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We examine possible vacuum states for scalar fields in de Sitter space, concentrating on those
states (1) invariant under the de Sitter group O(1,4) or (2) invariant under one of its maximal sub-

groups E(3). For massive fields there is a one-complex-parameter family of de Sitter-invariant
states, which includes the "Euclidean" vacuum state as a special case. We show these states are gen-
erated from the Euclidean vacuum by a frequency-independent Bogoliubov transformation, and ob-

tain formulas for the symmetric, antisymmetric, and Feynman functions. In the massless minimally

coupled case we prove that there exists no de Sitter-invariant Fock vacuum state. However one can
find Fock states which are E(3) invariant. These states include the Bunch-Davies and Ottewill-

Najmi vacua as special cases.

INTRODUCTION

de Sitter space is interesting for two reasons. First, it
provides a promising "inflationary" model of the very
early universe. Second, it iS a highly symmetric curved
space, in which one can quantize fields and obtain simple
exact solutions. This paper is about the various vacuum
states which a quantized field can have in de Sitter space.
The choice of such a state is a necessary boundary condi-
tion (or initial condition) in the construction of a realistic
inflationary model, and it sheds light on more general
questions. In particular, the problem of how to select a
physically meaningful vacuum state in a general curved
space is an outstanding unsolved problem.

There are potentially two kinds of vacuum states in de
Sitter space: those which respect de Sitter invariance, and
those which break it. The de Sitter-invariant states are
those which "look the same" to any freely falling ob-
server, anywhere in de Sitter space. The other possible
states are those which break de Sitter invariance by sin-
gling out some family of observers. These states have spe-
cial properties as seen by those observers, and are ap-
propriate for certain inflationary models.

The paper has four sections. In the first section, we
describe de Sitter space, its symmetry group, and some of
its properties. In a de Sitter-invariant state, the two-point
function (@(x)@(y)) only depends upon the geodesic dis-
tance between the two points x and y. For this reason, we
introduce the geodesic distance as a spacetime coordinate.
We also discuss the properties of antipodal points, which
are used in later sections. The antipodal point of x is the
unique point "directly across de Sitter space" from x.

In the second section, we show why a unique vacuum
state is not selected only by requiring that it be de Sitter
invariant. This is because (for a massive scalar field) the
set of de Sitter-invariant states forms a one-complex-
parameter family. The familiar vacuum state known as
the "Euclidean" vacuum is a particular member of this
family. We show that the other members of this family
can be generated from the Euclidean vacuum by a simple
frequency-independent mode-mixing Bogoliubov transfor-

mation. If one chooses a basis of Euclidean modes with
the correct transformation property under point ~ an-
tipodal point, it is trivial to obtain formulas for the two-
point functions (symmetric, antisymmetric, Feynman) in
the general vacuum state.

However, the situation is rather different for the mass-
less (minimally coupled) case, which the rest of the paper
is about. The third section contains our main result. We
prove that there is no Fock vacuum state in which the
massless two-point function is de Sitter invariant. The
proof exploits the antipodal point transformations of Sec.
I and the de Sitter-invariant two-point functions of Sec.
II.

Section IV examines the implications of this result. Al-
though no de Sitter-invariant vacuum state exists, one
may still look for states with as much symmetry as possi-
ble. These states break de Sitter invariance but are invari-
ant under some maximal subgroup of the full de Sitter
group. The largest (i.e., maximal) subgroups of the de
Sitter group are O(4), O(1,3), and E(3). We treat the last
case, and find a family of E(3)-invariant states. The O(4)-
and O(1,3)-invariant vacua are left for a later date.

Note that throughout this paper we use Planck units
A'=c =6 = 1.

I. DE SITTER SPACE

de Sitter space can be constructed as follows. Take a
five-dimensional flat space R with a metric
sl,b

——diag( —1, 1,1,1, 1) and consider the four-dimensional
surface defined by all five-vectors X' which satisfy

XX g~b
——H

This surface is a hyperboloid, as shown in Fig. 1. If we
now induce the natural inetric on this surface, by consid-
ering it as a subspace of (R,g,b ) then the resulting space-
time is called de Sitter space. The Hubble constant H
fixes the rate of expansion of the spatial sections.

By construction, de Sitter space is a maximally sym-
metric homogeneous space which has constant positive
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This operation sends a point x, located by the five-vector
X'(x) to its antipodal point (which we denote by x ) locat-
ed by the five-vector —X', so X'(x)= —X'(x). This is
shown in Fig. 1.

Later on it will also be useful to have a simple expres-
sion for the geodesic distance between two points x and y.
If we define the real function of x and y

Z(x,y):II —rl,sX'(x)F (y)

then the geodesic distance between the points x and y is

d(x,y)=H 'cos 'Z(x, y) . (1.6)

This is similar to the expression for a sphere (where
cos 'Z becomes cos '8) so one can think of cos 'Z as a
hyperbolic "angle" between the points x and y. Z(x,y)
has the important property that it changes sign if one
point is sent to its antipodal point,

Z(x,y)= —Z(x,y) . (1.7)

FIG. 1. de Sitter space is a hyperboloid defined by (1.1). Just
as for a sphere, every point x has an antipodal point x. The
isometry x ~X is not continuously connected to the identity, be-
cause it reverses the direction of time. A future directed curve y
is sent to a past-directed curve p by this operation.

scalar curvature R =12H . Its symmetry group is the de
Sitter group O(1,4), which is composed of four discon-
nected components. Let 6 denote the component which
contains the identity element. 6 is called the connected
de Sitter group, and is analagous to the proper ortho-
chronous Poincare group in flat space.

The other three components of O(1,4) can be easily ob-
tained from G. Consider two elements of O(1,4),

T=diag( —1, 1, 1, 1,1),

This follows from the definition of Z, since the operation
of sending x to x simply changes the overall sign of the
five-vector X'.

The range of Z is shown on a conformal diagram in
Fig. 2. Since all points in de Sitter space are equivalent,
we fix the point y as shown in Fig. 1, and allow x to move
around. If x is on the light cone of y then Z = 1, if x is
to the future or past of y then Z & 1, and if x and y are
spacelike separated then Z &1. Hence, from (1.6) the
timelike geodesics have imaginary length and the space-
like geodesics have real length.

The geodesic distance

d(x,y)= I (g,bX'X )'i dA,

is a function which is invariant under both G and Gz.
However, it is also possible to define a "signed" distance

A =diag( —1, —1, —1,—1, —1) . (1.4)

S=—diag(1, —1,1,1,1),
which correspond to time reversal and space reflection,
respectively. If we multiply all the elements of G by T
one gets a set which one can denote 6z,

(1.3)

and in a similar fashion one can form Gz and Gzz. These
sets are the other three components of O(1,4). We define
a de Sitter-invariant state as one which is invariant under
the action of all four components of O(1,4). We will also
encounter some states which are invariant under the con-
nected part of the de Sitter group G, but which are not in-
variant under the action of the other three components of
O(1,4). We will be using the following element of GT,
which is called "antipodal transformation":

FICx. 2. de Sitter space is conformal to a cylinder, which is
shown "unwrapped. " The left and right edges of this diagram
must be identified along the dashed line. The range of Z —1 is
positive for points timelike related to y and negative for points
spacelike related to y. Without loss of generality, the point y
can be taken to be any point of de Sitter space. The surface
Z =0 is shown as a vertical dotted line. It is "halfway" between
the point y and its antipodal point y.
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function d(x,y) which is only invariant under G. This
signed function carries a bit of extra information, because
if x and y are timelike separated, it tells you which one
lies to the future of the other.

