two
general approaches to the lattice method. The first, and
by far the most successful, is the Euclidean Monte Carlo
approach which, unfortunately, is not easily generalized
to Robertson-Walker spaces due to the explicit time
dependence in these spaces. The second is the Hamiltoni-
an approach where only a spatial lattice is introduced
and time remains continuous. This approach was, for ex-
ample, the first to study the confining-deconfining transi-
tion in QCD. Although it is not as powerful as the Eu-
clidean Monte Carlo approach, its generalization to an ex-
panding universe could prove useful in better understand-
ing phase transitions in an expanding universe.

In formulating the lattice version of a field theory in a
Robertson-Walker background, one has a wide range of
choices including the choice of coordinates and a choice
between many (nonequivalent) vacuum states' (or thermal
states in case one is studying the theory at finite tempera-
ture ). In this paper, we show that the requirement of re-
normalizability, i.e., the existence of a continuum limit,
severely restricts the possible lattice formulations when
quantized in comoving coordinates. We begin by showing
that scalar theories. with quadratic divergences are non-
renormalizable when regulated on a lattice. The physical
reasons for this will be discussed and we shall describe a
fixed-distance coordinate system where this problem can
be avoided. Lattice formulation in this coordinate system
will have its own set of problems including the existence
of a metric singularity and loss of translational invariance.
We next discuss non-Abelian gauge theories which are

I

conformally invariant. When regulated on a lattice in
comoving coordinates, these theories behave very dif-
ferently than if they were regulated via dimensional regu-
larization. The physical model is thus regularization
dependent. We shall conclude without an adequate for-
mulation of the lattice problem but with several con-
straints on any future attempt at such a formulation.

SCALAR THEORIES

V(P) = , (m'+ gR)P—'+ P4, —
4

where R is the scalar curvature. We immediately special-
ize to spatially flat Robertson-Walker spaces and start by
choosing comoving coordinates with conformal time g, so
that the line element is given by'

ds =C(q)(dq —dr ),
where v'C (g ) is the scale factor of the expanding
universe. In this coordinate system the action is given by

2

S=f dgd r C(g)
1 BP
2 BY/

——,
' (VP) —C(g) V(tb)

It is useful to make a time-dependent canonical
transformation

Now

CR D D+6 2 4

where D =CIC and an overdot denotes B/Bil. The action
then becomes (apart from surface terms)

We start by considering a scalar field P quantized in a
curved background with an action

S =I d'x v' g[ ,'g~"B„—yBP-V(y)]— (1)

with
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S =f dqd'r (V'X)

2

——[m +(g——)R]X—C 2 ) 2 AX

2 6 4
(6)

(VX)2+ 2

(In the conformal limit m ~0, g= —,', this action is iden-
tical in form to the flat-space-time action since it
represents a conformally coupled theory in a conformally
flat background. ) The (time-dependent) Hamiltonian for
this system is

the Hamiltonian (9) can be extracted by considering the
continuum action (6) and evaluating the relevant Feynman
graphs with a momentum cutoff k,„=A. A will then
correspond to 1/a. Feynman rules are given in Ref. 5.
The leading divergences are those of adiabatic order zero
and are extracted by ignoring the time dependence of C.
They are insensitive to the choice of vacuum. Thus, to ex-
tract the leading (quadratic) divergence, we can use the
Feynman propagator 1/(k —Cm ) so that

Cm~ ——Cm +constXA, f d k
2 2Cm2

=Cm +const&A, A

xy4+—[m +(g——,
' )R]X +

=Cm +constXA, /a (10)

with canonical commutation relations

[X(r),m.(r')] =i5'(r —r') .

Let us now introduce a spatial lattice with spacing a and
lattice sites i. The natural choice for a lattice Hamiltoni-
an HL, is

Ht. ———$ ,' P; + —,
'

( h—q;) + —,
'

A,q;a

" [m'+(g ——,')R]q

(9)
[qi,Pj]=i&;i .

