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Goldstone bosons in string models of galaxy formation
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One reason why cosmic strings are interesting is because they may provide the primordial density
fluctuations that began the process of galaxy formation. For the scenario in which galaxies con-
dense around oscillating closed loops it is necessary that gravitational radiation be the dominant
energy-loss mechanism. It is shown that loops of strings from a broken exact global symmetry de-

cay too quickly to serve this purpose. Loops of strings from a broken gauge symmetry may have
Goldstone-boson couplings as well. It is shown that the decay rate of these strings due to
Goldstone-boson emission is strongly suppressed. This supports the conjecture that gauge strings

may seed galaxy formation.

I. INTRODUCTION

Topological defects arise in a grand unified theory
(GUT) which undergoes a sequence of phase transitions in
the early expanding universe. ' One type of defect is the
cosmic string: a filament of a primordial vacuum topolog-
ically trapped in the present vacuum. Strings are particu-
larly interesting because of recent suggestions that they
may explain the density fluctuations which began the pro-
cess of galaxy formation. In the scenario of Vilenkin,
galaxies and clusters condense around oscillating closed
loops which gradually decay in —10 Hubble times from
the instant of their creation. This requires that for large
loops the dominant energy-loss mechanism is gravitation-
al radiation. To support this, it has been shown that both
electromagnetic radiation and the radiation of massive
particles fail to be significant factors for the energy loss of
the large loops envisioned for galaxy formation.

In this paper we consider the effects of massless Gold-
stone bosons. We find that for theories in which strings
come from a broken global symmetry the lifetime of a
large oscillating loop is much shorter than in the cases
mentioned above, and consequently the scenario in which
these loops seed galaxy formation is unlikely.

It is possible that strings from a broken local symmetry
have couplings to massless Goldstone bosons. We show
that the emission of these particles is suppressed com-
pared to gravitational radiation, and consequently such
strings are permitted for galaxy-formation theories. .

This paper is organized as follows. In Sec. II we review
the properties of the simplest string. In Sec. III we use a
geometrical argument to derive the radiation rate of an os-
cillating global string. In Sec. IV we discuss small oscilla-
tions of infinite gauge strings and estimate the power loss
from Goldstone-boson emission for a simple model. We
conclude with a discussion of string models of galaxy for-
mation and Goldstone bosons.

II. STRING REVIEW

The simplest string is a classical solution to a spontane-
ously broken U(1) gauge theory, which is cylindrically

and as 1ong as U &0 we can make the following classifi-
cation of field configurations which minimize the action.

Vacuum sector:

(A„)=0, (P) =u e's,

6=arbitrary phase .

String sector:

e(A„)=n5„, (P) =u e'"e,

0=azimuthal angle,

where 5 = —sin8/r, 5~=cos8/r, and n is an integer.
With these vacuum expectation values (VEV's) as the clas-
sical values of P and A&, all the terms in the Lagrangian
are zero. Furthermore, any other configurations which
minimize W will be gauge equivalent to one of these, for
some value of n. In the following n will always be taken
to be 1.

The string solutions have the peculiarity that (P) can-
not lie in one of the degenerate vacua, where

~
(P)

~

=u,
at all points in space because single valuedness requires
that (P)~0 as r~O. Similarly (A&) —+0 as r~O
Thus we write

(P) =uf(r)e'e, e(A„)=g(r)5&, (2.1)
where

f(r)~0, g(r)~0 as r~O .
The functions f and g may be obtained from the effective
Lagrangian

u2(Q f )2 u2f 2

r
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(f2 1)2
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symmetric and has finite energy per unit length. We take
a complex scalar field P with Lagrangian

W=
~

(t)„ieA„—)P ~

—V(P) ——,'W

&(P)=—(P*P—u')',
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and they have the following limiting values:

f-r for r«, g-r for r «1 2 1

u ue '

1 1f-1 for r», g-1 for r»
u ue

Thus, assuming that e -V i(, , the thickness of the string is
roughly the Compton wavelength of the massive Higgs
boson or, equivalently, of the massive gauge boson. The
magnetic field of the string is that of a very thin solenoid:
the field is zero everywhere outside, but since around the
string

be excited, so the low-energy physics of the string will in-
volve only the massless a field.

