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Gravitational counterterxiis in an axial gauge
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All the counterterms of quantum Einstein gravity are calculated up to bilinear terms and one-loop
order in an axial gauge as a sum of gauge-invariant and the Becchi-Rouet-Stora- (BRS) invariant
terms. Contrary to the de Donder gauge condition, 10 out of 33 coefficients for counterterms
remain undetermined in this gauge. Some relations among the counterterms, which satisfy the BRS
invariance, are implicitly obtained in the course of the calculations.

I. INTRODUCTION

The first successful attempt to obtain a gravitational
theory renormalizable up to one-loop order was done by
utilizing the background-field method. ' lt is well known
that the background-field method applied to gauge
theories in an appropriate gauge gives us only gauge-
invariant counterterms. Furthermore, no Faddeev-Popov
ghost fields appear in the one-particle-irreducible vertex
functional. Hence it is very easy to show whether or not a
theory is renormalizable because only gauge-invariant
counterterms appear in the functional even for non-
Abelian theories.

However, for the sake of unitarity one should also work
in the conventional approach, which includes the
Faddeev-Popov ghost fields, since the background-field
method does not give any straightforward proof for uni-
tarity of the theory due to our ignorance of how to treat
the Faddeev-Popov determinant. Although a pure quan-
tum Einstein gravity is not renormalizable in a normal
sense, the unitarity should be kept intact since it describes
only a massless spin-2 physical particle. A standard
method can be applied to prove unitarity if the Faddeev-
Popov fields are included.

The counterterms, which cancel divergences arising
from the original Lagrangian, are endowed with a remark-
able feature if a certain condition is met. That is, once all
the counterterms are given as a form of the gauge-
invariant term plus the Becchi-Rouet-Stora- (BRS) invari-
ant terms, all the Slavnov-Taylor (or BRS) identities
among divergent vertex functions are automatically de-
rived. That is, all miraculous identities among vertex
functions stem from the same origin, the BRS-invariant
counterterms. Only some of them have been checked by
explicit calculations. '

There are two interesting gauges of quantum gravity,
i.e., the de Donder gauge or any other Lorentz-invariant
gauge condition and an axial-gauge condition. The latter
was proposed some time ago by the analogy with the one
in non-Abelian theories and has an advantage that the
Faddeev-Popov ghost fields decouple from other fields in
the Lagrangian, although the Feynman integrals become
involved. '

In a previous paper, we have succeeded in uniquely ob-
taining all coefficients for counterterms of quantum grav-

ity in the de Donder gauge condition up to bilinear terms
and to one-loop order. In this paper, we study quantum
gravity in the axial gauge. Although the Faddeev-Popov
ghost fields are absent in the S matrix in this gauge condi-
tion, it will be shown that they are necessary to formulate
the BRS identities as in the case of Yang-Mills theories.
Our discussions are confined in four space-time dimen-
sions but the form of counterterms in an axial gauge is
general enough to be applied to the one in the light-cone
gauge. Things remaining to do are to recalculate the
Feynman integrals in the light-cone gauge in certain
space-time dimensions by adopting an appropriate calcu-
lation method.

What we will actually do in this paper is to obtain
BRS-invariant counterterms which include gauge-
invariant as well as -noninvariant terms. Namely, we cal-
culate appropriate one-loop Feynman diagrams and/or
borrow the results from other references, compare'them
with the most general BRS-invariant counterterms, and
determine those coefficients. In order to perform all of
this, we need to formulate a method which gives us the
most general form of the BRS-invariant counterterms.
This will be given in Sec. II. All necessary one-loop Feyn-
man diagrams will be calculated in Sec. III. Section IV
will be devoted to calculating all coefficients of counter-
terms. Finally, remarks and comments on the results de-
rived in Sec. IV will be given in Sec. V. Feynman rules
and some calculations which are necessary for Secs. III
and IV will be given in Appendixes.

