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Aspects of quasi-Riemannian Kaluza-Klein theory
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We consider the applications of quasi-Riemannian geometry in Kaluza-Klein theories. We find
that such theories cannot be implemented for all choices of the tangent group GT and internal space
G/H for reasons of gauge invariance. Coupling of fermions to gravity poses further problems in
these theories.

I. INTRODUCTION

The standard Kaluza-Klein approach to unification' is
beset by several difficulties. Amongst them are the lack
of massless chiral fermions in the four-dimensional effec-
tive theory, the incompatibility of the ground-state ansatz
M4 X G /H with the d-dimensional gravitational field
equations and the largeness of the cosmological constant.
A possible resolution of these problems may be provided
by the departure from Riemannian geometry. For exam-
ple, parallelizing torsion on the internal manifold can give
rise to massless fermion modes and a vanishing cosmolog-
ical term. A particular class of non-Riemannian theories
is that where the tangent group is a subgroup of the stan-
dard d-dimensional Lorentz group SO(l, d —1). These
are the quasi-Riemannian theories first suggested by
Weinberg. ' Such theories can, in general, give rise to
chiral fermions in four dimensions. Compactifying solu-
tions may also be possible. Hence it appears interesting
to strive for "realistic" application of these theories. In
this paper, we comment on the incorporation of quasi-
Riemannian geometry in Kaluza-Klein theory. We con-
struct a d-dimensional gravitational action suitable for
Kaluza-Klein-type compactification (that is, one which
gives a gauge-invariant Yang-Mills plus gravitational ac-
tion in the four-dimensional effective theory with the
gauge symmetry corresponding to the isometrics of the
internal manifold). We also consider the dimensional
reduction of such theories with and without fermions.
This article is a generalization and extension of the results
contained in an earlier publication.

II. GRAVITATIONAL LAGRANGIAN

In a d-dimensional quasi-Riemannian spacetime, the
tangent group GT is taken to be of the form
SO(1, k —1)X GT where GT C SO(d —k) and d & k & 4.

- This form is necessary in order to recover the usual four-
dimensional Lorentz invariance. In the following, we
consider specifically the case GT ——SO(d —k). This
choice appears to be sufficient in illustrating the general
features. It also is the most economical choice since it
gives rise to the fewest number of possible terms in the

prospective Lagrangian. Under a local SO(1,k —1)
XSO(d —k) tangent-space rotation, the vielbein eM (z)
transforms as the representation (k, 1)+(l,d —k). Hence
the tangent-space indices split naturally into the sets
1, . . . , 4; 5, . . . , k; 0+1, . . . , d. We denote tangent-
space indices by early letters of the alphabet as follows:
a, b, . . .=1, . . . , 4; a', b', . . .=5, . . . , k; a, i3, . . .=k+1,
. . . ,d; a, b=1, . . . , k; c7,P, . . . =5, . . . , d; A,B, . . .
=1, . . . , d. Similarly, we denote world indices using
middle letters of the alphabet.

In constructing a Lagrangian which is invariant under
general coordinate and local GT transformations, we have
available to work with the vielbein eM (z) and the spin-
connection components B~ (z). Under a local GT
transformation, these quantities transform as a vector
and a connection, respectively. The spin connection BM
takes values in the Lie algebra of GT. Hence, for exam-
ple, in the standard Riemannian geometry where
GT ——SO( l, d —1), B~ BM Xzz [wher—e—Xzz are the
SO(1,d —1) generators in the fundamental representation]
has —,d (d —1) independent components. In quasi-Rie-
mannian geometry, B~ has fewer than —,