Now suppose that a long straight string is oscillating
back and forth with amplitude d and frequency cu. The
solution for the radiation field of a is readily found under
the condition d « I/co. This is because, for values of r
such that r « I/co, the field will be carried rigidly along
with the string as it moves. That is, at a particular time t
and for r « I/cu, the a field will appear to instantaneous-
ly establish itself in the new string vacuum centered at
r+d(t). If the condition d « r holds true as well, a small
angle approximation can be used to obtain

f A„dx"=
e

d(t) .
8 8 d cosset sin8

c7 t =8— sin8=8—
r

(3.3)

there is a parallel magnetic field trapped in the core.
String solutions similar to the one above are a general

feature of spontaneously broken gauge theories in which a
discrete symmetry survives the breaking. '

III. GOLDSTONE-BOSON RADIATION
FROM GLOBAL STRINGS

Global strings are classical solutions to a spontaneously
broken global U(1) theory obtained by setting A&

——0, or
equivalently g (r) =0 in the previous example. In this case
a single straight string has a logarithmically divergent en-

ergy per unit length. One might think that such strings
should be ignored as being unphysical. However, follow-
ing a cosmological phase transition they form a random
network and may be in loops of finite total energy or in
open strings with finite energy per horizon. In any case,
the radiation problem is simpler for global strings so we
consider this case first.

We start with the static string solution, Eq. (2.1),

(P}=uf(r)e'

and look for low-energy excitations. We define fields p
and a and their shifted counterparts p and a, where

&COa—+u d sinO
2l"

1/2 3'
sin cot —cor—

2

Thus we have a boundary condition which we can match
to the solution for a when 1/co «r.

For r »d and r »1/u we have p=u =const, so cY sat-
isfies the massless wave equation

8"B„a=0.

We define the excitation field a as in Eq. (3.1). This must
satisfy

1
B~BpA =0 && I

CO

with boundary condition from Eq. (3.3)

—u d cosset sinO 1
d «r «—

QP

The solution which involves outgoing radiation is

1TU dco

2
[N &

(d'or)coscot —Ji(cur)sincut]sin8,

where N~ and J, are Bessel functions. As r~op it has
limiting behavior

-&iu [ +f (r)u]ei(8+a/U)

(p}=f( ), ( }=8,
(io}=0, (a}=0.

(3.1)

and the power radiated per unit length is

P ~ 2m/co 2nf dt f BoaB,a(r d8) = u d iu
2~ 0 4

(3.4)
The Lagrangian is

W =(aaa2+ p 2(ape)2 —V(pg

2

=[i)„(p+uf)] +(p+uf) 5&+—B„a

—I (p+uf) (3.2)

Note that this result does not depend on the internal
structure of the string, nor on any assumption that the
amplitude d is small compared to the string thickness.
We need only cod «1 (Ref. 9). To this rather unphysical
example of a straight, rigidly oscillating string may be
added dynamics in the string direction without changing
the basic form of our result.

Spontaneous symmetry breaking requires that p have
mass -u v A, and a be a massless Goldstone boson. More
generally, the string will not be straight. It will be curved,
possibly in a loop, and moving under the influence of
external forces and its own tension. As long as its typical
inverse radii of curvature and frequencies of oscillation
are small compared to u, the very massive p field will not

IV. GOLDSTONE-BOSON RADIATION
FROM GAUGE STRINGS

A. Transverse waves on strings

First we show that there are small-amplitude transverse
waves traveling along the string at the speed of light.
This is shown for gauge strings, though a similar result
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=g (5„"—B„d")5„*,

where r* and 0* are the cylindrical coordinates measured
from the instantaneous center of the string, 5„*
= —sin "/r* and 5~* =cos8*/r*. With these fields the
Lagrangian is

W=(B~) +p (Bqa —eAq) —V(p)

——,'(B„A„—B~„)'.
Let 0=x,y and i =z, t. Since z and t appear only through
the function d (x, t) we may derive the following:

(Bip) = (B;d) (4.1)

B 8a g sin8*
Bd r*

2

(B,d)',
2

(4.2)

can be obtained for global strings by setting g=g=0
everywhere. In either case, it is these transverse modes
that give off Goldstone-boson radiation. The example of
the last section was equivalent. to having one very-long-
wavelength mode excited.

We start with the static string solution of Sec. II and
look for low-energy excitations. We suspect that such ex-
citations must, at a given time and at a given point along
the string, look like a translation of the unperturbed string
from its unexcited position because any deformation of
the cross-sectional shape of the string will cost a large
amount of energy. Therefore, we define the spacelike vec-
tor d(z, t)=d(z, t)x and for the excited fields we try

p(x, t) =vf (x—d) =vf(ra),

a(x, t) =8*(x—d),

eA (x, t)=g(x —d) 5„'B(x -d") „
ax~

Hence the low-energy excitations of the static string solu-
tion are described by a two-dimensional massless free field
theory, i.e., transverse waves traveling at the speed of
light.