II. STRUCTURE OF COUNTERTERMS

We consider a pure Einstein gravity in the axial-gauge
condition in this paper, whose Lagrangian is given by
~0+~GF+ ~FP

1
W0 —— V' —g R,

K

(2)

Wpp ——— (n"c "+n c")
2a.(n )'
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where K =16+6 with 6 a gravitational Newton constant,
WGp is a gauge-fixing term with a a gauge parameter and
with n" an arbitrary four-vector but n &0, and WFp is
the Faddeev-Popov ghost term. We define the graviton by
lower indices of the metric, i.e., gp, n——p.+Khan. T. his
Lagrangian with a gauge-fixing term and the Faddeev-
Popov ghost term is invariant under the so-called Becchi-
Rouet-Stora transformation given as follows

.5r=——n
5ui

(13)

I =I + f d x[n"(g» g„„—)]
2aK n

(14)

where integration in space-time of the whole equation is
tacitly assumed as before and we have simplified equa-
tions by utilizing a new functional defined by

5(g») = (—a,c~)g'" (—a,c )g~'+c'a~~",

5(g,.) =(~,c')gi, +(~W')g, i. c—"4g,.
5(ci') =c"Rice',

(4)
u ""=u""= (n4c +n c") .

l

2(n 2)1/2 (15)

By using the ghost equation, the external source u" can
always be replaced with

5(c~)= (g in "+pi n")(g „—il „) .
2ali(n )' PV PV

We need to introduce external source terms for fields and
the BRS-invariant source terms for constructing a simple
functional formalism:

These functional equations [(12) and (13)] should hold for
finite vertices as well as divergent counterterms and hence
they can be used to determine counterterms. In order to
obtain one-loop counterterms in bilinear forms, one must
solve the following equation for the one-loop divergent
vertex I d;, .(I.).

Ws J""h~——„+/pcs'+ c I'gp, aI ~(",=O, (16)

~is —— u"—'5(g„„)+vp5(ci') .
K

Now we can define a generating functional Z(J, g,g, u, v)
for general Green's functions by

Z(J, g, g, u, v) =f dp exp[i(SO+SGF+SFp+Ss+Sis)]

where 5 is the so-called BRS operator which gives the
BRS transformation when it operates on a field and is
given by

5S 5 5S 5 5S 5 5S 5+5h„, 5u~ 5u» 5h„„5C~ 5v 5v

where a functional measure dp is given by

dP =dg»dc dc

and an action S is obtained by integrating the correspond-
ing Lagrangian, e.g., So —— x . One can derive the
functional equations for Z given by (7), which are derived
from a BRS invariance and a ghost equation. A generat-
ing functional for the connected Green's functions is de-
fined through

W(J,g, g, u, v ) = i lnZ(J, g—,g, u, v ),
with the same arguments as Z. There are corresponding
functional equations for W, too. Finally, we can define a
generating functional for the one-particle-irreducible ver-
tices through the Legendre transformation of W given by

I (h, c,c,u, v ) = W'(J, g, g', u, v) —(J""h„„+gzc~+c~gz),
(10)

where integrations in space-time of the last three terms
are tacitly assumed. By using functional relations be-
tween 8'and I given by

5W
5J~ ""' g,

with S=So+SFp +Sos. The divergent counterterm
S„~„,is well known to be written in a general form as"

~( j. )
Scounter =~ div

=f d x[v' g(c,R +C2—R„„R"")]+bG,

where R& is the Ricci tensor. The 6 is an arbitrary
functional of fields and has the mass dimension 3 and the
ghost number —1 which are determined by looking at
Table I. Since we are interested in only the lowest- and
one-loop-order calculations, 6 can be written in bilinear
forms and the term v must be factored out. The reason
why (18) gives a general solution to (16) is because gauge-
invariant terms are automatically BRS invariant and be-
cause the operator 6 satisfies the nilpotency condition,
i.e., b =0. The most general form of G is given in Ap-
pendix A with its functional differentiations in terms of
h», u», CI', and vz. We also give the functional dif-
ferentiations of S in terms of the same fields in Appendix
A, which will be needed in Sec. IV.