To define d(x,y) take

d(x,y) =H ' cos 'Z(x, y)

where

Z(x,y) = H rl,bX'(x)X (y)+i@ if x to future of y,
(1.8)

ds =H t ( dt +d—x )— (1.10)

H 7),bX'(x)X (y) ie —if x to past ofy,
where e is a positive real infinitesiinal. Then for g CG,
d(gx, gy) =d(x,y) so d is still invariant under G. Howev-
er, for A H GT, one can show that

d(x,y)&d(x, y) =d(Ax, Ay)

so that d is not invariant under GT. Suppose we take two
timelike-separated points x and y, with x to the future of
y. We can smoothly send (x,y) to (x,y) in the following
way. First bring x close to y, keeping it within y s for-
ward light cone. Carry them together to y, keeping x in-
side y's forward light cone during the journey. With y
now at y, carry x through y, into y's past light cone.
Then, bring x to x along a path that stays within y's past
light cone. During this journey, Z(x,y) starts above the
real axis, passes around Z =1, and ends up below the real
axis, as shown in Fig. 3. Now cos 'Z has a branch cut
from Z= 1 to ac along the real axis, and changes sign
across it. Consequently, for timelike-separated points x
and y

d(x,y) = —d(x,y ) (1.9)

so d(x,y) is not invariant under GT.
Eventually, we will need a coordinate system that cov-

ers de Sitter space. There are several well-known sys-
tems. For our purpose it is convenient to use two spatial-
ly flat coordinate patches. These are shown on the con-
formal diagram in Fig. 4. The metric is

FIG. 4. This conformal diagram of de Sitter space shows
how two patches of spatially flat coordinates cover de Sitter
space. The left and right edges of this diagram must be identi-
fied along the dotted lines. If a point has coordinates ( t, x) then
its antipodal point has coordinates ( —t, x).

where dx =dxi +dx2 +dx3 . The patch tE( —ac, 0)
covers the "upper-half" of de Sitter space up to I+ and
the patch t E(0, ao ) covers the "lower-half" down to I
(Formally one must cover a strip around t =+ac with
another patch, but in practice this is unnecessary. ) A no-
table feature of our coordinate system is that if a point
has coordinates (t, x) then its antipodal point has coordi-
nates ( —t, x). If a point x has coordinates (t,x) and
another point y has coordinates (t', x') then '

Z(x,y) = (1.11)
2tt'

where I means the three-dimensional Cartesian dot prod-
uct x x. Note that changing the sign of either t or t'
changes the sign of Z, so that Z(x,y) = —Z (x,y).

II. DE SITTER-INVARIANT
VACUUM STATES FOR A SCALAR FIELD

In this section, we examine the de Sitter-invariant states
for a real scalar field. These states were first described by
Chernikov and Tagirov and have also been studied by
Schomblond ' and most recently by Mottola. In Sec.
II A we find all symmetric two-point functions which are
de Sitter invariant. In Sec. II 8 we show how the Euclide-
an vacuum state can be used to obtain all de Sitter-
invariant states, and in Sec. IIC we examine the effect of
time reversal T on these states.

A. Time-symmetric solutions
of the wave equation for G"'(x,y)

FIG. 3. One sheet of the Riemann surface for cos 'Z, which
has branch points at Z =+1, and cuts to + ao as shown. Just
above the right-hand cut the function is i

~

cos 'Z
~

and just
below the cut it is —i

~

cos 'Z
~

. When a spacetime point x
passes from the future to the past of y, Z(x,y) circles around
Z = 1 as shown. Consequently, the distance d =H ' cos 'Z
changes sign, and d(x,y) = —d(X,y).

Consider the symmetric two-point function

Gi"(x,y) = (A,
~
@(x)@(y)+@(y)&b(x)

~

A, )

in a de Sitter-invariant state
~

A, ). (The label A, is to re-
mind the reader that there is more than one such state. )

We assume
~

A, ) is invariant under the full disconnected
group O(1,4), which implies that G'i"(x,y) can only de-
pend upon the two spacetime points x and y via the geo-
desic distance d(x,y). [In flat space, Lorentz invariance
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means that it can only depend on o =(x—y)—(x —y ) .] Because the geodesic distance d(x,y) is a
function of Z(x,y), one may write

G"'(x,y) =G'"(d(x,y)) =F(Z(x,y)) =F(Z) . (2.2)

( —Cl„+m )G'"(x,y) =0
which can be expressed in terms of the variable Z as

1

2

(Z —1) +4Z +m H F(Z) =0 .
dZ dZ

(2.3)
1

This second-order equation admits two fundamental real
solutions. Suppose that the first solution is f(Z). Then
since the differential equation (2.4) is invariant under
Z~ —Z, another solution is f ( —Z).

The hypergeometric function provides a fundamental
real solution to (2.4}. Let c be either root of the quadratic
equation

Note that if
~

A, ) were only invariant under the connected
part 6CSO(1,4) then G"' could be of the form

Fi(Z)8(x,y)+F2(Z)8(y, x),
where 8(x,y)=(0, —,', 1) if x is (past, spacelike, future)
separated from y. The two-point function obeys the mas-
sive scalar field equation

B. The general de Sitter-invariant state
obtained from the Euclidean vacuum

There is a particular set of modes P„(x) which are
orthonormal and which, via canonical quantization, serve
to define the "Euclidean" vacuum. The fundamental
idea of this section is that from these "Euclidean" modes
P„one can define a new set of modes P„, and that the new
"vacuum" defined by these modes is also a de Sitter-
invariant state.

The new modes P„(x) are defined by a Bogoliubov
transformation

P„(x)=A/„(x)+8/„*(x) (2.8)

singular if x is on the light cone of y (or x =y on S ). In
this state b =0 and the two-point function has only one
singular point. This is also the "unique" vacuum of
Schomblond. The value of the constant a in the "Eu-
clidean" vacuum state is determined by the canonical
commutation relations of N and 4, and is

a =(8~) 'H (m H —2) seem( —, mH— )'~~ .

For this value of a, the o ' and incr short-distance singu-
larities in Go" have the Hadamard form. For example,
the coefficient of the cr ' term is the same as it would be
in flat space.

c(c 3)+m H—=0.
Then

f (Z) =qFi(c, 3 —c,2, —,
' (1+Z)) (2.6)

with two properties. First, it is "frequency" or "mode"
independent, so 3 and 8 are constants which are indepen-
dent of n. Second, the transformation preserves orthonor-
mality and thus defines a new "vacuum" state. Since

is a solution of the wave equation (2.4). For m &0, this
solution has as its only singularity a simple pole at Z = 1,
and unless m H 2=2 (the conformal massless case) it
also has a branch point at Z =1. The branch cut runs
along the real axis from Z= 1 to ao. In order that
G"'(x,y) be real, the average value across the cut (or
equivalently, the real part) should be taken when Z & l.
Note that (2.6} does not depend upon which root of (2.5)
one takes for c, because changing roots of (2.5) flips the
first two arguments of (2.6) and

2F, (a,b, c,Z) =2Fi(b, a,c,Z) .