(Note that f d r was replaced by a g, , m was replaced
by P;/a, and X by q;/a. ) Here 6 represents the discre-
tized (nearest-neighbor} Laplacian.

Before proceeding we note that there may be a ternpta-
tion to allow the lattice spacing a to vary with time so
that two adjacent lattice points have a fixed proper dis-
tance at any time. This would require a ~C(g}
Such an option is not possible. To see this, consider two
"particles" of the system (9) separated by n lattice sites,
where n is much greater. than the correlation length (in
lattice units) so that they interact only very weakly. Their
distance z in comoving coordinates will vary in time as
ag so that z cc 1/v'C(g). Thus their proper distance will
be roughly constant. Such a choice completely defeats the
purpose of working in a comoving frame in which free
objects are receding from each other. We shall thus
demand that a be constant in Eq. (9).

We now argue that the Hamiltonian (9) is not renormal-
izable, not even perturbatively. To see this let us special-
ize to the case g'= —,

' for illustrative purposes and compute
the renormalized mass rn~ as a function of m, A, , and a in
the one-loop approximation. For any suitable definition
of rn~ we certainly would expect mz to be time depen-
dent. Its divergent part, however, will have to be time in-
dependent if the theory is to be renormalizable. We shall
see that this does not happen in theories with quadratic
divergences.

The quantity m~ is evaluated via the self-energy tad-
pole graph. The leading one-loop divergence structure for

It follows that if mz is to be finite as a ~0, the leading
term in m will have to be chosen as

ds =dt a(t)(dr +r dQ —),
and define a new coordinate

p=a (t)r (12)

then

ds =(1 Hp )dt +2Hpd—pdt dp pdQ— —
with (13)

const
Pl -mg

Ca

This contradicts the fact that the bare mass m does not
depend on time. ,[A time-dependent m would violate the
general covariance of the action (1).] Thus lattice (or
momentum-cutoff) regularization does not work for mas-
sive scalar fields. (Choosing a a: 1/C is not viable, as dis-
cussed previously. )

The physical reason for this is as follows. The Hamil-
tonian (9) represents a set of coupled oscillators each in a
local potential (C/2)m q +(A/4)q . As C increases,
both the q term and the nearest-neighbor coupling term
appear to become negligible. At large times we would
conclude that Eq. (9) just describes a set of decoupled har-
monic oscillators. We know, however, that such an inter-
pretation is ~rong in the continuum limit. The reason
why the neighbor-oscillator coupling seems to be weaken. -
ing is that the oscillators are moving physically farther
apart, though their coordinate distance is unchanged. In
the continuum limit there are many new lattice points in
between the original neighbors with a much stronger in-
teraction (since their lattice spacing is smaller}. These in-
teractions force correlations on the system which are not
seen in the lattice version of Eq. (6). The mathematical
manifestation of these ideas is the inability to renormalize
this Hamiltonian, even perturbatively.

The previous discussion suggests that we might solve
the problem by working in a fixed-distance coordinate
system in which the spatial coordinates more closely
represent the physical distance. If we start with
Robertson-Walker coordinates
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Xsin8 +Hpg ——,
' (1 Hp—)

T

1 BP
2p2 88

1 BP
2pz sin'8

(14)

where the integral is only over the region 0(p&H
The Hamiltonian for this system (in "Cartesian" coordi-
nates) is given by

(V )H =f d3p + +V(P) Hop. VP—

with

[P(p), n.(p')] =i 5(p p') —.
(15)

H =ala .

This system has a coordinate singularity at p=H '. In
this coordinate system the action (1) becomes
S=f dtdpd8d@p2

state as well as the choice of the boundary and of the
boundary conditions must be seriously dealt with before
studying the lattice version of Eq. (15).

NON-ABELIAN GAUGE THEORIES

In this section we study the lattice versions of non-
Abelian gauge theories in Robertson-Walker spaces. The
conformal invariance of these theories will allow them to
be renormalized in comoving coordinates but they will
show some very unusual behavior which makes the lattice
method of renormalization quite unacceptable.