B. A model

To calculate the rate of Goldstone-boson emission from
such an excited string we must choose a model in which
the fields that make up the gauge string carry a charge for
a spontaneously broken global symmetry. In the follow-
ing we use a simple U(1)g,„s,XU(1)gl,b, l model. There are
three complex scalar fields P;=p;e ', i= 1, 23 with the
following charges:

U(l)gauge U(1)global

0

Since both U(1)'s are broken there must be two Gold-
stone bosons, one of which becomes the longitudinal com-
ponent of the massive gauge field, and three massive sca-
lar particles. The Goldstone bosons are the linear com-
binations of the a s which transform only under U(1)s,„g,
or U(l)slobal, but not under both. The third linear com-
bination transforms under neither. Accordingly we define

+~++2 a~ —a2 a~++2 —2a3

2 2 2

The Lagrangian is now

and the scalar Lagrangian is

~= t, D„dl I + ~D„42~ + IB„43I'+«414'243 +H c')

—U

y, .y sa B
(

5e.) B
gsin8a~dga+a (B,d)', (4.3) (B+(.) — (p( —vi ) +2Cp(p2p3 cosX

4 l

I'",J.
——0 .

Thus we may write

F= (B,p) +p~(B,a —eA, ) —V(p) ——,(F,b )

+pl [Bpi3+(Bpy eA„)]—
+p2 [B„p (B„y—eA„)]—

W,tt[d] =K (B;d) (4.4)

+ II(x,y, d(z, t))(B;d)

where II comes from (4.1)—(4.3). Since at any fixed t and
z the string configuration is just an undeformed transla-
tion from the static d =0 solution, we can integrate this
Lagrangian over the transverse dimensions x and y, and
use translation invariance, to obtain

f Wdxdy= f Wdxdy+(B;d) f IIdxdy .

Finally, because translation invariance also requires that

f II dx dy:—K be independent of d, we find that the ef-

fective two-dimensional Lagrangian for d(x, t) is

+p3'(B„p—B„X)'

with minimal string solution

(p, ) =.,f,(.), (y) =8,
e &A„&=g(r)5„, &)33& = &&& =0 .

We see that outside of the string P will remain massless, y
will be eaten, and X will acquire mass from symmetry
breaking.

As defined P is a dimensionless field. The physical
field corresponding to it is

P=vP
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with classical equation of motion

8"W(r )dqP+ P'K~ d"——W(r) dqP =0, (4.5)

In this case the source term is not zero. By translation in-
variance c)'K, =c)'K, =0, so

where we have made the following additional definitions:
8"X„=B'EC;, i =t,z .

1 /2V—= g,. u;z
(vlf;)'

v

K„—=—[(vlf i)' —(v2f2)'1(~ 8—g& ) .1 2

v

(4.6)

From Sec. IVA

K;=—[(u~f~)' —(u&f2)'] . 8*+g, "d, d
7

and therefore

For the case of a static string the source term c) K is
zero and W is a function of r which goes to zero as -r
inside the string and is equal to 1 for r & 1/v, so P satis-
fies the massless wave equation outside the string. The
time-independent ground state for P is P=O.

[(uif i)' —(v2fz)'1
v c)d

c) ~ g sin8~
c)d

(c);d ) (4.8)

a~We„P+a K„=O. (4.7)

C. Exciting the gauge string

Now we let the string wiggle. Following the method of
Sec. IV A we shift the center of the string, using
d(z, t)=xd cosco(z t). As lon—g as co «v; the string os
cillations will not have enough energy to produce any of
the massive particles of the theory, so we need only con-
sider the interaction with the massless P field. The equa-
tion of motion for P becomes

To estimate the effect of this source term we assume
that our results will depend only slightly on the detailed
profile of the string. Accordingly, we use f, —u;r~ and-
g=ur~ for r*&1/u, and f; =g=O for r*& 1/u. Further-
more, we exclude the case where v~ ——v2 and k& ——A, 2 be-
cause it would imply an extra symmetry that prevents any
coupling of the Cxoldstone boson to the string. Our pur-
pose here is to investigate the case in which the Cxoldstone
boson is coupled to the string. Since all the VEV's are ex-
pected to be vary large we ta.ke v~ —v2-v. Under these
assumptions Eq. (4.7) becomes

O'K;=[(u)) —(ug) ] 2 2, (c);d) =v (cod)'sin'co(t —z)
[(x —d) +y']' ' '

I[x —d cosco(t —z)] +y' '~'

(4.9)

in which we have gone to Cartesian coordinates and explicitly indicated the dependence on z and t, in this case due to a
transverse wave moving in the +z direction.

