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Bianchi type-I cosmological models are discussed in the Bergmann-%'agoner-Nordtvedt scalar-
tensor theory where both the so-called cosmological constant A and the coupling parameter co are
taken to be functions of the scalar field P. Exact solutions are obtained in Dicke s revised units as-

suming a very simple relationship between A and P. The properties of the models are discussed in

special cases.

I. INTRODUCTION

The concepts of contemporary field theory have recent-
ly led to the belief that in the early stage of the Universe
the properties of the vacuum were different from what
they are now. The A term, the so-called cosmological pa-
rameter, was big and strongly affected the beginning of
the expansion of the Universe. The parameter A is nowa-
days believed to correspond to the vacuum energy
(Zel'dovich') which gives rise to the corresponding mass
density of the vacuum. Dreitlein suggested that the mass
of the Higgs boson is connected with A as well as the so-
called gravitational constant-G. Some workers have even
suggested the possibility of A being a variable quantity de-
pending on the scalar field (see Bergmann and Wagon-
er ). Linde proposed that A is a function of temperature
and related it to the spontaneous-symmetry-breaking pro-
cess. In cosmology, however, the cosmological term A
may be understood by incorporating Mach's principle
which simulates the interest of the work in Brans-Dicke
theory. The application of the Brans-Dicke homogeneous
cosmology with A&0 to the inflationary-universe scenario
with radiation was given by Dominici, Holman, and
Kim. Very recently, - Lorenz-Petzold investigated the
Brans-Dicke field equations for Bianchi type-I space-time
and obtained vacuum as well as dust solutions in the pres-
ence of the cosmological parameter A. Previously Endo
and Fukui and later Banerjee and Santos' added the A
term in the Brans-Dicke Lagrangian to obtain modified
field equations involving A, which is now a function of
the scalar field. The parameter A, in Lorenz-Petzold's
work, however, is assumed to be a constant quantity.

In the present paper we investigate the Bianchi type-I
cosmological models which include A as a variable quan-
tity in Nordtvedt's scalar-tensor theory" considering the
parameter co a function of the scalar field, too. The in-
terests in such an investigation are twofold. First,
Nordtvedt's theory generalizes Brans-Dicke theory in con-
sidering ~ as a variable parameter, so that it keeps open
the possibility of co having smaller magnitudes at different
epochs giving results appreciably different from those in
Einstein's theory. It should be remarked in this context
that the recent experimental data of %'i11' indicate very
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large values for ro (to-500) which makes the results prac-
tically indistinguishable from Einstein s theory. Second,
the variable A involves wider prospects for its specific role
in cosmology currently discussed by particle physicists.

We consider the modified Lagrangian and the corre-
sponding field equations in Dicke's revised units, ' in
which the particle masses vary whereas the gravitational
constant 6 remains fixed. In these units, however, the
test particles do not follow the geodesic trajectories. We
work in such units to get the set of equations in a much
simpler form. In Sec. II we write the complete set of field
equations in empty space and in Sec. III the solutions are
obtained for a very simple relationship between A and P,
namely, A//=const. The dynamical properties of the
models are analyzed in different special cases. The solu-
tions for the scalar field for different choices of the func-
tional relationships between the parameter co and the sca-
lar field (t are also explicitly given. Brans-Dicke theory is
only a special case, where ~ is assumed to be a constant.
It is not difficult to obtain explicitly the solution in the
original atomic units, for which the masses of test parti-
cles remain fixed and the so-called gravitational constant
varies with time, by a simple transformation like
g&„Pg&„,——where an overbar indicates atomic units and a
variable without an overbar is given in revised units. An
example is worked out for the special case of Brans-Dicke
theory.

Finally in Sec. IV the isotropic Friedmann-Robertson-
Walker model with zero spatial curvature (k =0) is con-
sidered as a special case of the Bianchi type-I model. One
set of solutions is seen to reduce to a vacuum de Sitter'
cosmological solution.