For m &0, f(Z) and f ( —Z) are linearly independent.
Hence the general solution to (2.4) is of the form

F(Z)=af(Z)+bf( —Z) . (2.7)

Here the choice of real constants a and b determines the
particular solution. The general solution (2.7) has simple
poles at Z =1 and —1, and the residues at these points
are determined by a and b, respectively. If x is on the
light cone of y then X =1 and the first term blows up.
Similarly, if x is on the light cone of y (the antipodal
point of y) then Z =—1 and the second term blows up.
On the Euclidean section of de Sitter space, which is a
four-sphere, the situation is exactly the saine. If x is at
the north pole, then Z =1 when y is also at the north
pole, and X = —1 when y is at the south pole.

The "Euclidean" vacuum, which we will denote by
A, =O, is the one in which the two-point function is only

aC[0, ~), pe( ~,~) . — (2.10)

The "Euclidean" vacuum A =1 and B =0 corresponds to
a=O. Now we have to prove that the new "vacuum"
state defined by (2.9) is in fact de Sitter invariant when
a&0.

To prove this would not be easy, except for the follow-
ing trick. The mode functions P„(x) which define the
"Euclidean" vacuum can be chosen to satisfy

P„(x) =P„'(x), (2.11)

the second condition implies that
/

A
/

—/8
/

=1.
seek the most general transformation with this property.
If A and 8 were real, then we could let A =cosha and
8 =sinha for some constant real parameter a. In fact, A
and 8 are coinplex so one needs A =(cosha)e'r and
8 =(sinha)e "r+~' for real constants a,p, y. Because the
overall phase e'r of p„ultimately disappears from the ex-
pectation values, it is sufficient to consider the two-
parameter (a,p) family of A and 8 given by y =0:

P„(x)=(cosha)$„(x)+(e'~sinha)P„'(x) . (2.9)

The complete set of A,B satisfying the two conditions
given above, without the overall phase e'~, corresponds to
the parameter range
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where x is the antipodal point to x. [Note that Appendix
A shows that a basis of modes satisfying (2.11) can be ob-
tained from the conventional "Euclidean" vacuum modes
of Tagirov and Mottola by a trivial Bogoliubov transfor-
mation. The transformation does not mix positive- and
negative-norm states, and therefore defines a physically
equivalent vacuum state. ]. Now we examine the two-point
functions in the (a,P) state. Because the free field theory
may be defined in terms of its two-point functions, we
need to show that these two-point functions are de Sitter
invariant.

The symmetric two-point function (2.1) in the (a,P)
state is given by the mode sum

G~ p(x,y) = (a,P ~
C&(x)C&(y)+@(y)C&(x)

~
a,P)

= g [P„(x)P„*(y)+P„'(x)P„(y)] (2 12)

and the commutator function by the mode sum

iD ~(x,y) = (a,P
~
@(x)@(y)—@(y)@(x)

~
a,P)

= y [y„(x)y„'(y) y„'—(x)y, (y)] . (2 13)

We denote the two-point functions in the "Euclidean"
vacuum a=O by Gp" and iDo. Now substituting (2.9)
into (2.12) one obtains

6"~(x,y) =(cosh2a) g [tI)„(x)P„'(y)+P„*(x)P„(y)]+(sinh2a)cosP g [P„(x)P„(y)+P„'(x)P„'(y)]

+i (sinh2a) sinP g [P„*(x)P„(y)—P„(x)P„(y)] . (2.14)

The first term in (2.14) is proportional to Gp' (x,y). The second and third terms would be intractable, but the "Euclide-
an" modes have been chosen to obey P„*(x)=P„(x)(2.11). Using this relation, these terms become proportional to
Gp '(X,y) and Dp(x,y). Hence, one obtains from (2.14)

G~ Is(x,y) =cosh(2a )Gp '(x,y) +sinh(2a )[cosPG p" (x,y) —sinPDp(x, y) ]

=cosh(2a )6p" (Z) +sinh2a [cosPG p" ( —Z) —sinPDp(x, y) ], (2.15)

I

where Gp' ( —Z) has been obtained in (2.15) by using
Z(X,y)= —Z(x,y) and the result from Sec. IIA that
Gp"(x,y) is only a function of Z. The right-hand side
(RHS) of (2.15) is clearly de Sitter invariant when P=O
because it is only a function of Z. The case P&0 will be
discussed shortly.

Turning now to the other two-point functions, one can
easily verify that the commutator function is the same for
all the different de Sitter-invariant states

iD p(x,y) = g [P,(x)P „*(y)—P „'(x)P„(y)]=iDp(x, y) .

(2.16)

The Feynman function is the time-ordered expectation
value

iG~(x,y) =8(x,y) (@(x)@(y)) +8(y, x) ( @(y)@(x)),
(2.17)

where 8(x,y)=1 if x is in the forward light cone of y,
8(x,y) =0 if x is in the past light cone of y, and
8(x,y) = —,

' if x and y are null or spacelike separated. This
time-ordered product can be expressed in terms of 6'"
and Das

iG p(x,y) = —,
' G"p(x,y)+ ,'i e(x,y)D p(x,y),—(2.18)

where e(x,y)=8(x,y) —8(y,x). One can then use the ex-
pressions for 6"p and iD p [Eqs. (2.15) and (2.16)] to
find G~ p, in terms of Go, the Feynman function in the
"Euclidean" vacuum:

iG ~(x,y) =iGp(x, y)+ —,[6"~(x,y) —Gp" (x,y)] . (2.19)

One can see that when a&0 a homogeneous piece is added
to the Feynman function. [Note that the ie prescription
for Gp is given in Ref. 5, Eq. (A16).]

C. Properties of the de Sitter-invariant states

We have obtained the form (2.15) of the symmetric
two-point function G"~ in the (a,P) state. However, it is
invariant under the full disconnected de Sitter group
O(1,4) only if P—=0. To see this, note that 6",p is the sum
of three terms, proportional to Gp" (Z), Gp" ( —Z), and

Do(x,y). As discussed in Sec. II A, the first two terms are
O(1,4) invariant. However, since Dp(x, y) = Do(y, x), the-
commutator Do(x,y) cannot be a function of Z, since
Z(x,y) =Z(y, x). It then follows that D (x,y) is also not a
function only of Z, since Z(X,y) = —Z(x,y). Thus, since
Dp(x, y) is not a function only of Z, it is not O(1,4) in-
variant. It is only when the coefficient sinP of this term
vanishes (i.e., for P=O) that the state (a,P) is invariant
under the disconnected de Sitter group O(1,4).

To understand this better, one must consider the prop-
erties of G~ ~, iD, and 6 under time reversal T. Since T
and the antipodal transformation A (1.2) are both con-
tained in the same disconnected component of O(1,4), we
can equally well send both arguments to their antipodal
points. Hence, in the "Euclidean" vacuum, Go" is time-
reversal invariant:

6o ( Tx, Ty ) =Go (x ~y )

= g [P„(X)P„'(y)+P„'(x)P„(y)]

= g [@„'(x)P,(y)+P„(x)P,'(y)]
n

6(1)(xy) (2.20)
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where we have used (2.11) and (2.12). Siniilarly, one can
see from (2.11) and (2.13) that the commutator function
changes sign

iDp( Tx, Ty) =iDp(x, y )= —iDp(x, y) . (2.21)

This, of course, means that iDp(x, y) is not a function of
Z(x,y) since Z(Tx, Ty) =Z(x,y). In fact, the commuta-
tor function is of the form e(x,y)co(z). It can also be
represented as a function of the signed distance function
Z defined in Sec. I. This function iDp(Z) has a branch
cut along the real Z axis from Z=1 to ao and changes
sign across the cut. Using (2.15), (2.20), and (2.21) one
can see that

6"iI (Tx, Ty) =G"' ~(x,y) (2.22}

and, in fact, the time reversal of the state (a,P) is the state
(a, —P). Qnly the P=O states are time-reversal invariant.