Integrating the term over xy gives zero, so the net "charge" vanishes and there will be no static -lnr component of
the field of the oscillating string. In fact, this term has the form of a two-dimensional quadrupole with moment

(4.10)—'~ (x +y ) 16u

Looking back at Eq. (4.9) we see that the source of radiation comes from two effects: the intrinsic oscillation of the quad-
rupole moment because of the sin co(t —z) factor, and the effect of this quadrupole oscillating back and forth with large
amplitude d, which should produce octupole radiation. We could straightforwardly calculate a radiation field and total
power emitted by using Eq. (4.10). Although it would give the right order of magnitude, it turns out that this is not the
correct path to follow because of the nonstandard W term in Eq. (4.7). In the Appendix we discuss the generalization of
two-dimensional electrostatics to fields in a string background.

Just as in. Sec. II we can find P for all r »d by matching outgoing Bessell waves. to the following boundary condition:
that for d «r «1/co the solution must look like the static field produced by the source (4.9) with z and t fixed. Using
Eq. (A6) this boundary condition is

3~5—7 . q (cod) [x —d cosco(t —z)]y 1sin co(t —z)
2 224 v [[x—d cosco(t —z)] +y'1

and if r »d this becomes

(cod) 3v 5 —7 cos8 sin8 cos co(t —z)
v 4 r

d sin38 sinco(t z)cos co(—t —z)
p 3

which has both quadrupole and on octupole parts. We drop the octupole because it will be relatively suppressed by a fac-
tor of cod. The solution for P which involves outgoing radiation is
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3v 5 —7 (cud) —otal sin28
[cos2tu(t —z)Xq(2cor ) —sin2cu( t z)J—2 (2cor ) ]

U 2

and its limiting behavior for r » 1/cu is

3v 5 —7 (cud) m' cop~—
4 U 2

1/2
5m

sin 2cot —2coz —2cur — sin2I9 .

The total power radiated per unit length is

P 3~5 —7 (cud )

4 2—2
(4.11)

The reader will see in the following section that this result
will be extrapolated up to values cod —1, in which case the
octupole component of the power cannot be neglected.
But since the two components of the power have the same
order of magnitude for ud —1 we will reach the same
conclusions regardless of which we use.

Strings can be formed following a GUT phase transi-
tion in the early universe as long as the unbroken sub-
group has a discrete factor. ' Although not a property of
the minimal SU(5), such strings are copiously produced in
nonminimal versions of SU(5) (Ref. 10), SO(10) (Refs. 11
and 12), SO(18) (Ref. 13), and even in the Es&(E8 and
SO(32) superstring theories. '

The initial configuration is a random tangled web
throughout the universe, the strings traversing a Brownian
walk of step length —gG, the Ginzberg correlation
length, ' at the GUT time —10 sec. g'G depends cru-
cially on the nature of the phase transition, though it is
constrained by causality to be less than the horizon size at
the time of symmetry breaking. After t —10 sec, long
before the Weinberg-Salam transition at —10 " sec, fric-
tional effects become negligible and the strings oscillate'
on scales less than the horizon. Vilenkin has shown that
these oscillations diminish and the strings tend to
straighten out as far as the horizon, though on larger
scales the system remains Brownian.

The subhorizon straightening comes about through
cosmological stretching and the formation of loops as the
strings cross each other (intercommute) at relativistic
speeds. These loops will then oscillate and shrink as they
radiate away their energy, ' eventually turning into ele-
mentary particles. ' As the universe expands the loops
continue to be created, to start to oscillate, and eventually
disappear, and the scale of the string network continues to
increase with the horizon.