Another goal of studying gauge theories in an expand-
ing universe might be to start, at some initial time, in
thermal equilibrium at a temperature T &&T„where T„
is the critical temperature at which the theory deconfines.
The future development of the system will then be com-
pletely controlled by the equations of motion. It would be
nice to follow the system through its critical point as the
universe expands, simply by evolving the initial thermal
state.

A pure gauge theory is conformally invariant. Thus in
conformal coordinates (2) the action for such a theory is
given by

S= f david r ,'(E B)—, —
g

(16).

where

1

Ei —+oi and &i —2 &ijkI'Jk .

The Hamiltonian for this system, in the Ao ——0 gauge, is
given by

2g 2

with

[A (x),EJ. (y)]=i5;J5,t, 5 (x —y) .

The Hamiltonian lattice version HL of H is given by

g'E-'
Ht. ———g + QTr Q U+H c.

0 2 2g p] p[
1

L

where a is the lattice spacing, gp& represents a sum over
plaquettes, U is the link variable defined on a plaquette

[ U-P exp(i f A dl)], and H.c. denotes Hermitian conju-
gation. As discussed in the previous section, we must
choose a to be constant. Thus HL is precisely the flat-
space-time lattice-gauge-theory Hamiltonian.

The conformal invariance is, of course, anomalous.
The introduction of a scale into this theory which is re-
quired when the theory is renormalized leads to a very
surprising result. The continuum limit can be obtained by
letting a ~0 and g~0 in such a way that some physical
quantity such as the mass gap, m, stays fixed (i.e.,
m [g(a),a] is independent of a). If we do this at some
time to, this mass gap (or the correlation length I cc m ')
will be independent of time, since HL is time independent.

(The operator ordering in the last term is irrelevant since
the spatial integral of the commutation of n with p.VQ is
a c number. }

It is straightforward to check explicitly that the leading
(quadratic) divergence, in this case, leads to a time-
independent infinite renormalization, as required. [This
can be seen intuitively by noting that the leading diver-
gence comes from the lowest-order adiabatic term in the
propagator which is obtained by ignoring the time depen-
dence of a (t). If we set H =0 in Eq. (9) we retrieve the
flat-space-time Hamiltonian in which the renormalization
works out properly. ]

The lattice version of Eq. (15) seeins like a promising
possible lattice version for this theory (either in Cartesian
or in spherical polar coordinates). There remain, however,
several problems. The first (and least serious) is the lack
of spatial translational invariance in Eq. (15). This may
make the theory more difficult to analyze. A much more
serious issue is the singularity in the metric leading to Eq.
(15). Although this singularity is not evident in Eq. (15) it
is easy to show that for p &H ' the Hamiltonian density
is not positive semidefinite. (To see this, start by complet-
ing the square for m in spherical polar coordinates. ) As a
result, Eq. (19) only describes the dynamics of part of the
quantum system. In fact we should wonder what boun-
dary conditions to impose at p=H '. In the lattice ver-
sion we must cope with the fact that this "boundary" typ-
ically grows with time. Furthermore it is not clear that
the ground state of this Hamiltonian is a proper physical
ground state for the system. In fact, if we were in de
Sitter space (H=O) then the de Sitter-invariant vacuum
for this system would lead to a density inatrix, rather than
a pure state, in these coordinates due to the lack (in prin-
ciple) of information about the region p&H ' (In fact.
with a slight modification of the coordinates the de
Sitter-invariant state would correspond to a thermal state
at the Hawking temperature. ) Thus the choice of initial
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m: Cp I'(g—, n —4), (20)

where F is a dimensionless function of g and n —4. Thus
m varies as V C and the universe expands so that the
correlation length I ~ 1/m increases like I/V C in comov-
ing coordinates. Thus the physical length scale stays
fixed as the universe expands. The naive lattice formula-
tion (18) of the Hamiltonian (17) does not give the same
answer.