Starting from the "Euclidean" vacuum state, invariant
under the full disconnected de Sitter group Q(1,4), we
have constructed a two-real-parameter (a,P) family of
states invariant under the connected de Sitter group G.
There is a one-real-parameter (a,O) family of time-
symmetric states invariant under the disconnected group
Q(1,4). This is in agreement with the work of Chernikov
and Tagirov. ' There, the complex parameter A, labeling
the vacuum states is related to our (a,P) by
a(A, )=cosh '(1 —

~

A,
~

)
'~ and P(A, )=iln( —1,/~ )I,

~
),

and the time reversal of the state
~

A, }is the state
~

A,
' }.

Two special cases of these two-point functions have ap-
peared in the literature. In the time symmetric case P=O,
equations identical to (2.15) and (2.16) have been obtained
by Schomblond and Spindel, in coordinates that cover
half of de Sitter space [take d =cosha and c =i sinha in
Eqs. (39) and (43) of Ref. 5]. The parameter a can be
thought of as determining the strength of the singularity
in G'"(x,y) when x =y. The ratio of the residues at
Z = —1 and Z = + 1 is tanh2a, and for a =0 one obtains
the "Euclidean" two-point function which has no pole at
Z = —1. Schomblond and Spindel rejected the vacua for
which P&0, because they claimed that G'" was then a
distribution and not a function of Z.

The second special case of these formulas which has ap-
peared in the literature is in the work of Mottola who has
considered the cases P=+n/2 In that wor.k the vacuum
angle t9 is related to the parameters o. and A, by

a=8, k= —i tanh8 .

For pyg H & 4, Mottola picks out the vacua

a=
~

sinh '[cschm. (m FX ——', )'~ ] ~,

P=+m. /2,

($.23)

(2.24)

and identifies them as in/out vacuum states. Because
P=+m/2 these in/out states are time reverses of each
other. However, formula (57) given in Ref. 8, for the
Feynman function in this state, is incorrect because it is
only a function of the variable Z and is therefore time
symmetric.

An interesting property of the a0 states is that they
contain an infinite number of particles relative to one

another, or relative to the "Euclidean" a=O vacuum.
This is because in the Bogoliubov transformation (2.9)
g„~P„~ = oo. Gibbons and Hawking" showed that
this is a necessary property of any de Sitter-invariant
state. If a state contains any quanta of a giuen momen-
turn, then by de Sitter invariance (which includes boosts)
it must contain an equal number of quanta of euery
momentum.

In the a&0 states, the two-point functions do not have
the same short-distance behavior as the conventional flat-
space two-point functions do. For example, the two-point
function G~ p given in (2.15) diverges cosh2a times as
rapidly as it would in flat space. Mottola argues that this
is because the fields do not obey boundary conditions at
ao which are analogous to the ordinary flat-space ones,
because in flat space one imposes boundary conditions at
spatial ao, but in de Sitter space there is no spatial 00.
Whether or not a&0 defines physically acceptable states
is unclear.

III. THE MASSLESS CASE HAS
NO DE SITTER-INVARIANT POCK VACUUM

The remainder of this paper is almost entirely devoted
to the massless case. If m =0, the treatment in the previ-
ous section breaks down. In particular, if m =0 then the
hypergeometric function (2.6) is a constant. This is be-
cause m =0~c =0 and

f(Z) =2Fi(0, 3;2;—,
' (1+Z))=1 . (3.1)

Qbviously a constant is a trivial solution to C1G(Z)=0,
but now f(Z) and f ( —Z) are equal, and not linearly in-
dependent. Hence (2.7) is not the general solution to

6 =0.
If m =0, the second fundamental real solution is

P(Z)=(1+Z) ' —(1—Z) '+ln Z+1 (3.2)

This solution has the important property that
P( —Z)= P(Z}. The a—bsolute value sign ensures that
P(Z) is always real. It arises in the following way. The
complex-analytic function ln[(Z —1)/(Z + 1)] has branch
cuts along the real axis from Z =+1 to +Do. Since
G'"(Z(x,y)) is by definition symmetric in x and y, the
+ie convention of (1.8) corresponds to taking the average
value of ln[(Z —1)/(Z+1)] across the cuts. This yields
the absolute value sign in P(Z). Hence when m =0 the
general solution to ClG (Z) =0 is

G'"(Z) =aP(Z)+ p, (3.3)

where the choice of real constants a and P determines the
particular solution. If a=F5 /4H then this has the same
short-distance behavior as a massless two-point function
has in flat space.

One can already see hints that the massless case is going
to be fundamentally different than the massive one. Since
the function P(Z) has two singular points at Z =+1, our
general de Sitter-invariant solution has either (1) no singu-
lar points or (2) two singular points. There is nothing cor-
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responding to a de Sitter-invariant "Euclidean" vacuum
state with only one singular point. Because P ( —Z)

P(—Z), any de Sitter-invariant massless two-point
function (3.3) has the property that

6'"(Z)+6"'(—Z) =2P=real constant . (3.4)

We will use this property to prove that in the massless
case there is no de Sitter-invariant Fock vacuum state.

At this point we assume familiarity with the standard
method of canonical quantization. ' In Appendix B we
prove the following theorem.

Theorem
(1) In de Sitter space, define the inner product of two

scalar functions Pi(x) and $2(x) as

(01~4'2) i Jz (4'i ~@02 0'2+@41 )~~

where X is any Cauchy surface (hence having topology
S ).

(2) Let P„(x) be a set of complex scalar functions satis-
fying (a) (CI —m )P„(x)=0 for a given real m, (b)
(P„,P~ ) =0 and (P„,P~ ) =5„~, and (c) P„(x) and P„*(x)
are a basis for the space of smooth functions f(x) satisfy-
ing (0—m )f(x)=0.

(3) Define

ds = —dt +cosh t dQ (3.10)

where dQ is the metric on a unit three-sphere. Consider
mode functions P(t) which are only functions of time, and
are constant on each three-sphere. For these modes, the
equation El/ =0 then becomes

cosh t cosh t /=0
dt dt

(3.11)

or simply cosh tP=const. The two linearly independent
solutions are

e(t)=1,
(3.12)

lishes that there is no de Sitter-invariant Fock vacuum
state for m =0.

It is often believed that "what goes wrong" when
m =0 has something to do with the fact that the wave
equation has a constant solution, which is often called a
"zero mode. " This is simply not true. Before concluding
this section, we would like to show that this so-called
"zero mode" is simply the real part of an otherwise undis-
tinguished normalizable mode.

Let us work in global coordinates defined by the
(II =1)metric

6'"(x,y) = g [P„(x)P„'(y)+P,'(x)P, (y)] . (3.6) dt 1 sinhtf(t)=
z +arctan(sinht)

cosh t 2 cosh t
L

Then the following is true.
(A) 6'"(x,y)+6"'(x,y)&0 everywhere (note y antipo-

dal point of y).
(B) 6'"(x,y) —G"'(x,y)+0 everywhere.
(C) If m 2=0 and C is a real constant, then

6~"(x,y)+6'"(x,y)&C everywhere.
The significance of this theorem is not hard to explain.