Any new loops that appear within the horizon at time t
will have a size roughly equal to t. Once a loop is in the
horizon its lifetime is bounded by the decay time due to
gravitational radiation. This is

2
mp&~~~g

R —10 R, (5.1)
5

where R is the radius of the loop and we have taken
moU~-10' GeV (Refs. 6 and 18). Of course, the m-

V. GALAXY FORMATION AND GOLDSTONE BOSQNS

istence of a more efficient mechanism for energy loss will
result in a shorter lifetime. Assuming that the dominant
mechanism for energy loss is gravitational radiation,
Vilenkin has shown that loop production generates energy
density fluctuations which gives rise to structure in the
universe that is in good agreement with observation. '

To support the conjecture that gravitational radiation
dominates, the authors of Ref. 7 have calculated the ener-

gy loss due to electromagnetic (EM) radiation and massive
particles, finding that for 8 &mp~, „,q/v EM becomes
negligible and for R & I/mz, ~„&, the effect of massive
particles becomes negligible.

Now we turn to examine the case of massless Czoldstone
bosons. Since an oscillating loop is an exceedingly com-
plicated source we can only estimate the order of magni-
tude of the radiated power. Following Ref. 7 we do this
by extrapolating the result for an infinite string, derived
under the condition cod &~1, up to the typical value for
loops, cod —1. Taking co-1/R, where R is the length of
the loop, and using (3.4), we obtain for global strings

I' U

L, R

where y is a parameter that essentially accounts for the
fact that higher frequencies than co —I/R contribute to
the radiation.

The mass density of a global string of length R is loga-
rithmically c'.'divergent. In a cosmological setting, howeve-,
there is a natural cutoff supplied by the interloop spacing,
which is also roughly R (Ref. 6). It follows that

M =2~v ln(Ru)

and the lifetime of an oscillating loop is

ln(Ru)
7T

y
For y we can use the result already obtained in calcula-
tions performed for gravitational radiation, which should
be quite similar to the effect for Goldstone bosons. The
authors of Ref. 6 find that typically y-50—100. For
loops even as large as the present horizon in(Ru)-100, so
it is safe to conclude that

w-10' .

This is much shorter than that for gravitational radia-
tion (5.1), and consequently models with global strings
cannot supply us with the persisting loops in the above
scenario. In particular, this result makes it unlikely that
loops of the global strings produced in variations of the
inflationary SU(5) model of Ref. 8 could serve as seeds for
galaxy formation.
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It is important to stress, however, that even with very
short-lived loops, a network of global strings will still pro-
vide the Zel'dovich spectrum of density perturbations, and
it may still be possible to find galaxy formation models
exploiting this property. In his original paper, Zel dovich
was suggesting that galaxy formation was initiated by in-
finite strings, which corresponds to the case that loops de-
cay very rapidly or they do not form at all.

The case for gauge strings with Goldstone-boson cou-
plings is different S. etting d —1/co-R, where R is the
size of a loop, we obtain from (4.11)

n Wa—„Wra, — P„=p„.r r

Multiplying Eq. (5.2) by an undetermined function f, and
performing some manipulations, we get

fp„= —d„Wrd„— P„f fnW
r ' ' r

c),[(fWrc)„f'Wr )P—„]1

5-47~A vU'Z' '

For loops much larger than the GUT scale this is enor-
mous compared to the lifetime for gravitational radiation
(5.1). We conclude that the radiation of massless Gold-
stone bosons from these strings does not pose a problem
for galaxy formation.
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APPENDIX

We engage here in a short discussion of static multipole
fields in the background of a static string of the type in
Sec. IVB. To the Lagrangian may be added an explicit
source term for P so that Eq. (4.5) becomes

P'W(r)d&P(r, 8)=p(r, 9) (A 1)

in which the p is taken to be independent of z and t. In
the following these two dimensions are suppressed. Be-
cause of W, Eq. (Al) is only rotationally invariant about
r =0, so only if the moments are calculated from r =0
will Eq. (Al) relate i3 and p term by term in their mul-
tipole expansions. Defining

p=gp„e'"e, p= gp„e'"e,
we find

21
(ygW )t fWn

r r

Now suppose that f(r) satisfies

8'
(y'W )' —~ " =0.

r (A4)

For a particular case such as that of Sec. IVC it is
easier to use Eq. (A2) to find the solution for P„directly.
%'e make the approximations

r+ar~~ ', r (—,
V U

Br, r& —,1

U

where 3 and B are constants and are determined by the
requirement that P2 and P2 be continuous at r = 1/u. The
result is

Po 3 po ~5 &
1Pz= — r+ r, r(—

U ~5+1 U —V'5 U

3V5 —7 po t 1r ~ r)
4 U U

W=u r, p= —,u (cud) sin c0(t —z)sin28

=por sin26

inside the string, and 8'= 1 and p=0 outside. The regu-
lar solution for P2 is then

~'
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