We conclude that the physics of conformally invariant
field theories in Robertson-Walker spaces is regularization
dependent when quantized in comoving coordinates. In
the dimensionally regulated theory the dynamical scale
stays fixed as the universe expands, whereas in the lattice
regulated theory it grows with the scale of the universe.

A similarly unusual situation arises if we add a term
which explicitly breaks the conformal invariance. Consid-
er, for example, a gauge theory coupled to a fermion of
mass M. Unlike the scalar theory discussed in the previ-
ous section, this theory will be renormalizable when a lat-
tice regulator is used, since only logarithmic (rather than
quadratic) divergences are present. In dimensional regu-
larization both the mass scale M and the dynamically gen-
erated scale m of the gauge theory stay fixed as the
universe expands, whereas in the lattice theory, the scale
M stays fixed whereas the length scale m ' grows with
the expanding universe. Interactions will, of course, mix
these two scales leading to very different dynamics for the
two regularization schemes.

One can show that the previously mentioned results ap-
ply in Robertson-Walker coordinates with proper time
[ds a(t)dr ] as w—ell; though the arguments are some-
what more complicated and we do not reproduce them
here.

The next step is to attempt a lattice formulation in the
coordinate system (13). The action (16) now becomes

S =
z jdrd p[E B+HE (p)&B)],— .

2g
(21)

Thus the correlation length is constant in a comoving
frame so that it grows with the scale of the universe. This
is certainly contrary to expectations. Usually, in confor-
mally noninvariant theories, the length scale stays fixed as
the universe expands. The lattice formulation of the
Hamiltonian has thus led us to an unusual result which
we shall see, is not present in other regularization
methods.

This unusual result does not hold in dimensional regu-
larization. It is useful to review this argument at this
point. In n space-time dimensions the action (16) is given
by

S =

david

r(Cp)'" '
. (E B)—1

2g

where the arbitrary mass p is introduced to scale out the
dimensions of g via g~(p, )' "' g; and the factor of
C' "' comes from the values of v' —g and g" in n di-
mensions. Conformal invariance is now broken by the
scale factor p when n&4. p. , however, always appears in
the combination Cp . Thus the mass gap m must be of
the form

where the dot and & denote spatial dot and cross prod-
ucts and H =a 'da/dt. In the Ao ——0 gauge the momen-
turn m. conjugate to 3; is

, (E+ —,'HpXB) . (22)

Gauss's law becomes

D;~;=0, (23)

where D; is the group-covariant derivative.
The Hamiltonian is given by

2 g2H= Jd p m. — Hp~B
2 2g 2g

(24)

This Hamiltonian cou1d be used as a starting point for
formulating a lattice version of the theory although the
problems previously mentioned regarding vacuum choice
must still be dealt with.

SUMMARY
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In this paper it is shown that formulation of lattice ver-
sions of field theories in Robertson-Walker spaces is not
as straightforward as one might expect. Conformally in-
variant theories whose conformal invariance is broken by
interactions have different physical behavior when regu-
lated on a lattice as opposed to being regulated dimension-
ally. In the conventional (dimensional) regularization, the
induced scale stays fixed as the universe expands whereas
in the lattice approach, this scale grows with the scale of
the universe. Massive scalar theories cannot be renormal-
ized on a lattice in comoving coordinates if the lattice
spacing is assumed time independent. It is shown that
this must be the case since a variation of the lattice spac-
ing in time will result in distant objects not receding and
thus the universe not expanding. It is suggested that lat-
tice versions should be formulated in a fixed-distance
coordinate system where coordinate distances are more
closely related to physical distances. These coordinate
systems have singularities which make the choice of
ground state and the boundary conditions difficult to
specify. Furthermore, they only cover a time-dependent
portion of the space (p &H ') near an observer. It seems
an intractable problem to try to patch. these (growing)
"lattice formulated" spheres together to make up the
whole space. We thus conclude with no adequate formu-
lation of these theories. The lattice versions of the Hamil-
tonians (15) and (24) show the most promise.
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