A Fock vacuum state
~
0) is defined by a set of mode

functions P„(x) which satisfy condition (2). If the field
operator is

N(x) = g [a„P„(x)+a„P„*(x)] (3.7)

and the annihilation and creation operators a„and a
satisfy the usual algebra

[a„,a ]=0, [a„,a ]=5„ (3.8)

then the Pock vacuum is defined by a„~ 0):—0. In this
vacuum state, the symmetric two-point function is simply
a sum of the mode functions

G' "(x,y) = (0
~

C&(x)@(y)+@(y)N(x)
~
0)

= X [4.(x)4:(y)+0.*(x)0.(y)] . (3.9)

Since Z (x,y) = —Z (x,y ), theorems (A) and (8) show that
there exists no de Sitter-invariant Fock vacuum (for any
m ) for which 6 (Z)+G' ( —Z)=0.

In the massless case, we showed in (3.4) that de Sitter
in variance required the two-point function to obey
6 "(Z)+6"'(—Z) =—C, where C is a real constant.
Theorem (C) shows that there exists no Fock vacuum
state in which this equation can hold. Hence, this estab-

Note that e( —t)=e(t) and f( —t)= f(t). Becau—se the
modes are constant on each S their inner products are
easily evaluated:

(e,e)=(ff)=0, (e f)=(f e) =iV3, (3.13)

where V3 ——2& is the volume of a unit three-sphere.
From these two solutions one can form the true "zero
mode" which is actually a perfectly ordinary unit norm
complex mode:

Po(t)=(2V, )
' '[e(t) —if(t)] . (3.14)

Note that (po po)=l (po po)=0, and (0o 0o)= —1 as
desired. Furthermore, this mode is orthogonal to all the
higher modes, which are proportional to the spherical har-
monic functions I'it~(Q) for (k, l, m)&(0, 0,0).

Why does no de Sitter-invariant Fock vacuum exist for
a massless scalar field'? Hawking and Moss' showed that
if one perturbs the Euclidean vacuum for m & 0 then the
perturbations decay exponentially in time and the proper-
ties of the state quickly approach those of the Euclidean
vacuum. This does not appear to happen if m =0. In
the massless case a small spatially homogeneous perturba-
tion grows linearly at first and then approaches a constant
nonzero value. This is because the behavior of such a per-
turbation is governed by the mode function f(t), andf ( co ) =m /4. We believe that in the quantum theory, vac-
uum fluctuations drive this type of undamped perturba-
tion, and cause spontaneous breaking of de Sitter invari-
ance. In the next section we will explore one of the ways
in which such symmetry breaking can take place.
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IV. VACUUM STATES THAT BREAK
DE SITTER INVARIANCE

d' 2d +k Vi, (t) =0,
t dt

(4.2)

sk.x
((}),(t,x)= Vk(t)

(2n. )3/2 ' (4.1)

then the wave equation 0/=0 separates. The time func-
tions V),(t) must satisfy the equation

In this section, we examine some vacuum states that are
not invariant under the de Sitter group. These states are
analogous to broken-symmetry vacuum states in Yang-
Mills gauge theories. ' Before going further, it is
worthwhile to develop this analogy a bit further.

In Yang-Mills gauge theories, there exist vacuum states
which are not invariant under the full symmetry group of
the gauge theory. Under certain conditions (on the cou-
pling constants and temperature) one can show that a par-
ticular broken symmetry state is the true physical vacu-
um, i.e., the lowest-energy state. In this situation the oth-
er vacuum states are known as "false" or "metastable" va-
cua. Usually the interesting vacua are those which are in-
variant under the action of some subgroup of the full
symmetry group. Often, these subgroups are the maximal
subgroups of the gauge group. '

The de Sitter group O(1,4) is ten dimensional, and its
maximal subgroups are six dimensional. These maximal
subgroups are O(4), O(1,3), and E(3) (the group of rigid
motions of flat Euclidean R ). The first is compact and
the other two are noncompact. The three subgroups cor-
respond to transformations of de Sitter space which leave
invariant three different families of hypersurfaces. Those
three families of hypersurfaces can be obtained by foliat-
ing de Sitter space with maximally symmetric' spatial sur-
faces. These are the standard foliations with closed
( k = 1) or open (k = —1) or flat ( k =0) spatial sections.

For example, in the metric ds =t ( dt +d—x ) the
E(3) acts entirely on the spatial x sending it to
x'=Rx+ A where R is an SO(3) rotation matrix and A is
a constant three-vector. The matrix R and vector A are
each specified by three parameters, and thus E(3) is a six-
dimensional group. Similarly, in the metric dp = —dt
+cosh tdQ, where dQ is the metric on a unit three-
sphere, the SO(4) subgroup acts entirely on Q.

We do not know a systematic way to find Pock vacua
which are invariant under these subgroups. However, for
E(3) there is a simple way to obtain them. Schomblond
has constructed the de Sitter-invariant states for m &0
using spatially flat coordinates. We follow that treatment
precisely, with one exception. Schlomblond evaluates the
mode sums using a formula valid only if m &0. We do
the m =0 case. The vacuum states constructed in this
way are not de Sitter invariant (as they would be forI &0) but merely E(3) invariant. It seems possible that
an analogous careful treatment of m =0 quantization
with the other two choices of spatial coordinates would
yield O(4)- and O(1,3)-invariant vacuum states.

A nice feature of the massless case is that the mode
functions can always be expressed in terms of exponentials
and polynomials, eliminating the need for special func-
tions. If the mode functions P),(t,x) are written in the
coordinates of (1.10) as

where k =(k.k)'/ with a flat three-dimensional inner
product. The index k is a coordinate wave number, and
not a physical momentum. The general solution to (4.2) is

V), (t) =t [g (k)H )(kt)+b (k)H (kt)]

where H'" and H( ' are the functions

H(1)(z) (z
—i/2+tz —3/2)ei(z zl—@)

H(2)( ) (
—i/2 —3/2) —i(z —z'/4)

(4.3)

(4.4)

These functions are the Hankel functions given by
Schomblond in Eq. (2.9) of Ref. 5 when
v=( ~ m IH )—' = —,. For real arguments x, these
functions form a complex-conjugate pair: H" '(x )
=[H"'(x)]*.

The modes defmed by H"' and H' ' are negative and
positive frequency, respectively, with respect to the
Klein-Gordon inner product

((t'(, ((}2)=iI (P;V„P2 $2V„Q(—)dX", (4.5)

which is independent of the choice of spacelike Cauchy
surface X. Here X is a t =const flat spatial surface with
topology R . It is not a Cauchy surface for the complete
de Sitter space, but only for the half-space covered by one
of the two coordinate patches shown in Fig. 4, The norm
of the mode function defined by (4.1) and (4.3) is

(4.6)

there exists a "vacuum " state
~
a, b ) which is defined by

the property that it is annihilated by all of the operators
.ak..

(2),
~
a, b ) =0 for all k . (4.9)

When m &0, the de Sitter-invariant vacua are obtained
by taking a (k) and b (k) to be constants, independent of
k. This is because any dependence upon k would define
a preferred rest frame, and hence a preferred state of
motion. Here with m =0 we know it will not be possible
to find a de Sitter-invariant vacuum state. However, tak-

To carry out canonical quantization, we express the field
operator @ in terms of the mode functions (()i, and creation
and annihilation operators ak and ak..