' d (d —1)
independent components. In particular, for
GT ——SO( l, k —1)X SO(d —k) which is embedded in
SO(l, d —1) in a trivial way the independent components
are B~', B~ ~ or B~——B~' X -+B~ ~X p. It has been

demonstrated ' however, that torsion must be nonvanish-
ing for a non-block-diagonal vielbein (as required in the
Kaluza-Klein ansatz) to be admissible. Hence torsion (a
tensor under GT) is an additional geometrical quantity
which we must incorporate. Torsion can perhaps be in-
troduced as an ansatz although we will take a route where
it is determined dynamically. Whichever the case, it ap-
pears that a minimal theory will necessarily contain a ten-
sor field bM ~(z) in addition to the usual vielbein and
spin-connection fields eM (z), B~' (z), BM (Refs. 6 and
7). In some sense, bM' has the role of replacing the
"missing" components of the spin connection. Therefore
it is reasonable to regard bM and B~ on equal footing so
we include "kinetic" terms for both. Ultimately they are
determined in terms of e~ . Hence a general gravitation-
al Lagrangian invariant under general coordinate and lo-
cal SO(1, k —1)X SO(d —k) transformations (with at
most two derivatives of the vielbein) is given by

3108 j.985 The American Physical Society



32 ASPECTS OF QUASI-RIEMANNIAN KALUZA-KLEIN THEORY 3109

~=(c R -ss+c'R p+gr 'p+c b b[~~]r+c'b ~[ p]'+c b — bl~~]r+c'b ~( p]'
P a~ P aP aP 1 [aW]y [aP]c Iabjy I aPIc

+c3ba yb~ +c3b ~bp +c4)(dete)

where

R -' =E,— E-+(d B '" d —B '" B—;B'-d+B ',B-' ),
R py E——Ep (dMB~r d~B—M BM—,B~' +Bzr,BM' ),
r,-p' E; ——Ep (dMb„' d&b—M' B'—,b~' -+Be';b~' Bm—Px"+Be Pm"),

1 1

[a~]y 2 ahy bay ' [ap]c 2 ape pac

b[ -] —, (b~ —+b~ ) — y]~bd, b[ p];= , (b p;—+bp;) k, q—Pbs ',
and k'=d —k with cp, cp, . . . , c4 numerical constants, one of which may be disposed of by an overall rescaling. The
GT connections BM',BM p and the tensor. field bM'p are determined by the respective variations of (1). The results are

Bapy 2 (+apy+ +ypa+ +yap) + ( 9ay+pd Pap yd

(2)

Cp
b ~ — (0——~+A,—p+Q,-~)+f'(II,—p+0,p)+g'yj p-A,-s

where A~ac E~ Ea (——dMexc BxeM—c),M N

(1—k')k +4cpc3k' (1 k)A, +—4cpc3k

k'[(k —1)A, —4cpc3 (k —2)] k [(k' —l lA, 4c pc—3(k 2)]—
1e= ——
2

2CpC1, 1 2CpC1 g Cp g Cp'=2-
g

1 1+2cp+2cp(k' —2)d' g =, +2cp+2cp(k 2)d
kA, 2C2 k'k 2C2

It can be seen in (2) that the GT connections are, in general, non-Riemannian. The gravitational field equations are ob-
tained by varying W with respect to the vielbein and we get

(2cpR„'+Ar, a )+gp-(2cpR, a P+Ar„'P)=0 . -

Cp R,—, '——g,—R d'

c,' 1 5 A. c 1= ——r ~— q~r d
k' 2 ' k'

cpR — = ——r y
y, cpR- ~ = ——r—~,bc A b g

ac 2 y ay 2 ac

(4)

so that it seems possible that the rzz' provide source

It has been shown in a somewhat different context that
quasi-Riemannian theories may admit compactifying solu-
tions. In the present case, (3) may be simplified to read

terms for compactification. We are more interested, how-
ever, in applying the Kaluza-Klein ansatz to (1).

III. KALUZA-KLEIN ANSATZ
AND DIMENSIONAL REDUCTION

eM (z)=
e '(x)

0

A~ p(x)Dp (Ly)—
e- (y)

where I.„ is an element in the coset space 6/H, D-~ are
matrices in the adjoint representation of G (a,P, . . .