III. ONE-I OOP-ORDER CAI CULATIONS

5r „„5r — 5r
5h» 5ci' ~ 5c i'

functional equations in terms of I' are given by

5r 5r 5r 5r
5h» 5u» 5ci 5v,

(12)

At first we must give Feynman rules for the Lagrang-
ian given by Wa+WGF+WFp+Wis and they are given
in Appendix B together with corresponding expressions of
the one-particle-irreducible vertices. In the following, we
will calculate three one-loop vertex functions which are
enough to determine counterterms up to bilinear terms.
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TABLE I. Mass dimensions and ghost numbers assigned to
each field, operators and parameters.

Mass dimension Ghost number

h~ (p)

b'av

C~

C~

Q~~

U~

n~
CX

6

—1

1

0
—2
3

0
1

—1

—1
—2
0
0
0
0
—1

FIG. 1. A one-loop diagram for a graviton self-energy. No-
tice that there is no ghost contribution in this gauge. A double-
wavy line denotes a graviton h„„.

where the divergent integral I is given by

(1) I-uckily enough, the most involved one-loop diagram
in the axial gauge, i.e., the graviton self-energy shown in
Fig. 1, was already calculated for the gauge parameter a
chosen to be zero,

=a. p Igdj(Tj)„„~,
J

(19)

which will be kept intact in the following calculations.
The result can be written as

521 {t)
II „(p =i

5h ~(p)5h &"(—p)

2I=
(4m)(4 .D)— (2O)

with D a number of space-time dimensions, the Ti's are
14 independent tensors which are given in Table II, and
their coefficients are given by Table III. In the middle of
(19), it is understood that this is written in the momentum
space even though the same notations as in the configura-
tion space are used and one should set all fields equal to
zero after functional differentiation, whose rule is also
kept in the following similar expressions.

(2) Next we need to calculate a divergent part of the
one-loop correction to the U-c-c vertex as depicted in Fig.
2, which is given by

g3I (&)

V ~»(p&g&T )=I
5ug(r)5c "(q)5c"(p)

ia'(p. n)' J d—4k-2G„„p(k)[(p+k)p5 +(p+k) 5p],[(p+k).n]' (21)

where iG&„z~ is the tree graviton propagator. Without explicitly evaluating this integral, the property of V & (p, —p, 0)
is easily derived by using the famous property of the graviton propagator in the axial gauge, i.e.,

n "Gq„~——n~G„~ =0 .
With the help of this equation, one can easily derive the following which is enough to determine suitable coefficients:

(22)

TABLE II. Fourteen independent symmetric tensors which consist of k„, n„, and q„.
T) 2 '(q„q +g„g )

T2 Ipv Ipc7

T3 (k ) '(g„Jcpk +ri~k„k„)
T4 (2k n) '(g„g~n +q„Jc n~+g~k„n„+g~k„n„)

T6 (k ) '(r]„pk k +q„k„kp+ g pk„k +g k„kp)
Tp {2k n) '[(g„pk„+g„P„)n +(g„k +q„k„)np+{g„pn„+g„pn„)k,+(q„n, +g„n.~)kp]

2 —1Ts ( n ) ( ppp n zn ~ +pp& n np +q~~n„n ~ +g~0'n„np }
T9 (k ) 'kk kpk
Tro (4k k.n) '(n„k„kpk +n„kpkpk +npkpk„k +n k„k kp)
T» (2k n ) '(k k„n n~+ k k~n n„)
T,2 [4(k n)'] '(k„n„+k„n„)(k.pn +k np)
T$3 (4k.nn ) '(k„n„npn +k„n„npn +kpnpn„n +k n„n„np}
T~4 (n ) 'n„n npn
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n"V „„(p,—p, 0)=0. (23)

(3) One more one-loop diagram we can readily estimate is a divergent part of the vertex u-c shown in Fig. 3, which is
given by

