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A nonperturbative approach to quantum field theories
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%'e suggest a time-dependent, finite-dimensional approximation scheme for time evolution opera-
tors and the S matrix in relativistic quantum field theories. It can be solved by diagonalization of
finite-dimensional Hermitian matrices. The method is presented for a P -field theory. In the weak-

coupling regime, where perturbation theory is applicable, our method tends to the results of pertur-
bation theory in all orders, when the approximation parameters tend to infinity. Renormalization is
achieved by introducing counterterms in the Lagrangian in the usual way. This method does not in-
volve vertices and propagators and is a nonperturbative scheme. It is applicable to arbitrary cou-
pling constants.

I. INTRODUCTION

In recent years several methods have been developed in
order to overcome the limitations of standard perturbation
theory for relativistic quantum field theories. One ap-
proach is based on finding the large-order behavior via
functional integrals and construct the solution via Borel
transformations. ' Another approach is taken in lattice-
field theory. Discretization of coordinate space is suit-
able for the treatment of bound-state problems, where par-
ticles are essentially confined to a finite region in coordi-
nate space.

Here we suggest a discreiization in momentum space,
which should be suitable for scattering problems, where
the incoming and outgoing particles are essentially con-
fined to a finite region in momentum space. On that basis
a method has been proposed in Refs. 3—9 for the calcula-
tion of nonrelativistic few-body wave operators and the S
matrix, in the following called the strong approximation
of Moiler (SAM) wave-operator approach. It is a time-
dependent systematic approximation scheme based on ap-
proximated finite-dimensional Hermitian Hamilton ma-
trices. Scattering states are calculated by diagonalizing
these matrices. The scattering boundary conditions are
included in the form of Moiler wave operators; i.e., one
approximates

Q'+—'= s-lim exp(iHt)exp( iH t)~—
&~+ 00

tends weakly to S=Q' 'tQ'+' for suitable n, T~ ae.
It is possible to include long-range Coulomb forces by us-
ing suitably modified wave operators. The method has
been tested in the two-body system for a variety of short-
range potentials and the long-range Coulomb potential
and was found to converge to the reference solution in all
cases. ' It has been applied to the d +p —+p +p +n reac-
tion close to the breakup threshold. ' The following im-
portant features of the method should be noted.

(a) The calculation of Q„(+T) is straightforward by di-
agonalization of H„, K„.

(b) In contrast with time-independent formulations this
method does not involve expansions in terms of vertices
and propagators and it is free of singularities.

(c) Arbitrary coupling constants can be handled.
Based on these features we suggest here a generalization

of the SAM approach to relativistic quantum field
theories.

II. FORMALISM

We discuss the SAM approach for a neutral
pseudoscalar-field theory with a P interaction in 3+ I
dimensions, given by the unrenormalized Lagrangian den-
sity (renormalization shall be discussed later)

Q„(+T)=exp(+iH„T)exp(+iH„T),

where H and H denote the full and the asymptotic Ham-
iltonian, respectively, and H„, H„denote the correspond-
ing finite-dimensional approximations. T is a real time
parameter. It can be shown rigorously for quite general
classes of potentials and different types of finite-
dimensional approximations that Q„(+T) tends strongly
to n'+-' and

g„(+T,—T)=Q„(+T) Q„( T)—U(t, O) =exp[iH IP (x,O) Jt]exp[ —iHIQ(x, O)It] (3)

and it is assumed that at t =0 the full and the free fields
as well as their first-order time derivatives coincide, al-

,
P~(x),

~0+~int

Let H, H'"', H denote the corresponding Hamiltonians.
Let P denote the free field. In the interaction representa-
tion the time evolution can be written
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lowing us to express H in terms of the free field opera-
tors'

H[P(x, O)I =H IP (x,O)I+H'"'IP (x,O)I .