As in standard Kaluza-Klein theory, we take the viel-
bein to be of the form
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=5, . . . , d, . . . , d+dimH label all generators of 6) and
A (x) are the four-dimensional gauge potentials. The
left action. of 6 on G/H is defined by gL~ =L~ h

(g&G, h&H). The transformation laws of the various
components of eM" under a left translation are as fol-
lows:

e" (x')=e '(x),
QyPe' (x',y')= e„(y}Dp (h '), (6)

e' (y') = e-„~(y)Dg(h ') .
By

In particular, substituting the ansatz (5) into the second
equation of (6) gives the four-dimensional Yang-Mills
gauge transformation law

A' (x')=gA (x)g ' —gB g

where A~ =A~ Q - with the Q - generators of G. We
follow standard Kaluza-Klein theory and demand that the
d-dimensional Lagrangian be invariant under left transla-
tion. This will be true for any Lagrangian [such as (1)]
which is invariant under the spacetime symmetries pro-
vided that D-p(h ') may be considered as a tangent-
space rotation in the internal space. That is, Ce must
have H CSO(k —4) X GT. For our case GT ——SO(d —k),
the D (h ') is-an orthogonal block-diagonal matrix
(with k —4 Xk —4 and d —k Xd —k blocks) provided
that D, p(h }=0or in infinitesimal form

rnensions, the available choices grow rapidly. As an ex-
ample, consider 6/H =SO(3)XSO(2)/SO(2) where the
SO(2) generator in the denominator is taken to be a linear
combination of the SO(2) and diagonal SO(3) generators
in the numerator. The tangent group in this seven-
dimensional spacetime is taken to be SO(1,5). (This is the
particular example given by steinberg and shown to give
rise to chiral fermions in four dimensions. ) We associate
a'=5, 6 with r), rp of SO(3) and P=7, y with the two
orthogonal combinations of the remaining (diagonal) gen-
erators so that (8) is clearly satisfied.

Now to see the four-dimensional content of (1), we sub-
stitute (5) into (2) and then into (1). The first step gives

1

Babe 2 ( +abc + f)'cab ++cba } ~

1

+a'b'c' 2 ~a'b'e'+ ~a' ~$b'q'

B,b, —— A, (D—s ~; Ds')c b,
1

+a'bc 2, +cb D5&

j.

+abc' 2 Fab Dg&'

the 0
1

B~py —
2 copy +'7T~ cd

B pr= A(Ds —vr Ds )c —p-
IBa pr =Ca py+ 77a' Cgp

—(e —T )Crpa

1

Babe (e —
2 )Fcb

c I
pp 0 (8) ab'c' Cab'c' +~a Cgb'q' ( 2 } c'b'a ~

where a, P, . . .=d+1, . . . , d+dimH run over the sub-

group indices. Alternatively, the embedding of H genera-
tors in SO(k —4)XSO(d —k) [in analogy to the usual
SO(d —4) in Riemannian theories] via

Qa= 2Cab~ X + &Ca rX
b'c' & Py

succeeds only if c,~——0. Otherwise Q- will not verify
the Lie algebra of H because the X' are missing. The
implication of (8) is that in quasi-Riemannian Kaluza-
Klein theory, we are not free to choose any G/H as inter-
nal space since, in general, (8) is not satisfied. Evidently,
the generators of 6/H also have to be partitioned into a'
and a categories appropriately, for (8) may be satisfied for
some choices of partitioning but not for others. For inter-
nal spaces of low dimensionality, the possibilities may be
readily categorized. However, for higher numbers of di-

B~b, ——0,
5

baby —— F~b D~

CO
ba'b'y ca'b'y ~

bg 'by —0

b,by
——0,

bapc =0
COb.p,

— e.p,

where ~ (y)=E "(y)e p(-y) (with -L dL-'=dyI'e Q )-
and

F.,~(x) =E."(x)E,"(x)[a A„r(x)—a„A r(x) —cr;~ '(x)A„'(x)] .