C (x)= g [y„(t,x)o„+y„'(t,x)a)', ] . (4.7)
k

The field operator 4& is taken to be self-adjoint, so that it
represents a real classical field. The creation and annihi-
lation operators obey canonical commutation relations

[ok, (2), ]=0, [o)„o),]=0, [o)„a), ]=5J k (4.&)

if the modes Pi, are chosen to have norm 1.
For each choice of functions a and b satisfying
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ing a(k) and b(k) to be constant will turn out to define
E(3)-invariant vacua.

l.et us now specialize to the case where a(k)=a and
b (k) =b are constant. In the vacuum state defined by this
choice, the symmetric two-point function is

G'"(x,y) = (a,b
I
4(x)4(y)+4(y)@(x)

I
a, b ) (4.10)

and can be evaluated from (4.7) and (4.8). It is

G'"(x,y) =(
I
a

I
+

I
b

I
)Pi(x,y)+2 Re(ab')P3(x, y)

C)
u (r) = +c2, (4.15)

where c~ and c2 are arbitrary constants. We will see later
that u (r) cancels out of physical gauge-invariant quanti-
ties.

Now we can do an easy and interesting check of our
calculation. Suppose that we want the two-point function
(4.11) to equal the de Sitter-invariant function (3.3). Us-
ing (4.14) and demanding equality leads to three condi-
tions:

+2i Im(ab ' )P&(x,y), (4.11)
Re(ab") =0,

where the P; are defined as three-dimensional Fourier
transforms ("mode sums")

d3k
P;(t,x, t', x') =(tt')' ' e'"'"-"'Q;(kt, kt') .

(2m )

HIm(ab*) =
4m

(2&) '(Ia
I +Ib I

)=

(4.16)

The only solution (up to a trivial overall phase) is

The Q;(r, r') are products of mode functions.

g (r ~ ) H(1)(x)H(2)(r ) +H(2)( r) H(1)(x )

1a= —H2
lb= ——H.
2

(4.17)

Qz(1,1')=H"'(1.)H' '(r') —H' '(1.)H"'(7'),

Q3(r r') =H"'(r)H"'(')+H'"( )H'"(r )

Q4(&i&')=H'"(r)H'"(r') H' '(7.)H'—'(T')

(4.13)

In Appendix C, we show how to evaluate the integrals in
(4.12). Because the integrands Q;(kt, kt') only depend
upon the length k of the vector k, their Fourier
transforms P; can only depend upon r=x —x' via the
length r =(r.r)'

In terms of the variable Z given by (1.11) the P; are

where u (r) is an unspecified (regularization) function
which appears because of an infrared (k=0) divergence in
the integrals (4.12). Since the mode sums are constructed
to be solutions of the wave equation, the functions must
satisfy P; =0. In Appendix C, we show that this re-
stricts u (r) to be a function of the form

Pi ——(2+) '[(1—Z) ' —ln(1 —Z) —ln(2tt') +u (r)],
P4 i (2&) ——'[(1+Z) ' —ln( —1 —Z) —ln(2tt')+u (r)],

(4.14)
P2 i (2m ) '[2rtt'(t t')——'5(r (t —t—') )—

+e(t t')8((t —t')' —r')], —

P, =(2~) '[2rtt'(t + t') '5(r' (t +t')')—
—e(t +t')e((t +t')' —r')]

Consequently a de Sitter-invariant two-point function is
only obtained when a and b satisfy

I
a

I

—
I
b I—:0.

This means that the mode functions P), cannot be chosen
to be positive norm. They must have zero norm, since
(4.6) vanishes. But this is precisely what the proof of
theorem (A) (Sec. III) told us would go wrong. In that
proof, we showed that de Sitter invariance implied that at
least one of the mode functions had zero norm. Now we
see that all of them do.

Because these mode functions have zero norm, the a),
and a ~ in (4.7) cannot satisfy canonical commutation rela-
tions (4.8). For example, the commutator function

D (x,x') = i (N(x)—@(x')—4(x')@(x))
= t (

I
b

I

'—
I
a

I
')P2(t t (4.18)

vanishes everywhere, since
I
a

I

=
I

b
I

. Note that when
a and b take on these unphysical "de Sitter-invariant"
values, the function u (r) cancels out of expression (4.11)
for G'".

, In the massive case, one obtains a one-parameter family
of de Sitter-invariant states by taking

a (k) = i (2) '~ H sinha, —

b(k)=(2) '~ H cosha
(4.19)

where a is some real number. When m =0 this no
longer defines a de Sitter-invariant state. However, it does
define an E(3)-invariant state. To see this, consider G"'
in the vacuum defined by (4.19),

G~ (t,x;t', x')=
2 [cosh2a[(1 —Z) —ln(1 —Z) —ln(2tt')]+sinh2a[(1+Z) ' —ln( —1 —Z) —ln(2tt')]+const j .

4m
(4.20)

In this formula, Z(t, x;t', x') is defined by (1.11) and is
completely de Sitter invariant. It only depends upon the
geodesic distance between x and x'. However, G'" is not
just a function of Z; therefore, the state defined by (4.19)

cannot be de Sitter invariant.
G'" is invariant under those de Sitter transformations

which leave t and t' unchanged. This is the subgroup of
the de Sitter group which maps a spacelike surface de-
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fined by t =const into itself. As discussed earlier, this is
the subgroup E(3). Hence, the vacuum defined by (4.19)
when m =0 is E(3) invariant.

When m &0, the Euclidean vacuum is defined by
a =0. In the literature this vacuum state is also called the
Bunch-Davies' ' or Birrell-Davies' ' vacuum. When
m =0 the Euclidean vacuum state no longer exists. This
is because (1) this state is de Sitter invariant and (2} its
two-point function has only one singular point on S .
However, the Bunch-Davies vacuum, defined by a=O in
(4.19) and (4.20) does exist for m2=0. It is simply no
longer de Sitter invariant.

Because the two-point functions behave badly at the
surface t =+ ao, we believe that these vacua are only de-
fined on the half-space covered by one spatially flat coor-
dinate patch (see Fig. 4). In these states the expectation
value of the square of the scalar field can be determined
from the coincidence limit of G'"(x,x'}. The de Sitter-
invariant part of G" ~ can only affect the constant part of
& @ (x) &, since the only de Sitter-invariant scalar function
is a constant. The spacetitne dependent part of &@ (x) &

arises entirely from the ln(2tt') terms in (4.20). In co-
moving coordinates ds = —1d+ e 'dx, where

H lnHt, —the expectation value of N is

H
&4 (x)&= e (~—~0),4H

(4.21)

where all the constants have been absorbed into the "turn
on" time ~o. For a=0 this result is in agreement with
others' ' ' ' who have studied this effect.

The massless Lagrangian ( V„4)(Vi'@) is invariant
under global gauge transformations @—+&+const. Con-
sequently quantities like &@(x)N(y)+@(y)@(x)& and
&@ & are devoid of physical significance since they are
not gauge invariant. However, one can find many gauge-
invariant objects, including the vacuum expectation values

& @'(x)&
—

& @'(y) &, & @(x)C(y) —@(y)@(x)&

&[C(xi)—C(yi)] [+(x;)—@(y;)]& .

They are all free of infrared divergences as
~

k
~

~0, and
(remarkably} objects of the third type are easily shown to
be fully de Sitter invariant under simultaneous transfor-
mation of all the x; and y;. However, the gauge-invariant
quantity

&&'( )& —&@ (y)& ( „— )

still breaks de Sitter invariance, since de Sitter invariance
would imply

&~'(x) &
—&~'(y) & =0.