The S matrix can be calculated from

U(t, t')=U(t, O)U (t', 0)

=exp(iH t)exp[ iH(—t —t')]exp( iH t—')

(4)

[A;,AJ]=[A~, AJ ]=0,

[A;,AJ ]=5;Jlu;, i j =1, . . . , n,

in the limit t~+ ao, t'~ —00. In analogy to the nonre-
lativistic case, we suggest approximating those exponen-
tials by finite-dimensional operators and calculating from
those approxiinate S-matrix elements. We introduce four
approximation parameters: (a) a cutoff Q in momentum
space which defines a finite ball 8~ centered at the origin,
(b) a partition of this ball in n cells, (c) a maximal number
N of particles occurring in Fock space, and (d) a real, fin-
ite time T. The free field and functionals constructed
from it such as the Hamiltonian, the time-evolution
operator, and the S matrix are all substituted by a finite-
dimensional approximation. We define creation and an-
nihilation operators averaged over the small but finite
cells of the ball B&,

A; =f d qX;(q)A (q) fd qX;(q),

A; =fd3qX;(q)A(q) fd qX;(q), i =1, . . . , n,
where A (q), A(q) are the time-independent Fourier com-
ponents of the decomposition of the free field P (x) and
g;(q) is the characteristic function of cell i (i.e., takes the
value 1 inside the cell i and 0 outside). The "discretized"
creation and annihilation operators 3;, 2; obey the com-
mutation rules

/

where v; denotes the volume of ce11 i. We define the fo1-
1owing subspaces of the Fock space, built from the gen-
eralized "particles" corresponding to the mornentum-
space cells. Let Wo be generated by the vacuum state

~
0), and let Wk „be generated by A; A;

~

0),
i&, . . . ,ik&1, . . . , n, which is a k-particle subspace. In
order to obtain a finite-dimensional subspace, we restrict
also the total particle number by N and define a subspace

H'"t ~a~It ——P~H'"tP~ .

Note that the finite-dimensional Hamiltonians are defined
on the whole Fock space and that because of the Hermiti-
city of H, H, and H'"', also H~, H~, and H~ are Her-
mitian, which is convenient for numerical calculations.
Now we define a finite-dimensional approximation of the
time evolution operator,

U( t, O)~U~(t, O) =exp(iH~)exp( iH~t), —

U(t, t') U (t, t')=U (t,O)U' (t',0),
(10)

and we suggest approximating U(+ oo, —oo ), which
enters in the S matrix, by

U(+ oo, —a& )~U~(+ T, —T),
where T is a real, finite-time parameter. The following
remarks should be noted. (a) The operator U~(T, —T)
can be evaluated nonperturbatively by diagonalization of
the finite-dimensional operators H~, H~,

~0~1, n' ~N, n ~

where ~=~(N, n) is a multi-index. Because the Fock
space is a Hilbert space, one can define Pk„, P~ as
orthogonal projectors on Wk „and W~, respectively. We
define a finite-dimensional approximation of the full, the
free, and the interaction Hamiltonian, respectively, via

H —+H~ ——P~HP~, H ~H~ ——P~H P~,

r
U~(T, —T)= g ~

P„)exp(iTE„)(g,
~

itl&)exp( i2TE&)(gz
~

P—z)exp(iTE&)(gz
~

v~p~p= 1

(1 la)

where r is the rank of the matrices. Since by construction
the finite-dimensional operators H~ and H~ are Hermi-
tian, the approximate evolution operator U~(T, —T) is
unitary. The unitarity is preserved for any set of approxi-
mation parameters Q, n, N, T for any value of the coupling
constant. (b) U~(T, —T) is nonsingular for any set of
finite approximation parameters. (c) As can be seen from
Eq. (11a) the method relies on the calculation of exponen-
tials. Contrary to perturbation theory we do not need the
power-series expansion of the exponential in the coupling
constant. This is due to the fact that our method is based
on direct calculation of the exponential by diagonalizing

the finite-dimensional matrices H~ and H~. Therefore
the formalism is not restricted to a particular regime of
the coupling constant. (d) The physical S matrix corre-
sponds to the limit Q, n, N, T~ oo. Some care is necessary
for the order of the limits. It has been discussed in Ref. 7
for the nonrelativistic case, where the particle number pa-
rameter X is not involved. That experience tells us, e.g.,
that it is wrong to keep Q, n, N fixed but increase T, be-
cause U~(T, —T) composed of exponentials of finite-
dimensional matrices starts to oscillate as a function of T.
The correct way is to choose Ti, then to increase Q, n, N
until one obtains a stable limit S(Ti). Then one picks
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another T2 & Ti, and increases Q, n, & until one obtains a
limit S(T2) and so on. Finally, S is taken as the limit of
S(Ti), S(T2), . . . . Moreover, some correlation between