II. FIELD EQUATIONS

Assuming the cosmological term to be an explicit func-
tion of the scalar field P, Nordtvedt s variational principle
with modified A(P) will be

5 I P[R —2A(P)]+
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where R is the Ricci scalar and L~ is the Lagrangian
density due to matter. In Dickes revised units, that is,
with the transformation g» ——(I/P)g» and /=globo,
where Po is a constant, the variational principle looks like

3R
(1 y)

1 l 2dA 2A
R (2co+3) dP

1 2dco
(2.10)

2A 2m+3
y2

16+60
+ L Y—g d x=0. (2.2)

C4

where R =V g=—exp(a+P+y) and an overdot
represents differentiation with respect to t

With these field equations, the Raychaudhuri' equa-
tion looks like

IG.p =—R.p —
2 Rg.p

'r
p

— , —(4,0.p rg p0—,,0'")(2'+ 3)

A
SaP ~ (2.3)

and the wave equation

Cl(lug ):—(1ng )'i'. z

1 2A

(2'+ 3)
2dA 1 @ dc'

(2.4)

Here 8n60/c is taken to be unity and T~p represents the
energy-momentum tensor of matter.

The diagonal Bianchi type-I line element for an aniso-
tropic but homogeneous space-time is given by

ds =dtz e2adxz ePd—y e "d—zz, — (2.5)

where a, P, and y are functions of time t alone. With this
metric, the nontrivial field equations in the case of empty
space according to (2.3) and (2.4) are

—', (R /R)' ——,
' (a '+P '+ y

') = (P/P)'+A/P,

Variables with an overbar are in the original atomic units
of Brans and Dicke and those without an overbar are in
Dicke's revised units. With A(P) =0, Eq. (2.2) reduces to
the usual Nordtvedt's variational principle in Dicke's re-
vised units. The usual variation of Eq. (2.2) with respect
to g» and P will yield, respectively, the field equations

8+ —,'8 —ti . +2(o —co )+ ,'(pp+—3p~) —=—0,

A=bg, (2.13)

where b is a constant. It will be seen that the solution for
the metric components is independent of the functional
relationship between co(P) and P. But the exact functional
form of co will be necessary when one goes to solve for the
scalar field. For this purpose, we would assume a few
functional forms already in the literature as examples.

III. SOLUTION OF THE FIELD EQUATIONS
AND BEHAVIOR OF THE MODEL

(2.11)
where 8=3R/R is the expansion scalar, o. and co are shear
and rotation scalars, respectively, and si is the accelera-
tion vector. From the field equations, one observes that
the scalar field plays the role of a matter source with ef-
fective density p~ and pressure p~ given by the relation

py=py =
4 (4 /4')' (2.12)

For a rotation-free homogeneous model in general,
.~=0 and co =0. With (2co+3) & 0, p& and p~ are pos-

itive and one observes from (2.10) that for A// &0, 8 is
always negative and the singularity of zero proper volume
is unavoidable. For A/P &0, however, the sign of 8 can-
not be determined by (2.11).

To solve the system of equations in this model, we see
that there are six variables, namely, a, P, y, co, A, P but
only four independent equations, (2.5)—(2.8). For empty
space, the wave equation follows from the field equations
in view of the Bianchi identity. In what follows, we
would assume two relations. A very simple linear rela-
tionship between A and P will be assumed,

P+y+ —,
' (R /R)(P+ y —a)+ —,

' (a'+P '+ y ')
(2.6)

Equation (2.13) yields (d/dg)(A/P) =(d/dP)(b) =0
and it considerably simplifies the wave equation (2.10)
which becomes

(PIP) +—, (2.7)
~ 3R. 1~+ R ~=-(2.+3) ~' (3.1)

j'+a+ ,' (R /R)(y+a —P)+,
' (a'+P'—+y ')—

(PIP)'+ —, (2.8)

a+P+ (R/R)(a+P y)+—'(a +P +y—)—
(P/P) +—, (29)

4

(2~ + 3 )1/2$
R

(3.2)

where C is a constant of integration.
Adding (2.6), (2.8), and (2.9) together and subtracting

(2.7) from the result, one obtains

where /=lug. Equation (3.1) can be integrated to the
orm
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3Rci+ ci=b .
R

(3.3a)

2a+ 2 (R/R) + 2 (R/R)(3a —P—y)=2b

which, with the help of the relation R =exp(a+P+y)
becomes

2 (k 2e n't+ e n f)2'/3exp[p tan I
( ke lij)j

where k =V'A /B and p s are constants with

3

g p;=0.

Here the expansion scalar 8=3R/R is given by

(3.7a)

Addition of (2.6) with (2.7) yields
~ ~

6(R /R)'+ 3R
R

ri —u'=2b . (3.3b)

From (3.3a) and (3.3b) we obtain

3R 6R
R2

that is,

(R )"=3bR =n R (3.4)

where n =3b.
For b &0, that is, n &0, the solution for R is har-

monic and we have a model between a minimum of zero
proper volume R and the maximum of a finite volume.
The other case for n )0 can be given by a general solu-
tion

n (Ae"' —Be "')
8=

R
(3.7b)

R =23 coshnt (3.7c)

O=n tanhnt . (3.7d)

and 8=4n AB/R, which is positive. So there is a lower
bound when 8=0. From (3.7b) one finds that 8=0 at
t =( I/2n)ln(B/A). Hence, the singularity of zero proper
volume is avoidable in this case. This is because here
A & 0, which indicates that it causes a repulsion and thus
can give rise to a model with a bounce at a minimum
volume.