Ford ' has explained this unusual behavior as due to the
presence of an infrared divergence in the theory. One
may also understand it in the following way. The mass-
less field has no de Sitter-invariant vacuum state, and we
are looking at a state with E(3) invariance. The property
of this state that breaks de Sitter invariance is that & N &

is changing in time. The surfaces &@ &=const are flat
spacelike surfaces which are E(3) invariant. We expect
that the O(4)- and O(1,3)-invariant vacuum states will
break de Sitter invariance in a similar way. In those va-
cua the surfaces &@ &=const are probably the k =+1

spacelike surfaces of constant positive or negative curva-
ture.

Unfortunately, the E(3)-invariant vacuum states we
have defined are not unique. They only happen to be in
some sense "as close as possible" to the de Sitter-invariant
states. Another way to define E(3)-invariant vacua would
be to imagine that de Sitter space were smoothly joined to
a static flat spacetime along a slice t =T. For the modes
and their derivatives to be continuous across the boundary
they would have to behave like e' ' at the boundary.
Hence

(4.22)

which determines a and b to be

& (k) & (2)l/2 2ikT—
kT'

b ( k) = —,
' (2)'~ H 1+—k —'T

2

(4.23)

This condition would ensure that a freely falling detector
would not respond near t =T. The Bunch-Davies vacu-
um state (a =0) is obtained when T= —ao.

Another possibility has been studied by Ottewill and
Najmi following a prescription given by Ashtekhar and
Magnon. They define the vacuum as that state which
minimizes the energy on a specified spacelike surface. If
we choose a flat spacelike surface at t =T, their condi-
tion

Vg(t)

Vg(t) t=T

1= —ik ——
T (4.24)

defines an E(3)-invariant vacuum state. This vacuum is
equivalent to

Pt, (x)=0 '(t)Pg(x), (4.26)

where Q=t is the conformal factor. Since the flat-space
mode functions have time dependence e ' ', for t & T,

a(k)= ——,'(2)' Hk 'T '
1 — k'T ' e—

2
(4.25)

b (k) =-,' (2)'"H (1+-,' k-'T-') .
Note that when T = —ao this is the Bunch-Davies vacu-
um (a=O). Thus, the (massless) Bunch-Davies vacuum is
obtained from the lowest-energy initial state at T = —ao.
The expressions for the two-point functions in the
"minimum energy" vacuum can be found in Ref. 22.

If the early universe was pure radiation k =0
Robertson-Walker for t & T and de Sitter for t & T then
one can show that the minimum energy vacuum state at
t =T is obtained. During the radiation phase, the natural
vacuum state for a massless field is the conformal vacu-
um, in which the mode functions are (r =radiation andf =flat)
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(4.27),

%e have shown that when m &0, a one-complex-
parameter family of de Sitter-invariant states can be ob-
tained from the Euclidean vacuum by a frequency-
independent Bogoliubov transformation. If P„(x) are the
modes that define the Euclidean Fock vacuum

~
0) then

the modes that define the
~
a,P) state are

P„(x)=coshaP„(x) +sinhae'~P„'(x) . (5.1)

In this state the two-point functions take the following
simple forms (the subscript 0 denotes the Euclidean vacu-
um):

G"Ii(x,y) =cosh2aG0" (x,y)

+sinh2a[cosPG0" (x,y) —sinPDQ(x, y)],
(5.2)iD ti(x,y)=iDQ(x, y),

iG ti(x,y) =iG0(x,y)+ —,[G' Is(x,y) —GQ (x,y)],
where G'", iD, and iG are the symmetric, commutator
and Feynman functions, and x is the antipodal point of x.
The states are time-reversal invariant if and only if P=O.

The
~

A, ) "vacua*' contain an infinite number of quanta
of the

~

A, '&A, ) "vacua. " Furthermore, for a&0 the func-
tions G~ p and G~ p have two loci of singular points, one
if x is on the light cone of y, and the second if x is on the
light cone of y. In the Euclidean vacuum (a=O) the
latter singularity is absent. This state is also the unique
one in which the singularities as x~y are of Hadamard
form. In flat space, carrying out a frequency-independent
Bogoliubov transformation (5.1) on the vacuum state does
not define physically acceptable vacuum states. However,
Mottola has suggested that for 4m & 9H the vacuum
states defined by

a =
~

sinh '[cschm(m H ——,
'

)
'/ ] ~, P= +—

2
are analogous to the Unruh in/out vacuum states of
black holes. We do not know if this interpretation is
correct.

In the massless (minimally coupled) case m =0 we
proved rigorously that no de Sitter-invariant Pock vacu-
um state exists. This may be because if m =0 a small
perturbation to P does not damp away, but approaches a
constant value at late times. Either (1) the standard Fock
space construction must be abandoned or (2) the vacuum
state must break de Sitter invariance. In considering the
second possibility we looked for vacua invariant under a
maximal subgroup of the de Sitter group. The maximal
subgroups of SO(1,4) are E(3), SO(4), and SO(1,3).

We constructed several E(3)-invariant vacua, and
showed that they broke de Sitter invariance because (4 )
is constant on flat spacelike surfaces but grows in time.

In order to be continuous and differentiable across the
join at t = T, the mode functions in the de Sitter phase
must satisfy (4.27) at t =r. This is identical to the
minimum energy vacuum defined by (4.24).

V. CONCLUSION

The Bunch-Davies vacuum, which is the de Sitter-
invariant Euclidean vacuum for m &0, breaks de Sitter
invariance when m =0 and defines an E(3)-invariant vac-
uum state. We believe that the O(4)- and O(1,3)-invariant
vacuum states will be characterized by a time-dependent
(@ ) which is constant on spacelike surfaces of constant
positive or negative curvature.

In de Sitter space, the quantum theory of linearized
gravity (in conformal gauge) is exactly the same as that of
two minimally coupled massless scalar fields. ' Howev-
er, our results do not imply that there is no de Sitter-
invariant vacuum for gravity, because the choice of con-
formal gauge exp/icit1y breaks de Sitter invariance. In
fact, the Euclidean vacuum state for gravity is well de-
fined and de Sitter invariant. This is because the wave
operator on a four-sphere does not have any zero modes
for inassless fields with spin greater than zero.
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Ai~ (x) =yk(t) Yki~ (&) (A2)

The integers k, l, m label the modes on S, and the YkI
are a complete set of scalar spherical harmonics on S .
The range of m is —

~

1
~

(m &
~

1
~

. Under the transfor-
mation x —+x

yk( —t) =yk (t)

Yki (0)=(—1) Yki (0),
(A3)

and so the conventional Euclidean modes transform as

(A4)

Now define new modes by the trivial Bogoliubov transfor-
mation

(x) (2)—i/2ei(n/2)k[ein/4y (x)~e iw/4y —(x)]

(A5)
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Then one may easily show that this is a complete set of
orthonormal positive-norm modes. In particular,

(a} ekl (x ) 't('kl

(b) (fklm ~4k' I' m') ~kk'~II'~mm' and (Akim i0k' I' m')

(c) The set of ski is complete and spans the space of
klm ~

(d) Pklo e Pk!0

(itiktm A' t

Property (c) follows from

gP (x) (2)—i/2e —i(m/2)k[e —im/4P (x)

+e' "ski- «)1 (A6)

since the ski 's are a complete set. The point is that there
are "as many" P's as @'s because, for a given value of m,

and ski are linearly independent. Property (d)
follows from the definition (A5).