Q and n is necessary. Increasing Q and thus the ball Bg,
the partition and the number of cells n have to be chosen
such that the volume of the largest cells tends to 0.

ular U~(+ T, —T) can be expanded in orders of an ex-
pansion parameter in the same way as U(+ oo, —oo).
Then U~(+T, —T) tends to U(+Do, —ao) in every or-
der. We will demonstrate it explicitly up to second order
and give an argument for higher orders. In the interac-
tion representation one has

III. EQUIVALENCE TO PERTURBATION THEORY

For small coupling constants standard perturbation
theory gives the physical S-matrix elements. We claim
for small coupling constants that the results of standard
perturbation theory are obtained from U~(+. T, —T) if
the approximation parameters tend to infinity. In partic-

H'"'(h) =exp(iH h)K'"' ~, oexp( iH—h),

and the time evolution U(h, O) obeys

U(h, O) =H'"'(h) U(h, o),Bt

which yields the perturbation expansion

(12)

2

U(+ ~, —~ ) =1 i f— dh H'"'(h)+, f dh, f dh, MIH'"'(h, )H'"'(h2) j
~ 3

f dh, f dh, f dh3MIH'"'(h, )H'"'(h, )H'"'(h3) j+.. .

where M denotes time ordering. We define

H~(T) =exp(iH~T)H~ exp( iH~T)— (15)

and obtain from the finite-dimensional time evolution U~( T,O)

i U~(T, O) =H~(T)U~(T, O),BT

which yields the perturbation expansion

T ( j)3 T T
U~(+ T, T) =1 i f d—h—H~(h)+, f dh, f dh, MIH~(h, )H~(h, ) j

— 3 T T Tf dhi f dh& f dh3W tH~(h&)H~(h2)H~(h3) j+

(16)

(17)

Because H is a diagonal Hamiltonian in the momentum representation and the characteristic functions g; are pairwise
orthogonal, H~ is also diagonal. It takes the form

puce;A; A; on
H~ ——~ I.

Oonm~,
where M~ is the orthogonal complement of W~ and

ho;= fdkco(k)X;(k) fdkX;(k) .

Hence,

exp(iH~) =,

We define

exp hhg Uhco;Ah A;
i=1

i one~,

on

(20)

5; i,
——[A;,A t(k) ]= [A (k), A; ]=y;(k)/U, ,

5(i 1 +4 i3 i4 ) fdki . dk45(ki +k2 —k3 k4)5' Q 5j k 5i g 5i
(21)

Let us consider for the P interaction the perturbation expansion of U~(+ T, —T) up to second order. In particular we
consider only initial and final two-particle states. The zeroth order is 1 coinciding with the zeroth order of U. &he
first-order te~ can be written, for sufficiently small cells, i.e., sufficiently large n, as
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(&) (, )
6(i 1 +i2 —i3 i—4) T

(A; A;
I
U~'(+T, —T)

I
A; A; ) =a'" dt exp[i(ro; +co; —co; —co; )t],l1 lg l3 l4

i1 i2 l3 14

where a'" is an overall factor. Performing the limits n ~ ao, Q~ ce, T~ ae, one obtains

&"(P1+P2 —Ps —P4)a")2n. „, =(pt, p2I U"'(+ ~, —~ }
I ps, p4)

( io 1co2rosco4 )

(22)

(23)

The corresponding graph is depicted in Fig. 1(a). Note that the order of the limits n, Q, T~ cc is important (see remark
in Sec. II}.