(p) g'

521 (&)

5ci(p)5u" ( —p)

= ——'a'(n p) f d'k [(p —k) G, 'i' (k)+(p —k) G ' "(k)—k G ' «)].
(p k—) n. (24)

In order to study this integral, one must know the follow-
ing property of the dimensional regularization:

dk =0,1

k21(k )m
(25)

where l and m are integers. This describes one peculiar
feature of the dimensional regularization, namely, the in-
tegral without dimensional parameters should vanish. Us-
ing this together with (22), one obtains

~6 ~7 b20 ~21 b22 b23 ~24 (29)

(2) Next we calculate counterterms for the graviton
self-energy from (A3) and (A6), which is calculated as

An explicit expression for the above equation in terms of
undetermined coefficients is given in Appendix C. Substi-
tuting (Cl) into (23), we find that all coefficients included
in this counterterm should vanish:

ni U"~„(p)=0,
n" U"~„(p)=0 .

(26)

(27)

Using Table III, Eqs. (23), (26), and (27), we will deter-
mine coefficients for the counterterms in the next section.

5 5S 5G
5hi' (p)5h""( —p) 5hki 5uk~

2 4, v p Ig—ej(TJ)~„~,
J

(30)

IV. DETERMINATION
OF THE COEFFICIENTS

In this section, we derive the forms for three vertex
functions up to x, which are calculated from a general
form of the counterterms (18).

(1) First we derive the one corresponding to the vertex
v-c-c from (A4) and (A9) in Appendix A, which is given
as follows:

$3

a. 5vi (0)5c ( —p)5c "(p)

5S 5G

»~ 5c~
(28)

TABLE III. Coefficients of tensors T; for a one-loop calcula-
tion of a graviton self-energy, where a =k n /(k n ) . '

d, —( 19+128a ') /120
d2 (63+352a ' —336a ) /120
d 3

—(63+440a ') /120
d4 2a '(11+62a ')/15
d q

—( 11+62a '+ 20a ) /15
d6 (19+328a ')/240
d7 a '(5+4a ') /3
d8 (5+8a ')/6
d9 3p

ll

56
dip

d l l 2( 11+20a
d l2 2a '(25+ 124a ') /1 5
d l3 8a '(21+ 10a ' }/15
dl4 —2(21+-20a ')/15

1 7
1 —

l2p I, c2 —
2p I, (31)

with I given by (20). However, we cannot adopt these
values as ci and cz since these coefficients are known to
be gauge dependent, ' unlike the Yang-Mills case. Hence
we leave these coefficients unknown at this stage.

(3) In order to determine coefficients as far as possible,
we need the help of a vertex function for u-c, which is
given by

5S 56 5S 56U„„
5c(p)5u ""(—p) 5u i'" 5h„5c~ 5vp

(32)

where the second term in the last line vanishes because of
(29). Constraints on U», (26) and (27), are reduced to 12
independent relations among coefficients given by (C2)

P .-c+(p)

p+g
r

V) (I')
q-k

- c"(q)
q

FIG. 2. A one-loop diagram for a v-c-c vertex. A wavy line
denotes an external field v„and the dotted line the Faddeev-
Popov ghost field.

where the coefficients ej are given in Table IV. Coeffi-
cients for the gauge-invariant counterterms in (18) were
given by the background-field calculations in a particular
background gauge as'
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U+ (-p)
p-k

P
——+ —-c&, (p)

FIG. 3. A one-loop diagram for a u-c vertex. A wavy line
denotes an external field u„„.