If we choose the time scale such that the lower bound
occurs at t =0, that is 3 =B, the solution can be ex-
pressed as

R =He"'+Be (3.5) With this choice of the time scale, the metric is given by

where 3 and 8 are arbitrary constants.
From (3.3a) one can have

(aR ) =bR

which, in view of (3.4), yields

(aR')'= —,
' (R')" .

This readily integrates to yield

Ra= —+ (3.6a)

R; =(2A coshnl) exp[p;tan '(e"')] .

CaseII: 3 &0, B(0

R =(IA
I

"'—IB I

"')

&
I

A
I

e"'+&
I
B

I

where the p s are constants and

(3.7e)

(3.8a)

(3.8b)

where a i is a constant of integration. Proceeding similar-
ly for P and y we obtain

~ R a2=—+R
(3.6b)

R a3+ (3.6c)

where a2 and a 3 are constants of integration with
(a &+a2+a3) =0.

With the help of (3.5), Eqs. (3.6) can be integrated to
yield the solutions for the metric. We shall state the solu-
tions corresponding to n & 0 and discuss the dynamics of
the model in different cases without giving the details of
calculations. We use the notation R; for the metric com-
ponents, where Rj ——e, R2 ——e, R3 ——e . The signs
of A and 8 should be chosen in such a manner that the
proper volume R is positive. The constants of integra-
tions are absorbed in metric coefficients wherever possible
without loss of generality.

Case I: A, B both positiue

3

g p;=0.

R'= IB Ie "'—IA Ie"',
= (

I
B

I
e "'—

I
A

I
e"')

IB le "'+ IA le"'

(3.9a)

(3.9b)

Here,

n (
I
A

I

e"'+
I
B

I
e "')

R
which is positive and not zero for any finite t and so the
model has no turning point. The Universe starts from the
singularity of zero proper volume and is ever expanding.
At t~ m, R becomes infinitely large. If B&0, the
singularity occurs at a finite past given by
t =

2 ln
I
B/A

I

. One can fix the origin of the time scale
(t =0) at R =0 by the choice

I
A

I

=
I
B

I
. If however

B =0, the singularity occurs at infinite past (t~ —co),
and the rate of expansion is steady (8=n)

Case III: 8 &0, 3 &0
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where the q s are constants with

3

g q;=0,

n ( i
8

i
e "'+

i
A

f

e"')
R

(3.9c)

(B) Barker's theory 2co+3= 1/(P —1).
(i) A &0, 8 &0

T

e"=/=1+tan tan '(ke"')+A3
2nk

(3.11a)

10'
12

g22 g22 g 33+
g22 g22 g 33

2

which is negative and never zero for any finite t. The
Universe is ever contracting, R is infinitely large at
t + —o—o and it reduces to the singularity of zero volume
atafinitetimet= ,'nl—n~B/A i. If ~Bi=iA i, R =0
occurs at t =0. If however, A =0, the singularity of
R =0 occurs at infinite future tab oo with a steady rate
of contraction (8= n)—

From the above we note that the only case where there
is a bounce from a minimum finite volume is for A &0
and 8 &0. In all other cases the singularity cannot be
avoided even if A & 0 producing a repulsive effect.

The geometric shear scalar cr is given by (Raychau-
dhuri'5)

2

(ii) A & 0, 8 =0

e~=g= 1+tan A4 — e
nA

(3.11b)

4k ne&=P= [tan '(ke"')+A5]
Cn

(ii) A &0, 8 =0
4n Ae"=P= (e"'+A6)
Co,

(D) Curvature coupling 2'+ 3=3/( 1 —P).
(i) A&0, 8&0

(3.12a)

(3.12b)

(C) Schwinger's theory ' 2co+3=1/aP, a being a
constant.

