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We investigate terms with four derivatives in the low-energy action of closed Bose strings. Our
analysis is consistent with the possibility that the action involves only curvatures of a connection
with torsion. The torsion is provided by the antisymmetric tensor gauge field.

INTRODUCTION

Over a decade ago, it was suggested' that string models
could provide a consistent, calculable description of quan-
turn gravity. Recent work indicates that it may in fact
be possible to incorporate all known particles and interac-
tions within the framework of ten-dimensional super-
strings.

In the most commonly studied scenario, compactifica-
tion of spacetime down to four dimensions occurs at an
energy scale somewhat lower than (u')', i.e., the scale of
massive string excitations. At this relatively low energy
scale, one can attempt to approximate the full string
theory by a conventional field theory involving only the
massless modes of the string. Hence, to the extent that
this approximation is valid, the problem of compactifica-
tion reduces to finding product-space solutions of the
classical field equations.

The action for the string low-energy effective theory is
actually an infinite sum of terms with increasing number
of 'derivatives (not unlike the low-energy expansion which
describes pions); thus far, only the first few terms have
been explicitly computed. However, the higher-derivative
terms can have an important bearing on physically in-
teresting questions and therefore cannot be categorically
ignored. For instance, such terms have been shown to
play a crucial role in the cancellation of anomalies. More-
over, it is the presence of a certain curvature-squared term
in the low-energy theory that allows compactifications
with nontrivial Yang-Mills configurations, thereby evad-
ing a no-go theorem.

This curvature-squared term has four derivatives; evi-
dently, the low-energy theory contains many more terms
of the same order (i.e., also with four derivatives), whose
presence could in principle have equally dramatic conse-
quences. In particular, one could imagine that such terms
would allow compactifications with a nontrivial configu-
ration for the antisymmetric tensor gauge field.

This state of affairs has motivated us to seek the com-
plete set of four-derivative terms in the string low-energy
theory. In this paper we have restricted our attention pri-
marily to the closed Bose string, whose massless sector

I

consists of a graviton h&, an antisymmetric tensor A&,
and a scalar ((). (Superstrings 'include an additional mass-
less bosonic field, namely, the Yang-Mills vector. ) To
lowest order, the string low-energy theory is given by~

f dDxv' —g — R —,'B„gd"P—

——'e -'m&a II&"P
6 P'1/P

(1 2)

where a—:(8mG)/3, and p:—32m.G/(D —1)(D —2), and
is the Riemann-Christoffel connection. The action

(1.1) can be reexpressed (up to a surface term) simply as
the integral of the scalar curvature density computed with
this new connection, '

fd v' g
' R(r)

16mG
(1.3)

Observe that the torsion tensor does not appear explicitly
in the action. One might have dismissed this pretty result
as a curious coincidence, and in this way have denied any
special significance to the connection (1.2). Here, we
determine all the terms of next highest order in the string
low-energy theory which contribute to on-shell three-body
scattering amplitudes; and we find that these are con-
sistent with

where m =[32irG/(D —2)]'~, H&„z is the field strength
of A&„, and D is the spacetime dimension. [The restric-
tion D=26 is needed for unitarity of string loop correc-
tions; however, only tree-level considerations enter into
(1.1).] It was noticed by Scherk and Schwarz that the an-
tisymmetric tensor can be incorporated into a connection
with torsion. Indeed, consider the connection

—'g ' ' "(32m-G) ' " ' "f d xv' —ge &[(k —l)R""t' (I')R „(I) —4(k —l)R""t' (I')R „(I )

+kR" t' (I )R o „(I )j, (1.4)

32 3201 1985 The American Physical Society



3202 RAFAEL I. NEPOMECHIE 32

up to possible additional terms which do not contribute to
such amplitudes. Here, gvs is the dimensionless closed
string (Virasoro-Shapiro) coupling constant, and k is an
undetermined constant.

The appearance of curvature-squared terms was already
noted by Candelas, Horowitz, Strominger, and Witten
and Zwiebach. The point we would like to emphasize
here is that the new terms in the action again involve cur-
vatures of the connection (1.2)—the torsion (due to the an-
tisymmetric tensor) does not appear explicitly. (The sca-
lar field, on the other hand, does appear explicitly. ) When
there is torsion, there are a priori several inequivalent
ways of contracting together two Riemann tensors; unless
1=1, all of the various forms seem to arise. Indeed, a un-
itarity argument suggests that k= 1 is the correct value.