2& 56
b7 =b17 =

5 I~ b10 —b16 =0, b)) ———,I,
32 32 32 16

b12 —
5 I~ b14 —

15 I~ b18 —
3 I~ b19 —

3

(33)

together with eight relations among ten undetermined
coefficients,

19 ~ —1
30 I+~2 ~2 ~4

a5 ———a3, 2a3+b3 —i5 I—(2ci+c2),»

bs ———b3, b9 ———2b4, bis =b4,
b3+2b4 —'„' I . ——

(34)

and lead us to the form given by (C3) in Appendix C,
which does not give us any new information about coeffi-
cients. That is, the numerical value for this vertex correc-
tion is completely determined by the graviton self-energy
calculations, whose result is given in Table III. %'ith the
help of relations (C2), leaving ten coefficients undeter-

mined, we have the following solutions for coefficients,
20 16

b )
———b6 ———b8 ——b )3

————,I, b2 ———,I,

5S 56 5S 56 56 5G
5h„„5u-~. 5u~ 5h„„5c~ 5U,

+ (35)

When one carefully looks at this form, one immediately
notices the presence of other contributions as well as those
coming from bilinear terms in G. That is, trilinear terms
such as a c~u&B"d"h&» and x hz u ~ Bl'B"h&„may contri-
bute to the counterterm for this vertex. These terms and
other similar terms should be added to 6 if one wants to
determine the counterterms for this vertex completely In.
that case, their coefficients should also be determined as
well as a; and b;. This is beyond our scope of research
since we have confined ourselves up to bilinear terms in 6
and up to one-loop order.

Final comments are on the coefficients of c; in (18).
These can be calculated by the background-field method.
However, this may not be a good way to obtain them
since c s are generally gauge dependent' and since there
is no simple relation between the axial gauge and the
background-field gauge.

BRS identities. One remarkable example is given by the
u-c vertex (C4) whose coefficients are completely deter-
mined by the graviton self-energy. However, 10 of 33
coefficients remain undetermined.

Let us discuss what is a necessary condition for solving
undetermined coefficients. We need at least one more
Feynman diagram in order to get new information about
coefficients. There remains only one triple-vertex u-c-h
diagram. Let us consider a counterterm for this vertex.
Given an arbitrary functional 6, one can write a counter-
term as

V. COMMENTS ON UNDETERMINED
COEFFICIENTS

In this paper, we have obtained the counterterm (18) up
to one-loop order and to bilinear terms, coefficients of
which are given by Eqs. (29), (33), and (34). This result
contains implicit relations among vertex functions, i.e.,
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TABLE IV. Coefficients of tensors T; for a gauge-noninvariant counterterm of a graviton self-

energy.

ei a4+a 'b14+2 'c2

e2 —a4 —2a5+ (a ' —1)b5 —a 'b 14 —2a 'b15+a '(a ' —1)b17+2c1+2 'c2

e3 —a 3+a4+ a 5+2 '(a ' —1)b3+2 'b5+ (2a) 'b13+ a 'b 14+a 'b1q+ (2a) 'b 17 —2c1 —2 'c2

e4 —a 'b5+ (2a) 'b6 —a 'b9+ (2a) '(a ' —1)b» —(2a ) 'b13 —a b 17+2 'a b1&

e5 —b4+ 2 'b5 —2 'b6+ 2 '(a ' —1 )b7 —a 'b16+ (2a) 'b17 —(2a ) 'b1& + (2a) '{a ' —1)b19
e6 —2 'a4 —(4a) 'b13 —(2a) 'b14 —4 'cg

e7 (4a) b6+(4a) b13 4 a b1&

e& 4 'b6+(4a) 'b1&

e9 2a3+ b3+ 2c1+c2
e 1O

—2a 'b3+ Za 'b9+a 'b11

e» b3+2b4+b6+b7+2a 'b 16+a 'b1&+a 'b19
e 12 —a b6 —2a b11 —a b1&

—1 —2 —2

e13 —2a b7+ a b» —2a b 19
—1 —1 —2

e14 by+a b19
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APPENDIX A

In this appendix, we give the most general form of the functional G in (18) up to bilinear forms and order of K as fol-
lows:

K G= fd x [(a&B"h&„Bqu q"+azBqhB u q +a3B"h&„B"u+a4B h&„Bqu ""+a5BhBqu+b&n"nqB h&„B u q