The second-order term reads

(A;, A;, I
Ug-'(+T, —T)

I
A; A; )

r

=a' ' f dT1 f dT2exp[i(ro;, +to; )T2 i(r—o; +to; }Tt](A; A; IP~.p:P~e
T1

+ dT1 dT2exp[i(to; +to; )T1 i(ro; +—co; )T2]—T —T l1 l2 '4

'~~(T2 T1 )P— ,P4.P
I

A t A t )

Because the external states are two-particle states, the:P: interaction admits here as intermediary states only two-, four-,
and six-particle states. The contribution with intermediary two-particle states reads for large n

(2) 5(i 1 +i 2 i 3 i—4)—
+discr =~c 1y2 g Uk&vk2

( toit rol2roi 3 roi4) k1,k2 ——1

5(i1+i2 —k1 —k2)

Nk cok
I(co; +Co;,co; +co;,cok +cok ),

1 2 3 4 1 2
1 2

(25)

where

TI(co~,roy, roc) = dT1 T dT2exp[iro, T2 icos T1—inc(T2——T1 )]
T

1+f dT1 f dT2exp[iro, T1 irob T2 iro, (T—1
——T2)] . (26)

Performing the limit n, Q, T~ cc, one obtains

&'(P1+P2 P3 P4}-— &(P1+p2 kl k2 }
dk)dk2

CO ~C02673C04 ~k 1ro(k2lr+oro2rokt rok2+i 0}
(27)

which gives a contribution to the graph depicted in Fig. 1(b). From intermediate four-particle states one obtains for large

(a) (c)

(b)

FKx. l. P -interaction graphs in (a) first order and (b) (d) second or—der.
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~i (2)~discr +Di
i =1,2j=3,4

gsJ l,J ~ ~ ~

Ulv«(~l~j ) ki, k2, k3 ——1

5(i —ki —k2 —k3) +i «Ctii +C014«coj'+Cokt +Cok2+Cokg) «

~k, ~k2~k3

where i = 1 if i =2 and i =2 if i = 1, i.e., i' is the complement of i, and likewise for j:
5(l 1 +12—l 3

—l 4) 5(i —j'—kl —k2)
Ddniscr =a/)ii g ig2 g Uk, "k2 1(colt +~i2«~i3+ ~i4« i'+ j'+ k, + k2

i =1,2 (Ctii, W 2co'i, i4) ki ik2=1j=3,4

Performing the limit, one obtains

(28)

i =1,2
j=3,4

5(C01+CO2 —CO3 —C04) 5(pj —ki —k2 —k3)
dkidk2dk3

( )1/2
l J ~k k ~k (~ ~k ~k ~k +lO)

2 3 J i 2

(29)
5 (P 1+&2 J3 P—4)— 5(p; —pj —ki —k2)

dkidk2
(CO CO C0 CO ) COk Cok (CO; —CC« ~ —COk —COk +lO)

ii (2)D cont aDii
i =1,2
j=3,4

Dc»t gives a contribution to the graph depicted in Fig. 1(c), while Dc»t contributes to the graph of Fig. 1(b). From in-
termediate six-particle states one obtains for large n

~i (2).~Ediscr Ei
i =1,2j=3,4

6;j5; j
Ug Ui k[ j ~ ~ o s k4 1

Uk, Uk4

5(ki+ +k4)2
Q)k '''COk

I« ii (2)
Ediscr =Eii

i =1,2j—3 4

l J l,J -1
k~ k3

(C«iicoj ) k 1 ik2, k3 ——1

5(i'+k, +k, +k, )

COk Nk COk

&& I(~i, +~i, ~i, +~i4 ~i, +W4+~i +~k, +~k, +elk, ) (3O)

iii (2) 5(i 1 +i 2 i 3 i4 )——
Ediscr = Eiii 1 y2 g '1 k

&
Uk&

k, ,k, =i

5(i 1 +i 2+k i+k2)
I(CO; +CO;, C0; +CO;,Co; + ' ' ' +Co; +Ct)k +Cok ) .