It is easy to see that (1.4) implies, in particular, the
presence of terms quartic in H& z, as already mentioned,
these could possibly allow compactification solutions of
the field equations with H&„& nonvanishing. We have
verified that, unfortunately, such solutions do not in fact
become possible.

This paper is organized as follows: in Sec. II the
method of calculating the string low-energy theory is ex-
plained, and the result (1.4) is derived. In Sec. III the
search for a compactification solution of the field equa-
tions with nonvanishing H& z is described. Conclusions
and open problems are presented in Sec. IV. There are
two appendixes: the first lists our conventions and col-
lects some useful formulas; the second presents a calcula-
tion of the closed string three-point function, with mass-
less external states.

II. STRING LOW-ENERGY LIMIT

As already noted, the massless states of the closed Bose
string are described by the fields h&„A&, and P. The
other string excitations have masses —(a') '~; hence, at
energies below this scale, one can attempt to describe
physics with a low-energy effective theory involving only
the massless fields.

The procedure "' for constructing this low-energy
theory is relatively straightforward. Essentially, one cal-
culates string tree X-point amplitudes with massless
external states, and then one looks for a conventional
field-theory action which at the tree level reproduces these
amplitudes. (In similar fashion, string loop amplitudes
with massless external states are reproduced by corre-

1 a
h, = z(Ci +Pi) D2—)

(ni P',P. P—.P, »— (2.1a)

(2.1b)

Pv (D 2) VPv P/lPY PvP/l

=4(D 2) '"(~,—. p,p. p.P—,), — (2.1c)

respectively. In particular,

gp,
——hp +Ap„+sp, .

Notice also that

"h =0=p pv p pv

which define the so-called "dual gauge, "and also

h„~=O.

(2.1d)

(2.2a)

(2.2b)

In order to construct the trilinear couplings of the low-
energy theory, clearly we must examine the string three-
point function with massless external states. This is cal-
culated in Appendix 8, and is given by (B9). We can now
use (2.1) to project out from the string three-point func-
tion all the various three-point amplitudes involving h&,
A„, and P. For instance, the hAA amplitude is propor-
tional to

sponding loop amplitudes of the field theory. That such
an action can in fact be found is not obvious; but this was
proved to be generally possible by Scherk. ) In practice,
one explicitly calculates gauge couplings only at lowest
nontrivial order, since the presence of higher-order cou-
plings can then be inferred from gauge invariance. "
There does exist a certain ambiguity in the procedure:
since at present only on-shell string amplitudes can be cal-
culated, the corresponding field-theory action can be
determined only up to terms which do not contribute to
such amplitudes.

A massless, on-shell physical state of a closed string is
characterized by a momentum vector p&, and a polariza-
tion tensor P"(p). These satisfy p =0, and also p"gz,
=0= p "g„„. States of definite spin content correspond to
various projections of p "(p ). Indeed, let' P " be a
momentum vector such that p.p= 1 and p =0. Then the
polarization tensors for the graviton, antisymmetric ten-
sor, and scalar are given by

—gvs(~a') '[(p2h&p2)(AzA3)+2(p3AqhiA3P2)+2(p2hiA3A2P3)+2(P, A3A2hip2) —a'(p2hip2)(piA2A3p&)] .

(2.3)

Following Ref. 1, here we have used a matrix notation, such that (A2A3)—=A2'A3 „,and (p2hipq)=p2hi„„p2, etc. We
find that all of the three-point amplitudes can be reproduced by the following sum of trilinear couplings:

——,'g„(va') "-' f a x [[h»'(a„a„h.,h "+2a„h~ aP„,) —h»'(a„a„.A„,A~ +4a„A~"a„A„,+2a~~,a,A„)
h»'a„ya„.y 4(D —2) '"y a„A—~,a„A—~~']-

+a'[B„Bh ~B amphi'P"" —B„B h iB BpA~,A i'+(D —2) ' 0 8 h ~d Bph~ P]J . (2.4)