+bzn"n"BP&„B u q +b3nqn B"h& B uq +b4n"n" Bqh&„Bqu +b5n& n„Bqh Bqu
~"

+b6n"n B h&„Bqu '+b7n"n n„nzB h& Bqu" +bsn&n Bh.B~"'+b9n"B'h&„n Bu

+b1pn" n
nqn

.Bh&„B u q +b &&n "nqn B"h&, nBu q + b &zn "n Bh&„Bqu q"+b &3nqn Bh.&„B"uq"

+b14n Bh& n Bu""+b»n Bhn Bu+b16n "n n.Bh&„n.Bu+b&7n„n n.Bhn. Bu ~"

+b&8n"nqn Bh„,.n Buq"+b»n"n"nqn n Bh "qnBuq )

+(a6B&c"B v, +a7Bqc"Bqu&+bzpn&n "Bqc "Bqu„+bz1n&n Bc"B'v„+bzzn "B&c"n Bu„

+b 3n Bcqn 'Bu +b nqn n Bcqn 'Bv )] (Al)

where h =hqq and u =u qq. In the following, we give the functional differentiations of G in terms of h„, u "",cq, and

vq, which are necessary for calculating the counterterms, of (28), (30), and (32).

—K =a1B Bqu ~+az1)""BqB u ~+a3B"B"u+a4B u ""+aq11""Bu +b1n "nqB"B u ~+bzn "n "BqB u ~
/lV

+b3nqn B"B'u q +b4n"n "B u+b5nqn ri""B u q +b6n"nqB u q"+b7n~n "nqn Bzu q

+bsnqB ri""n Bu q +.b9n"B"n Bu+b1pn"n "nqB n Bu q +b11n"nqn B'n Bu q +.b&zn~Bqn. Bu q

+b13nqB"n. Bu q"+b14(n B) u""+b»g""(n B) u+bwn"n "(n.B) u+b&7nqn 1)""(n.B) uq

+b& ns&n (qn. B) uq"+b»n"n"nqn (n B) uq (A2)

—K =a&B„Bqh~+azB„BQ+a q„~B h~+a4B h„+a rI„„Bh+b, n„n BP hq +bzn n B„BPqqv

+b3n„n„cYB hqo, +b4nqn &„„Bh~ +b5n„n„B h +b6n„nqB hq„+b7n„n „nqn B hq

+bsn&B~ Bh+b9nqri&p n Bhq +b1pn&nqn B~ Bh~+b.11n&n„nqB n Bh~.
+b1znqB&n. Bhq„+b13n&B n Bhq„+b14(n B) h&„+b»1)&„(n B) h+b&6nqn 1)&„(n B) h~

+b17nqn„(n B) h+b1snqn (n.B) h~+b»nzn n n (n.B) hq (A3)

—K =a6BqB u&+a7B uq+bzpnqn"B u&+bz&nqB"n Bv&+bzzn "Bqn Bu&+bzz(n B) uq+bz4nqn"(n B) u&5cq

(A4)

=a,BqB c&+a,B c&+bzpnqn B c&256 2 2

5vP

+b»n„B n Bc~+bzznqB„n Bc~

+b»(n B)'cq+b„nqn (n B)'c&.

I

in terms of the same fields as above are also necessary for
calculating the counterterms (28), (30), and (32):

—5S
5h„„

=-, B hq" BqBP~+ ,' B~B"—h-
+ ,' 1l""B B h~ =,

' 1l""B—zh

The following functional differentiations of the action S +(Bqc"+B"cq)u ~+Bq(cqu «"), (A6)
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c "(-p) c (p)
FIG. 4. A graviton propagator. FIG. 5. The Faddeev-Popov ghost propagator. Notice the

unbalanced appearance of two indices p and v in the propaga-
tor.