COk COk

Performing the limit one obtains

5(ki+ . +k, )'E' t«=a@ g 2~5(pi —pj)5(p; —pJ')5(coi+c02 co3 c04)I—dk—i dk4
i =1,2 Cokt ~k4( Ctikt Cok + i O)
j=3,4

(31)
5(p; +ki+ k2+ k3)

&k C k Mk ( —& —&k —&k —Cok +l 0)
1 2 3 1 2 3

5(CC«1+ Ct«2 —CO3 —Ct)4)E,",„,=a@;,' g 2ir5(p; —pj)5(p; —pj), dki dk3
l =1,2 (~1'~jj=3,4

iii (2) (P 1 +F2 P3 P4 ) 5(pl+p2 ki k2)
cQQt Eggg 2&

1 y2 dk 1dk2
1 Cr14) ~ki~k2( ~1 ~2 Ctlkt CDk2+1O)

The term E,',„, is represented by the graph of Fig. 1(d);E"„,contributes to the graph of Fig. 1(c), and E,",'„, con-
tributes to the graph of Fig. 1(b). The graph of Fig. 1(b)
is given by the sum Cc»&+a,"«,+E,",'„„while the graph
of Fig. 1(c) is given by D'„„,+E,",„,.

Let us consider now the rnth order. Comparison of Eq.
(14) with Eq. (17) shows that each term in
U' '(+ oo, —oo) has a one-to-one correspondence to a
term in U (~+T, —T). U (+oo, —oo) is an m-fold
product of factors of the form:P:e' ', while

U~ (+T, —T}is built analogously from P~:P:P~e(rn) ~ ~ 4 la~~

iaido lao~One can show that e tends strongly to e' ' as
Q, n, N~oo. In the discussion of first order we have
shown that the matrix element of P~:P":P~ taken be-
tween two-particle states tends to that of:«)}:[Eqs. (22)
and (23)]. That is easily generalized to states of higher
particle number. That suffices to establish that
U (~+T, —T) tends to U' '(+ oo, —oo) in every order
m.

As we have shown U~(+ T, —T) is represented by the
sum of all graphs including vacuum excitation graphs [as
depicted in Fig. 1(d)] which do not contribute to the phys-
ical S matrix and therefore we eliminate them as usual by
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dividing them out

(f
~
U~(+T, T—) ~i)

(Oi U (+T, —T)
i
0) (32)

This leads to the physical 5 matrix in the continuous
limit.

As we have shown this method leads to standard per-
turbation theory in the continuous limit. Therefore there
is a need for a proper renormalization procedure. The
standard way of regularizing divergent integrals consists
in introducing either a cutoff in momentum space or per-
forming Pauli-Villars or dimensional regularization.
Since our approximation scheme is already based on a cut-
off parameter Q in momentum space it is natural to use a
cutoff-dependent regularization scheme. Therefore the
bare Lagrangian given by Eq. (2) has to be substituted by
the renormalized Lagrangian

Z) —1
2 pm 2

(a„(t)'— (t' —(Z, —1) ', y',

where Z; and 5m are cutoff (Q) -dependent functions
which will become infinite when the cutoff Q tends to in-
finity. When dealing with theories using a finite value of
a momentum cutoff, a word of caution is in order. Calcu-
lating the quantum corrections to the Lagrangian of Eq.
(33) either using a loop expansion" or another method'
one encounters an infinite series of additional terms as P,
P, etc., with coefficients which are cutoff dependent.
These terms are present as long as the cutoff is kept finite;
however, in the physical limit, when the cutoff tends to
infinity, these contributions vanish and all infinities are
absorbed as usual in Z; and 5m . Since this method re-
quires a discretization of fields, we will absorb the coun-
terterms into renormalized masses and coupling constants
in order to continue to work with bare fields.