Although in principle there could have been a scalar-graviton-graviton (Phh) coupling with two derivatives, such a term
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does not in fact appear. However, we see that a four-derivative coupling of this type does arise.
The problem now is to find a gauge-invariant action which reduces to (2.4) upon carrying out the following steps:
(a) expanding g„,=2)»+ v'32~6 h„„,and retaining only the terms trilinear in h&, A„„and/or p;
(b) imposing the dual gauge conditions (2.2a), and dropping terms which vanish on-shell (i.e., Clg, CIA», Clh», h„);

and
(c) dropping terms whose contribution to a three-point amplitude vanishes due to momentum conservation

( g,.
& p; =0; together with p; =0, this implies p; pz ——0).

Such an action is'
t iD/2 —1

~32~G f dDxv' —g R ——,0 pB"p ——,'(1—2m/)H „H" p
16m.G

I c]
A, 2

(1 mg—)R""P Rp,p +(32mG) — V'2H pV'PH' 'V'2H—„p
V' H'P

64~G P P 2

where

c ) +c2+cg = 1

and m =[32nG/(D —.2)]' . Setting

gvs(V~')D/2 '=&32~G

(2.6)

(2.7)

we see that the first three terms agree with (1.1), as ex-
pected. (The combination 1 —2m/ is assumed to ex-
ponentiate to e ~. )

Our analysis, which relies only on the three-point func-
tion, cannot determine the individual coefficients (c;) of
the last three terms of (2.5); rather, only the linear com-
bination (2.6) is fixed. However', the following set of coef-
ficients is particularly noteworthy:

c) = ——, +3k, c2 —3 —3k, cq ——
3 7 (2.8)

where k is an arbitrary constant. With these values for c;,
the higher-derivative terms in (2.5) coincide with those
terms in

(~~ )D/2+ 1
gvs

2(32m G)

&& f d xv' —ge &[(k —l)R»P (I )R»p (I )

—4(k —1)R""P (I )R„p (I )

+kR""P (F)Rp p (I )], (2.9)

which contribute to three-point amplitudes. [See Eq.
(A4).] This is the result announced in the Introduction.

The way in which indices are contracted in (2.9) should
be noted. Since R„p (I ) does not satisfy the usual cyclic
identity, the quantities

R"'P (I )Rp p (I ) and R" P (I )Rp~ (I )

are not proportional to each other. Moreover,

Rpvpa(I )ARpnpv(l ) l

hence, R""p (I )Rp & (I ) is yet another inequivalent way
of contracting together two curvature tensors. For k&1,

all of these forms seem to appear.
This raises an interesting dilemma. It has been conjec-

tured that the string low-energy theory may include addi-
tional curvature-squared terms (R„„,R ) in such a way
as to make up the four-dimensional Euler invariant.
(These additional terms do nat contribute to three-point
on-shell scattering amplitudes. ) This combination
[R"'P (I')R„„p (I ) 4R»(I")R—„„(I)+R (I ) ] of curva-
ture-squared terms has the desirable feature of not con-
taining the terms h"" h», A" U 3 „, and QC3 P, which
would lead to unitarity-violating p propagator correc-
tions. ' Conversely, unless k= 1, the action (2.9) also con-
tains R-" P (I )R&p„(I'); hence, it is then no longer clear
how unitarity difficulties can be avoided.

It is not at all evident why the connection (1.2) should
be relevant for string theory. However, in this regard, the
following two remarks may be useful. First, let us intro-
duce the variable

gp =b (hpv+b2rtpg+bg/I p„, (2.10)

with

b, = 3v2~G, b, =p, b, = —2a .

(2.11)

This is certainly suggestive; and geometries involving non-
symmetric "metrics" are not new to the literature. '

However, the action (2.9) involves not only the connection
I, but also g&, and P explicitly; hence, it does not seem
possible to formulate the theory in terms of the (unpro-
jected) field 1(„„only

Another possibility one might entertain instead is that
only the gauge-fixed, on-shell action (2.4) depends on the
(unprojected) combination p», for some values of b;. One

where b; (i=1,2,3) are constants not yet specified. One
might speculate that the covariant action [e.g. (2.5)] actu-
ally depends only on the combination (2.10), and not
separately on the various projections —,'(1(t»+g„„), etc.
Remarkably, when linearized (g„„=ri&„+v'32nGh„,),
the connection (1.2) is simply

» 2 I ( /l Ppv+ vkpp ~p Ppv)+
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where

gp, (x)=h„„(x)+A„„(x)

+ (D —2) ' (I)„„—B„I}„—I)„8„)p(x),
and B& is some (nonunique) operator which obeys B 3=1
[cf. (2.1)].