Use of (8) has been made in simplifying the expressions in (10). Then the Lagrangian (1) reduces to

2

2'=(dete) COD&(x)+ , cOF,b (x)F'bp(x)D-, (y)Dp'—(y)+ F,b (x)F' p(x)D- (y)Dpr(y)

+y-dependent curvature and torsion terms
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where

COC1 =—e =0.
4

(12)

In that case, we have for the effective four-dimensional
Lagrangian

W4 ——[dete '(x)]

4
coR4(x)+ , coF,b (x)F' -—(x)

dimG

is none other than the four-dimensional Einstein-Hilbert
Lagrangian since B '. are all Riemannian valued. It is
comforting to see that the four-dimensional effective
theory is torsion-free. For a general GT, this will not be
the case. However, one may then perhaps impose some
condition on the arbitrary coefficients in the Lagrangian
in order that the four-dimensional torsion vanishes. The
second and third terms in (11) require comment. In stan-
dard Kaluza-Klein theory, left translation invariance of
the Lagrangian leads to four-dimensional Yang-Mills
gauge invariance since dimensional reduction gives the
term involving the gauge potentials as proportional to
F,b (x)F' ~(x)D (y)Dg (y) and the integral over y of
D—(y)Dpr(y) is a constant times 5-&. The integrals of
D;, (y)D~'(y) and D- (y)D~r(y) are not separately co-
variant G tensors, however. Hence, to get gauge invari-
ance we must demand

IV. SPINOR FIELDS

We now turn to the inclusion of fermions. Here be-
cause GT ——SO( l, k —1)&& SO(d —k), a d-dimensional
field is characterized by representations of SO(l, k —1)
and SO(d —k), that is, as a tensor or spinor under each
piece of GT. The spin-statistics connection of these gen-
eral fields should be elucidated. However, from the stand-
point of obtaining four-dimensional spinors in the har-
monic expansion it is clear that we need to start with a
field %(z) which transforms as a spinor under
SO(l, k —1). The simplest choice would seem to have
%(z) transforming as a scalar under SO( d —k). The obvi-
ous expression for an invariant Lagrangian involving %(z)
is then

Wq, ———(dete}%'I'E~ VM 4+H. c. ,

where V~ ——B~+—,B -X', I ' are 2 -dimensional

Dirac matrices and X' = —
~ [I ', I ]. To see the four-

dimensional content of (14), we make a harmonic expan-
sion for %(z). Now for a general field transforming as

P; (z)~D
&

(h )P/(z), the appropriate expansion is
' 1/2

e, (z) =g D,&,(L, ')g,"&(x), —

n, g

where the sum is over all irreducible representations of G
which contain D on restriction to H; g is a supplementary
label in the case where D occurs more than once in D".
Generically, we will simply write P(z}=D(L~ ')P(x) as a
typical term in the harmonic expansion. Then making use
of (5), (10), and the identify

+cosmological term (13) a„D(L,-') =e„D(Q.)D(I.,-')
we get for (14)

(16)

f(x)D(L )II"[—E, 8 + , B, ,X A, ~—DprD(Q—-)+ ,F, sD-, , (L )Xb'—]

+I ' [ , c, s, X ' —D(Q')]]D—(Ly ')4(x)+H. c. (17)

This result is similar to the usual one in Riemannian
theory [where %(z) is an SO(d) spinor] except'for the im-
portant difference that the summations in the last three
terms in (17) do not run over the entire internal space.
Upon integrating over y, these terms are just the Pauli
moment and mass terms in four dimensions. The incom-
plete summations imply a dependence on the basis of the
G/H generators. This is basically a reflection of condi-
tion (8) which enforces a separation into the a,a indices
of the internal space. A similar situation occurred in the
pure gravitational case in (11). The condition (8) can be
satisfied more than one way in general (or perhaps not at
all for some choices of G/R, GT). It appears physically

reasonable (and also economical) that the four-
dimensional theory should not depend on the details of
the split into a', a indices even though for consistency (8)
must be possible. Hence we require that summations in
the four-dimensional theory be over a=(a', a) indices.
For this reason, we reject the d-dimensional field
transforming as a spinor under SO(l, k —1) and scalar
under SO(d —k) and the Lagrangian (14) as a possibility
in obtaining four-dimensional spinor theories. Clearly,
the missing terms in (17) are due at least in part to the
fact that there are no X ~ matrices in (14). The above
comments are also true for all d-dimensional fields
transforming as a spinor under SO(1,k —1) and as a ten-
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sor under SO(d —k). We are thus prompted to try the d-
dimensional field transforming as a spinor under both
SO(l, k —1) and SO(d —k) since the Lagrangian will
then contain all the Dirac matrices. Indeed, the minimal
expression is