IV. NUMERICAL EXAMPLE

Finally let us present the results of a numerical calcula-
tion. We have considered the P model in 1+ 1 dimen-
sions in the weak-coupling regime with the parameters
(8=c = 1)m = 140 MeV, g =A, /4! = 1 MeV; i.e., g «m
means a small coupling constant. We neglect renormali-
zation. We have calculated (Py; ~

U~(T, —T)
~ g;„) and

compared it with (g~; ~

S
~ P;„) obtained from standard

perturbation theory up to 1 order. For g&;,g;„we have
taken two-particle Fock states given by

~ Py; ) = fdq dq'Q, (q)Q (q')A t(q)A t(q')
~
0),

I
P' ) =fdqdq Q (q)Q (q )At(q)A (q )

~
0) (34)

Q;(q) =a; 1 —cos 2'
UP 10w 0(qP —q )8(q —q;""),

where the functions 0 are bell-shaped wave packets, van-
ishing identically for q &q', q&q" . We have chosen
q'&'" ——100 MeV, q &

——120 MeV, q 2'" ——140 MeV,

q~
——160 MeV, q q' ——110 MeV, q &

——130 MeV,
q4' ——135 MeV, q4.

P ——150 MeV. The ~; were chosen
such to normalize g~;, f;„ to unity. We have set the ap-
proximation parameters Q =160 MeV, which is insensi-
tive in the weak-coupling regime, we put n =2 and varied
hq=Q/n and T. The results are shown in Table I. We
find convergence towards the reference value.

V. DISCUSSION AND CONCLUSION

We have proposed a method for the calculation of S-
matrix elements. We pointed out in Sec. II that the for-
malisrn is equally applicable to both the weak- and the
strong-coupling regimes. For the weak-coupling regime
we have shown the equivalence of the method in the con-
tinuous limit to standard perturbation theory. A numeri-
cal test calculation is presented for the weak-coupling re-
gime.

TABLE I. The approximate matrix element (Q|,Qz
~
S

~
03,04) dependent on the parameters time

T and the mesh b,q of momentum-space cells (A=c =1). Reference 4.747 X 10 —9.1698X 10 i.

T (MeV

12

20

30

50

(MeV) 1.0

4.727 x10-'
—2.7923 X 10 i

4.727 x 10-'
—8.0581 x 10 i

4.727 x10-'
—9.0301 X 10 i

4.727 X 10
—9.1706X10 'i

4.727 X 10-'
—9.1698X 10 i

4.727 X 10
—9.1706x 10 i,

4.727x 10-'
9 2516X 10—si

0.8

4.759x 10-'
—2.7964x 10 i

4.759x 10-'
—8.1123X10 5i

4.759X 10 '
—9.0918x 10 i

4.759 X 10
—9.2360X 10 i

4.759 X 10-'
—9.2352 x 10 i

4.759 X 10-'
—9.2367 x 10-'i

4.759x 10-'
—9.2367 x 10 i

0.6

4.731X10-'
—2.7898 x 10 i

4.731x10-'
—8.0633 x 10 i

4.731 X 10
—9.0353 X 10 i

4.731 X 10-'
—9.1750X 10-'i

4.731x 10
—9.1743X10 'i

4.731 X 10-'
—9.1743X 10 i

4.731x 10
—9.1750X 10 i

0.4

4.727 X 10-'
—2;782X10 "i

4.727X10 2

—8.0365 x 10 i
4.727 X 10

—9.0026 x 10 i
4.727 x 10-'

—9.1438X 10 E'

4.727 x10-'
—9.1483X 10 i

4.727 X 10-'
—9.1528X 10 i

4.727 x 10-'
—9.1669X 10 i
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As mentioned in the Introduction the method has been
tested successfully for nonrelativistic few-nucleon scatter-
ing in the strong nuclear potential. On the basis of this
calculation and the fact that the method does not involve
an expansion in the coupling constant it should be applic-
able to the relativistic strong-coupling regime, too. From
the point of view of a numerical calculation the strong-
coupling regime requires the diagonalization of large but
finite matrices. Investigations are under way.

Finally we would like to mention that I.orentz invari-
ance and four-momentum conservation are violated in the
discrete approximation but are recovered in the continu-
ous limit. For simplicity we have chosen in this paper to
demonstrate the method for a scalar field. but we do not

anticipate any problem in extending the method to include
other fields.

In particular case of a ferinionic field the effective di-
mension of the Fock space in the discrete approximation
is reduced due to the Fermi statistics, which may facili-
tate practical calculations.
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