(2.13)

III. COMPACTIFICATION SOLUTIONS

As discussed in the Introduction, it is of considerable
physical interest to find compactification solutions of
string low-energy theories. The case in which the com-
pact space is a Calabi-Yau manifold' has received partic-
ular attention. ' That such solutions are possible is easy
to see. Indeed, the equations of motion following from
the lowest-order action (1.1) are

can verify that this is also not the case. However, from
the expression (B9) for the string three-point function, it
is easy to see that the gauge-fixed action (2.4) can be writ-
ten as

(~i)D/2 I—
&& J dDx[P~'(a„a„g„,g.P+2 a„P"ag,„)

+ —,
' a'(B„Bg+)(I}Ogpu""+8 BQ„PP")],

(2.12)

=y —iy +, a= 1,2,3, this configuration is simply7

H pr(Z) = ,f (—Z)e~pr, H p (-Z-) = ,f (—Z)e p- (3.3)

Here, e pr is the totally antisymmetric symbol (eI23 —1);
and f(Z) is a holomorphic function, which transforms
under the holomorphic transformation Z' =Z'(Z) accord-
ing to f'(Z')=[det(BZ'/BZ)] 'f(Z). Moreover, HP~„(y)
is covariantly constant. It is easy to see that the stress-
energy tensor for this configuration is zero; it follows,
however, that this configuration is not a solution of (3.1).

Nevertheless, the possibility remains that the higher-
derivative terms in the low-energy theory allow this con-
figuration to become a solution. Indeed, if the low-energy
theory has H~&P terms, one can hope that these "bal-
ance" with H~&P, in the same way that the term

30 TrE~~ balances with 8~zP~
Unfortunately, this possibility is also not realized. The

basic difficulty can be readily seen already in the follow-
ing simplified model:

J d' xv' ge —~ — —R —,H gH—, —(3.4)16~6

where we have introduced the notation H =HP&zH ~,
aIld H —=HpQ HRsTH Hy . Also, a and g are con-
stants, which for our purposes need not be specified. The
P equation of motion is

—1 1

16mG
(RMN 2 gMNR )

R+ —,H +gH =0,
16~G

and the gM~ field equations are

(3.5)

+ e [HMPQHN 6 gMN (HPQR )]
1

G
( MN 2 gMN ) 2'( M NPQ 6 gMN

1 1 Pg 1 2

HPMN ) =0

2m' 2 (—)
3

Clearly, these are satisfied by the configuration

R& =0=R~, HMNp =0, p =COIlst

(3.1)

(3.2)

2PHMSRHNPQH HT

2HMSRHN H PQHT g gMNH

With our Ansatz for HP~z, the g„equations become

(3.6)

[In this section, the coordinates x and indices p, v, . . .
refer to four-dimensional spacetime; the coordinates y and
indices p, q, . . . refer to the (D —4)-dimensional compact
manifold; and the indices M, N, . . . range over all D di-
mensions. ] That is, there are compactification solutions
for any Ricci-flat compact manifold, and thus, in particu-
lar for a Calabi- Yau manifold.

Two difficulties with this approach should be evident:
there is no apparent dynamical reason for the particular
decomposition M ~M )&M; and there is no dynam-
ical explanation for singling out a Calabi- Yau space
among all possible Ricci-flat compact manifolds.