Wq, ———(dete)%'I E~~VI4+H. c. ,
2

where T~ ——BM+ —,B ~X' + —,B~~pX . The I are
2~ ~ ~ &2~" " -dimensional matrices given by I '
=y')&1, I =1&(y where I', I are, respectively, the @-

and (d —k)-dimensional Dirac matrices. Substituting the
harmonic expansion for 0' in (18) then gives for a typical
term

'q(x)—a(1., ) r [E. a„+,'a.„x-" ~. D;~D(g, )]+ ,'s., 'D-;,r 'r"

+ —' ——S'.,'D;, I rr"—r D(g. )+ —,'c.~,r r»+-,'c.,..I'r"'
I

c ~ I'r»+ —'+ —c, r r"' D(L, -')q(~)+H. c.
4 4 Ex c (19)

Unfortunately, there are still incomplete summations in (19) so (18) cannot be a satisfactory Lagrangian. Since we still
have the fields bM'~ at our disposal, we exhaust the possibilities and couple the bM'~ to 4 through the I " matrices. The
Lagrangian below [an extended version of (18)],

C bca
(20)

reduces to terms like

W~= —'y(x)D(L,, ) I'[Z. a„+—,'a.„X"—W. I'D rD(g, )+-,'S.,'D;, r.'r] —r D(g. )+ —,'c.&l'I ~l r

F D- lyX'+ —+—c b, I Xe t —1 g, b e t'
ab 5y 2 2 a c

I

+ —+—c, »I"X» D(L~ ')g(x)+H. c. , (21)

where t, t' is an arbitrary constant. The last three terms
prevent a complete summation over internal-space indices.
Recall that in the last section we had obtained e =0.
Even if we now set e'=t =0, there would still be a term
c b, I X ' left over. Hence, it seems that in order to get
unambiguous results (for fermion masses, for instance),
we must consider, in general, direct-product groups
G~ X Gq with a trivial embedding of the a,a indices into
the two separate factors.

%"e should remark that the above results were arrived at
using the expressions for B~,bM in (10) which were ob-
tained from a variational principle. With the inclusion of
fermions, perhaps the effect in terms of bilinears must be
considered and somehow incorporated in (10). Of course,
one could also set B~,b~ by hand as in B~" ——B~+b~
although we have checked that this choice leads to similar
conclusions as the above.

V. CONCLUSIONS

We have found that in formulating a quasi-Riemannian
version of Kaluza-Klein theory, not all choices of coset

spaces as internal manifolds are admissible. Left-
translation invariance is compatible with the spacetime
symmetries only if c,. ——0. This condition is nontrivial
unless one wishes to consider internal spaces of the form
G~ XGz/H. The general d-dimensional Lagrangian has
10 undetermined constants [for Gz. ——SO(1,k —1)
X SO(d —k)]. The requirement of gauge invariance gives
one condition on these constants as left-translation invari-
ance does not lead directly to four-dimensional gauge in-
variance (as in the usual Riemannian theory). In this con-
text, the tensor field bM ~ which was initially required (or
introduced) to generate torsion is found to be necessary.
When spinor fields are coupled to gravity we encounter
further restrictive features. In the Kaluza-Klein ansatz,
four-dimensional gauge invariance is in general not com-
patible with a general gauge group 6 unless it is of the
form G ~ Gq where SO( k —4) acts on G

&
/H

&
and

SO(d —k) acts on Gz/IIq. Note, however, that the above
difficulties do not occur for the case k =4. It is not clear
if the above results would represent a serious blow to a
successful application of quasi-Riemannian theories in the
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context of a supergravity theory based on graded Lie alge-
bras.

Note added. The general structure of GT ——SO( l, k —1)
XSO(d —k) theories and the problem of gauge invariance
upon compactification have also been considered in Refs.
8 and 9, respectively. We thank S. Weinberg for pointing
this out to us.
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