=a. '5(g„„)

=Ic (Bpc~ g~+8+~ g~p
—c%pgp )

=a„(g u ~")+a„(g„,u ~")+u ~"~@„„
5c)'

+Bp(Upc ) +UpBpc

(A7)

(AS)

6~„——
—i sc kgn

(k n) "" 2(k n)

'[(p.—n )(rl„pg„+n„.n„I )

+p~('g~pno + ljp~n p )

The h-c-c vertex shown Fig. 6 is

53' (0)
l

5hl (q)5cl'(p)5c "(p')

5S =5(c)')=c"8 cl' .
5UP

APPENDIX B

The graviton self-energy shown in Fig. 4 is

l 6p~ p~ ( k ) l Ic ( 2I ) I2 )p~ p~

where

n "(Il )„„~—n~(I) )„„p

(A9) +q„(g.~np+q„pn~)] .

The two-point vertex u-c shown in Fig. 7 is
(&)

,' tc[q~(kg —~+5~l)~p)

The three-point vertex h-u-c shown in Fig. 8 is

52Z (0)

5Ill (p)5cl„(q)5u ""(r)
n (I2):n (I2 )p~ pgy:0

and the explicit forms of I) and I2 are given in terms of
tensors in Table II as

I(——T)+2 'aT6 —T7+a T9 —4aTio+2aTi&+2T12

I2 ——Tz+aT3 —2T4+a T9 —4aT~p+4T~2 .

The Faddeev-Popov ghost propagator shown in Fig. 5 as
the dotted line is given by

+q„(5pri„+5"q„p)

p "(ri( pn +—rj„oui.p)]

The three-point vertex u-c-c shown in Fig. 9 is

52' (0)
E

5ul„(r)5c "(q)5c"(p)

APPENDIX C

The counterterm (28) is calculated using (A4) and (A9) and is given by

V &„(p,—p, 0)=2a6p p&p„+2b22(n p)n p~„+(p&5„+p~5&)[(a6+2a7)p +(b22+2b2l)(n. p) ]

+(p&n„+p„n&)[b20p n "+b2)(n p)p +b24(n p) n ]

+(n„5„+n„5&)[(b20+b2))p (n p)+b24(n p) .] .

h ( )

x- —-- ——— c y(p)

c"(-p')
FIG. 6. A tree triple vertex h-c-c.

c g(p)
FIG. 7. A tree vertex u-c.
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c+(p)

U (r)
v&(r)

. c ), (q)
FIG. 8. A tree triple vertex h-u-c. FIG. 9. A tree triple vertex v-c-c.

c"( )

a i+2a2+b i +b8 ——0,
a i+2a4+bi+b6 ——0,
a3+as+b3+bs ——0,
b9 ——2(b 5 b4+ b 5 )—,

b1o (bl +b8) .
b11 ———(b1+2b5+2b5+b6+2b7),

(C2a)

(C2b)

(C2c)

(C2d)

(C2e)

(C2f)

The constraints on the coefficients a; and b; derived from
the constraints (26) and (27) on U» (32) are given as fol-
l.ows:

bi2 ——bi —b2+bs,

b16 (b3 b4+b5+b15)

b17 b4+2——'b6+b7 —2 'bs —b15,

5 i8 ———bi+262 —b8 —2bi4,

bi9=&i —&2+b3 —b4+&s+&8+&i4+&is .

(C2g)

(C2h)

(C2i)

(C2j)

(C21)

The form of U» which satisfies (26) and (27), using all
relations (C2), is given as follows:

—K U ~ (p)=2 '[(b, +b6)p (b1 —2—b2+bs+2b14)(n. p) ]

XI[(n p)n„—p„](5„—n~n„)+[(n p)n„—p„](5„—n~n„)I

+2[—(bq+b5)p +(b3 b4+b5+b—15)(n.p) ][p —(n p)n ](q»—n„n )

—(b1+bs)[p —(n p)n "][p„—(n p)n„][p„—(n.p)n„]
=—', II[(n p)n„p„](5, n—"n„)+[(—n p)n„—p„](5„—n n„)I .

(C3)

(C4)
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