A possible way of resolving both of these difficulties in
the case D= 10 was pointed out in Ref. 7. The basic idea
would be to have as the vacuum solution a configuration
with H nonvanishing [unlike (3.2)]. More precisely, the
relevant configuration is one for which the three-form
H~„(y)dypdy~dy" is proportional to the sum of the
Calabi- Yau three-form' ' and its complex conjugate.
In terms of complex coordinates Z =y +iy +,

(Rp„—,'g~„R)+ —,g@„(—,'H +gH )=0 . —
16mG

(3.7)

Since RP~
——0, then R =g""R„;hence, taking the trace of

(3.7), we find

R+ ,'H +gH=0. —'
32m 6

Comparing with the P equation (3.5), we learn that

(3.8)

Now consider the g~„equations. Tracing, we obtain
H =0; this implies H =0, and hence,

HPQR (3.9)

That is, the model (3.4) does not allow the compactifica-
tion solution with H&0.

Let us assume that the bosonic sector of the D=10
superstring low-energy theory is given by (1.3) and (1.4),
along with further terms involving the Yang-Mills field.
Clearly, this action contains many more terms than the
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siinple model (3.4). Nevertheless, if we adopt the Ansatze
(3.3) and Az' ——co&' (i.e., the gauge field set equal to the
spin connection on the compact space), and also take
P =constant, Rzq ——0, and assume maximal spacetime
symmetry R&„p-(g&~g„p—g&pg„~), then the contribu-
tion of these additional terms to the field equations can be
shown to vanish. [Because the action has a global scale
invariance, the P dependence can be brought to the form
in (3.4) by a suitable rescaling of the metric, for constant
P.] Hence, the analysis of the model (3.4) applies. Under
the stated assumptions, the fourth-derivative terms of
superstring low-energy theory do not allow the compacti-
fication solution with H&0.

IV. DISCUSSION

We have seen that the antisymmetric tensor field ap-
pears in the low-energy theory of strings only as the tor-
sion part of a connection. Moreover, it is possible that the
low-energy action involves only curvatures of this connec-
tion, such that the torsion tensor does not appear explicit-
ly. In order to make a definitive statement with regard to
terms with four derivatives, it is necessary at the very
least to also examine four-point functions. Such an inves-
tigation requires considerably more effort than the present
three-point function analysis; nevertheless, this work is
currently under way, and we hope to report on it soon. If
indeed this possibility is confirmed, one would want to try
to understand why it happens, and perhaps provide an ar-
gument that it should persist to all orders of the low-
energy expansion. That geometries with torsion are
relevant for Bose strings, if true, would presumably be
manifest in a covariant field theory of strings.

We have also pointed out a possible difficulty with uni-
tarity, if the low-energy theory contains the term-R""i' (r)R&~ (I ) (with the "unnatural" contraction of
indices). However, our analysis is not complete; in partic-
ular, we have not discussed string loop effects.

Finally, it is now clear that fourth-derivative terms in
the string low-energy theory do not allow compactifica-
tions with H&0. Thus, the dynamics responsible for
compactifying on a six-dimensional Calabi-Yau space,
thereby leaving four "large" dimensions for spacetime,
remains a mystery.

Note added

As this work was nearing completion, we became aware
of a series of papers' ' on o models and their relation to
strings. Consider the o. model constructed by coupling a
closed Bose string to background fields g&„, A&„, and P.
By demanding that the one-loop P functions vanish, one
obtains' the field equations corresponding to the lowest-
order action (1.1). Moreover, higher loops of the o model
correspond to terms in the action with higher derivatives.
In short, the a model provides an alternative approach to
finding the string low-energy limit.

Fridling and van de Ven' have recently performed the
two-loop calculation for this o. model, except without the
P coupling. They find that the corrections to the P func-
tions involve certain products of the generalized curva-
tures. This seems to support our observation (1.4). More-
over, as argued by Sen, ' this result is also consistent with

the conjecture that the string low-energy action includes
the four-dimensional Euler invariant. To fully check the
conjecture with these methods, one would need to perform
high-loop calcu1ations.
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APPENDIX A

We use the following conventions:

R „,,(r)=a,r„,+r„,r:,—(p

R„~(r)=R~ ~(r), R (I ) =g ~R„~(l ),
H~„p =a~A „p+a+ p~ +apA~

(A 1)

The metric signature is ( —+ + + . ).
Following Scherk and Schwarz, ' define the symmetric

connection

r~.= + ,'p(ep„y-+e„'ap g„.g~~'a—,y), (A2)

so that the connection (1.2) is given by

I ~~„=I ~ +ae ™H„~.
Then we find

R~„pi(r)=R „pi(r)