(i) A &0, 8 &0

g33

833

and in all the cases mentioned above, it is found that
o -R, that is, the shear, which is a measure of the an-
isotropy becomes infinitely large when R ~0. From
(3.2), we note that p~, the energy density due to the scalar
field, also attains an infinitely large value (-R ) at
R ~0. For a Bianchi type-I cosmological model, the
curvature of the three-space is always zero. The curvature
scalar of the four-space, g" R», will be given by

g""R~„2n +6R ———/R +D/R6,

e&=y=
4A 7exp tan —1(ke"')

2 3kn

(ii) A & 0, 8 =0

e&=P=
438 exp

C —n~e
2 3nA

1+A sexp — e
2 3nA

1+A 7 exp tan '(ke "')
2 3kn

2

2

(3.13a)

(3.13b)

Solution for the scalar field

Once the solution for R is known, Eq. (3.2) can be in-
tegrated to yield the solution for P provided the exact
functional form of co(P) is known. We shall use a few
functional forms of co already in the literature to solve for

The solutions corresponding to two special cases
3 &O,B &0 and A &0,8 =0 will be given in what fol-
lows omitting the details of calculations.

(A) Brans-Dicke theory: co=coo, a constant.
(i) A&0, 8&0

e&=Q=Aiexp C
tan '( ke "')

nk (2coo+3)'i
(3.10a)

(ii) A &0, 8 =0

in this theory. Here D is a constant. From the above re-
lation we note that as R —+0, R will be the dominant
term and g»R& explodes to infinity as R like cr and

Py.

In the above A i,A2, . . . , As are constants of integration.
The cosmological parameter can be immediately ob-

tained from (2.13) once the scalar field P is known. A, be-
ing linearly proportional to P, has the same time behavior
as

Transformation of the solutions into atomic units

With the solutions for P at hand, one can transform the
metric components into the original atomic units of Brans
and Dicke. The transformation relation is

1
gjMv

— gpv . (3.14)

We shall cite only one example here. For A,B &0, Eqs.
(3.7a) and (3.10a) give the solutions for the metric and the
scalar field in Brans-Dicke theory, respectively. The
transformed metric, with the help of Eq. (3.14) is

R 2 (k2ent+e nt)2/3—1

e ~=P =A 2 exp
nA (2 too3+)'i

(3.10b) X exp p; —
»2 tan '(ke"') . (3.15)

nk (2coo+ 3)'i
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We have noticed that the R; 's are independent of the
choice of ro(P) in the gravitational units of Dicke (where
G remains fixed). But when the solutions are transformed
into the atomic units, they become dependent on the solu-
tion of P through the transformation relation (3.14). The
scalar field P, in turn, depends on the choice of co(P) via
the wave equation. So the metric becomes dependent on
the choice of the functional form of co(P).

IV. ISOTROPIC MODELS

When a =P=y, the metric (2.5) reduces to the
Friedmann-Robertson-Walker line element with zero spa-
tial curvature. In this case, for obvious reasons, the shear
scalar vanishes. The general solution for the isotropic
case also is given by Eq. (3.5) and the dynamical behavior
will be similar to that discussed in Sec. III for anisotropic
models.

One interesting case is for n & 0 and 8 =0. The solu-
tion in this case is

R =de"'

or

g 2 g 2/3e2/3nt

(4.1)

This reduces to the de Sitter solution in empty space,

~ 2 2Ht

with H=&A/3. In (4.1), however, the constant n is
given by

n =3b= 3A

We note that A/(t) in the present case plays the role as A
does in the empty-space de Sitter model.

V. DISCUSSION

In this paper exact solutions are given for Bianchi
type-I empty space-time in Bergmann-Wagoner-
Nordtvedt generalized scalar tensor theory where both the
coupling parameter co and the cosmological parameter A
are assumed to be functions of the scalar field. To the
best of our knowledge the solutions are new. Singh and
Singh and Singh and Rai in previous papers obtained
such solutions in the presence of dust and fluid, but in
their work the parameter co was constant. They made
another assumption in the wave equation for the scalar
field introducing a constant p which measured the devia-
tion of the theory from Brans-Dicke theory. The explicit
form of the equation was

pkT
(2~+ 3)

However in empty space T =0 and this particular form of
the equation has no influence on the general nature of the
solutions. In a recent publication of Lorenz-Petzold, '

apart from the one mentioned at the beginning of this pa-
per, some exact vacuum solutions were obtained in
Brans-Dicke theory with nonzero cosmological constant
A. So our attempt here is to extend such solutions in a
more general theory. We have been successful in getting
them with, however, a restriction imposed on the func-
tional form of A, that is, in the form A ~/. At the end
we refer here to some other recent investigations of in-
terest in this connection (Refs. 22—30).
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