The general form of a Bogoliubov transformation is

p„= g (a„ g +p„ g' ) (A7)

and it is called nonmixing or trivial if all the P„m are zero.
It is apparent from (A5) that our transformation is of this
trivial type. There are two nonvanishing a's which are
akim kl and akim kl m. The trivial Bogoliubov transfor-
mations define equivalent vacuum states hence, the Eu-
clidean vacuum can be defined by a set of modes with
P„(x)=P„'(x).

APPENDIX 8

Property (a) follows from the definition (A5) and property
(A4). Property (b) follows from (A5) and the fact that the
P's are an orthonormal set:

(hakim batik i ) =&kk &it &m ~

(x)= Pm(x) . (83)

The relation Pm (x)= —P (x } then implies that

(x)=Pm(x) .
The inner product of Pm with itself is (1)

(P,P )=i f,(P„'P„PP—')dV,

(84)

(85)

where dV is the volume element on the three-sphere
X=S . Consider the first integral in (85). Since

y' (x)y (x)= —y' (x)y„(x ) (86)

the integrand has opposite values on opposite sides of the
sphere. Hence its integral over the sphere vanishes. But
this implies (P,P )=0 which contradicts assumption
(2b) that (P,P )=1. Q.E.D.

(8) Now suppose 6"'(x,y) —6"'(x,y)=0 everywhere.
This implies that

(x)=P (x),

(x)= —P (x)
(87)

so (86) still holds. Hence one obtains the same contradic-
tion as in (A).

(C) This case requires a bit more work. . Again, suppose
6(x,y)+G(x,y)=C everywhere. Since C is a real con-
stant, it is a solution to DC=0, and can be expressed in
terms of the modes as

C = g [c„P„(x)+c„"P'„(x)], (88)

where c„=(Q„,C). Hence 6(x,y)+6(x,y) —C=O means
that

Sitter space with a spacelike four-plane that passes
through the origin of the R embedding space of Sec. I.
Now let (8/Bt)' be a future-pointing unit timelike vector
orthogonal to X. Define

The following appendix contains a proof of theorems
(A), (8), and (C), whose assumptions and conclusions are
stated in Sec. III. We refer to the assumptions as (1), (2b),
etc.

Proof by contradiction
(A) Assume

and hence

+P;(x)[P, (y) +P„(y ) —c„']I

P, (y)+P, (y) =c„'

0= g I P„(x)[P„*(y)+P„'(y)—c„]

(89)

6"'(x,y)+6"'(x,y) =0
everywhere. Then from definition (3.6) this means

0= gP, (x)[P,'(y)+P,'(y)]+/„'(x)[P„(y)+P„(y)] . (81)

for each mode. Note that if just one of the c„=O, we
have a contradiction, because the argument in (A) then
implies that (P„,P„)=0. We will now show that at least
one c„must vanish. Define a new set of "tilde" functions

Choose a Cauchy surface X and fix the point y. Regard
(81}as a scalar function of x, and form its inner product
with any mode Pm(x). Since the P's form an orthonormal
set (2b) this means

0=($,6'"(y)+6"'(y))=P' (y)+P* (y) .

Hence Pm(x)+Pm(x)=0 for each mode. Now choose a
Cauchy surface X with the property that x&X~x EX.
One can obtain such a Cauchy surface by intersecting de

P„(x)=P„(x)—
2

It follows from (810) that

P„(x)= —P„(x)
and hence that

P„(x)=P„(x).

Then since

(811)
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—P„(x)P (x)=P„'(x)P (x), a S„(r,r) =C„)(r,r),
C}7-

by the argument given in (A), ((t„,P ) =0. Choose n&m.
Then from the definition (Bl 1) of P„, this implies that

()

B'r
C„(r,~)=S„)(r,~) .

0=(P„,P ) ——,
' (c„',((} ) ——,

'
((()„,c')+ ,' (c„—*,c*),

0= —— (C,P~ ) —— (P„,C),Fkt (B15}

CnCm
for all n&m .

Hence at least one of the c„must vanish. Q.E.D.

APPENDIX C

In this appendix we show how to evaluate integrals of
the form encountered in (4.12). The integrands depend
only upon the length of k and not upon its direction.
Consequently the Fourier transforms only depend upon
the length of r =x—x':

Consequently, two of the ambiguous cases, Co and So,
can be found from Ci and Si, which are well defined.
The only remaining case is Cq.

To define C2 we will use the relation (CS) in the oppo-
site direction: we begin with —Si(r, r) and integrate it
with respect to r. The "constant" of integration intro-
duced in this procedure is an undetermined function P(r).
We will then see that g(r) is restricted to being of a speci-
fied form.

First let us evaluate S2, C&, and Sp..

~ sinrx sinrx
x

OO

X 2(ei(r —r—)x+ei(r r)x—
8

ei(r+r)x ei( r —r)x)~—

I(r)= J e'"'Q(k)d k

I Q (k)k sin(kr)dk .
r

(Cl)

The integrands Q(k) can all be written as linear combina-
tions of the six functions

Choose a contour from —0() to oo that passes below x =0
in the complex plane. For each term, the contour must be
closed in the upper- or lower-half plane, depending upon
the sign of the imaginary part of the exponential.
Evaluating the residues at x =0 and using Cauchy's
theorem

Sz(r,~)=—[(r ~)8(r r)+(~ r)8(—r —~)—
4

k sinks. ,

k

k ~ cosk~,
k

(C2) —( r +7 )8( —i' —'T ) + ( r + 'r }8( r +1 )]

where w=(t+t'). For example,

Qi(kt, kt') =2(tt') 'i'[tt'k ' cosk (t t')— (C7)

It then follows from (C5) that

2
=—[(r +r)8(r +~) (~ r)8(~ r)—r]—. — —

+ ( t —t')k ' sink (t t')—
+k cosk(t —t')] . (C3)

Ci (r, r) = [8(r +v) —8(w —r)—],
(C&)

Consequently, we must evaluate six integrals, which are,
for n =0, 1,2,

So(r, r) =—[5(w —r) 5(r+r)) . —
2

" sinkr coskr
dk

p I n

~ sinkr sinkrdk
n r~+

p kn

(C4)

S)(r,~)= 4 ln
r+T
r —z

(C9)

This completes the first half of our task.
Now let us evaluate C2, S&, and Cp. We begin with a

standard result for S(
r

The functions Si, Sq, and C( are all well defined because
the integrands are nonsingular at k =0 and fall off at
k = oo. However, So, Co, and C2 are not well defined be-
cause So and Co oscillate at infinity and C2 blows up at
k =0. As we shall see, it is only the last case that
presents any challenge.

A simple scheme for defining the ambiguous cases
presents itself if we remember that these integrals are de-
fined from solutions to a differential equation (the wave
equation). Notice that from (C4)

(C10)

= —
z r ln(r —r ) —~ min +P(r), (C1 1 )

r —w

from which it immediately follows from (C5) that

Co(r, v ) =r (r —2)
Now, if we integrate Si(r, ~) we obtain

C2(r, ~)= —J S)(r,~)de+(ti(r)



32 VACUUM STATES IN DE SITTER SPACE 3149

where g(r) is some undetermined, arbitrary function of r.
We can restrict the form of g(r) since P~(t, t', r) must
satisfy the wave equation. This turns out to be equivalent
to demanding that

, (C12)

Q(r) =k)+k2r, (C13)

where k& and kz are constants. If we also demand an-
tisymmetry in r, then k& ——0. This means that u(r) in
(4.14) is restricted to be a constant, since u (r) =p(r)/r.

which implies that g"(r) =0. Consequently P(r) must be
of the form
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