+a[Vs„(e &H
p ) Vp(e™&„i„—)]

(A3)

(A4)

with

R „„(r)=R „,,+ [(l;v,(ap) —g„,g v,(a.p)]P

+ 4 [5,(a,daA —g g ada')

+g.,a,yg-'a. .y] —(p=-x)

(A5)
Here and in text, if a curvature tensor is written without
specifying a particular connection, then the usual
Riemann-Christoffel connection is understood. Covariant
differentiation with respect to the Riemann-Christoffel
connection and the connection (A2) is denoted by V and
V, respectively.

APPENDIX B

Here we present a calculation of the closed string.
three-point function, with massless external states. We
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follow the notations and conventions of Schwarz in par-
ticular, the closed string field X"(o,r) = ,' [X—",(r+ )

+X,"(r )] has the following expansion in terms of a dou-
bled set of oscillators:

1 —2inr+X",(r+) =x"+2a'p"r++iv'2a' g —age +,
n+0

(81)

Moreover,
1/2

P,"(r+):—, X",(r+ ) =pl'+ p
—2inr+

one
n&0

(83)

p
—2in r

cxn e
n+0

1 —2inr
X,"(r ) =x"+2a'p"r +i v'2a' g —al„'e

n+0

where v+ =~+o., a"„:—u"„, and

Let p";, i=1,2,3, be the momenta of three massless,
on-shell physical states, and let g";'(p;) be the correspond-
ing polarization tensors. Hence, for each i, we have
(p;) =0, and also

[x",p "]=i ri"",

[ag,a" ]=n5 „21""=[a"„,a ], n, m)0,
[ag,a" ]=0, etc.

(82) pPki =O=p'ki

The three-point function is given by

(84)

« —pi IaiaP'f(r», (r+)e" ' ai'a i Iop3&ki, 42pn03ap

that is, the matrix element consisting of a massless tensor emission vertex' sandwiched between two massless tensor
states. Here, gvs is the dimensionless closed string (Virasoro-Shapiro) coupling constant, and

I
O,p & denotes the state

with no oscillators excited and momentUm p.
The evaluation of (85) begins with the observation that, since (p2) =0, we can write

(86)

where

A (a,a)—:exp —p2.
1/2

cx 1g —(a„e
n=1 "

2in r —2in r+-+ane

8 (at, a t) =—exp p2

J
' 1/2

a 1 t 2in~ t 2inv+—a„e +a ne
n=1 n

Next, we note the relations

p —4irA(a, a)ai a i = p2p2e-"'—
2

(87a)

and similarly,
' 1/2

a~a iB(at,a )=8(a,a ) p~2pze "+ (p~za ie +p2a~&e +)+a~a i (87b)

It follows that (85) is equal to
' 1/2

gvs(~a')D"-' J do
'

0, —p, a", a",+ 2ir v p 2ir+ p v 4ir(p2a ie +p2aie )+ p2p2e
"

X —p~j+
1/2 —2ir g 2ir

(a~ie +a) e )

g 2
X —P1+

1/2
g —2lT+ nt 2l1+

)jcY1e +a1 e

af- pt0!1 CX 1

' 1/2a'

I
a p —4ir+

2 P2P2e OP2+P3 1 2 3 P ' (8&)
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This expression is readily evaluated using again the commutation relations (B2), yielding finally

gvs'fl +pi I (P3&2pop3 gl 03pv+P 143altp 161 C2pv+P2 klpvp242 03po

+P302pgl 03pttp 1 +P3 42pogl 03ag 1 +p2glpvP3 42aop3

+P 2klp&3 62pttP 3 +P 1 g3pPC2 glpvp2 +P 1 03ao02 klpvP2 )

T~ [P342pop 3 (P2 03a41 P2p +P2 43pgl P2v) +P 1 03aitp 1 (P 3 klp42 P3p +P 341p42 P3a )

+P2 klpvp2(p 102pog3 Pla+P 1 02pog3 P 1P)]+ 4 ( ) P2 glpvp2P302pcrp3P 1 43at3P 1 I
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