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On parametrizing the N. -generation quark mixing matrix
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The invariant-phase approach previously introduced for describing the Kobayashi-Maskawa mix-
ing matrix is generalized to X generations. The work is simplified by using the fact that the invari-
ant phase is a 2-cocycle. Finally, we give the connection with Greenberg s recent approach.

The Kobayashi-Maskawa (KM) matrix, ' which de-
scribes the charged-current weak i:nteractions in the stan-
dard model of elementary particles, has a "geometrical"
aspect in that it determines the nature of observed CP
violations. Hence its parametrization is interesting both
from theoretical and practical points of view. Recently,
the concept of an "invariant CP phase" for this matrix
was introduced and applied in detail to the usual three-
generation case. Here we would like to show how to
count and specify the independent invariant phases for the
N-generation case. This work is simplified by noting that
the invariant phase is a mathematical object called a 2-
cocycle. The invariant phase intrinsically spans three gen-
erations, which makes it natural that three generations are
needed for CP violation.

The KM matrix U may be "gauge transformed, "

U~PUQ

where P and Q are diagonal matrices of phases, without
changing any physical predictions. Hence the N param-
eters of the unitary U can be reduced by (2N —1) (an
overall phase for P and for Q is redundant) to yield

( N —1) independent parameters. We wish to find objects
which conveniently parametrize U and which are invari-
ant under rephasings. We observe that the trivial physical
situation with no intergenerational mixing and no CI'
violation not only corresponds to U = 1 but also to
U=diag (exp(i&i), exp(ir2), . . . ). It is convenient to
consider U = 1 to be the representative of this class and
hence to find rephasings which leave U= 1 invariant.
This amounts to restricting one*s attention to the transfor-
mations

U~PUP, P=diag(e ',e ', . . . )

We shall introduce invariant CI' phases which remain un-
changed under the transformation (2) and then later show
that they are, in fact, invariant under the full rephasing
transformation (1).

The actual parametrization of U is, of course,
nonunique. Writing U as a product of "complex" 2)&2
rotations connecting each pair of generations guarantees
unitarity with a simple finite analytical form, but is not
required for our considerations. The generic complex ro-
tation between the first and second generations,
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The invariant phases I,jk, each required to span three gen-
erations, are then

Itjk =ptj. + peak haik (i &—j& k ) (6)

In the standard three-generation case, U is parametrized
by the three mixing angles 812y023i813 and the single in-
variant phase I,23 —f] +2/23 $13.

When N =4, U is parametrized by 4)& —,
' =6 mixing

angles but there are 4X 3 X2/(3 X2)=4 invariant phases.
This is one too many since the total number of indepen-
dent parameters minus the number of mixing angles is
(4—1) —6=3. There is one linear relation among the
four invariant phases which may be expressed as the van-
ishing of the "coboundary" operator 5 on I:

(5I)tjkt=F~l~f~ ——0 (i &j &k &I)

Explicitly

(5I )1234 I234 I134 +I124 I123

Using (6), (8) is seen to vanish; this is the condition for
Ijk to be a 2-cocycle. [Actually (8) must vanish since
I=5/. ]

Now consider the five-generation case. There are
5X4X3/(3X2) =10=C53 invariant phases, where C~x—:N!/[K!(N —E')!j. However there are C54 ——5 relations
of the type

(3)

is described by a mixing angle 012 and a CP phase $13.
The KM matrix is then written as

U=+ co;. (4)
1+J

which also satisfies the restriction detU= l. Any particu-
lar, but fixed, order of the co;J.'s in (4) may be used. It is
easy to see that the effect of the transformation (2) is to
leave (4) form invariant with the P,z replaced as

32 3062 1985 The American Physical Society



BRIEF REPORTS 3063

since 5 —=0. Specifically, following the pattern in (8) of
sequentially omitting an index and alternating signs, one
has

) 12345 +2345 +1345 ++1245 F1235 ++1234(4) (4) (&) (&) (4) (4)

Thus there are four independent relations among the ten
invariant phases. This yields six independent invariant
phases —the correct number for five generations.

The pattern is now clear. For N generations, using the
relation 5 =0 repeatedly, the number of independent in-
variant phases is seen to be

N
1 )E+1C (11)

K=3

Using

g ( —1) +'C =0,
K=0

(11) may be rewritten as

C1vp —C~ 1 +C1v2 = —,
' (N —1)(N —2) (12)

which is exactly the right number [(N —1)2

N(N —1)/—2].
In practice it is often desirable to choose a U in (4) with

just the number (N —1)(N —2)/2 of phases P,J not equal
to zero. These nonzero phases cannot be chosen arbitrari-
ly. For example, in the four-generation case we cannot
choose $14, $24, and $34 to be the nonvanishing ones since
this would put the arbitrary invariant I~23 equal to zero.

FIG. 1. The solid lines indicate a suitable choice of the
phases for the six-generation case. Notice that two triangles
have no sides which are edges of the polygon. This is the
motivation for choosing all the diagonals, since each triangle
must have at least one diagonal as a side.

(4)
+ijkf =O

But these five relations are not independent; there is one
( C55 ——1) linear relation among them:

We must choose phases in such a way that no invariant
phase is equal to zero. This can be done with a simple
pictorial approach. First, note that the invariant phase
may be represented as a triangle joining three vertices.
Second, note that a polygon with N vertices has
N(N —3)/2 diagonals. This is one less than the number
of independent CP phases. Now if we draw an N-sided
polygon with all its diagonals as illustrated for six genera-
tions in Fig. 1 and assign each line to one P;~, our task is
to choose (N —1)(N —2)/2 lines in such a way that no
triangle is unrepresented. Clearly, all triangles will be
represented if all the diagonals are chosen. This leaves us
with one less line than the correct number of independent
phases. Therefore, we must add one line on the perimeter
of the polygon; for definiteness it is chosen to be the one
joining the points 1 and ¹ Thus in the three-generation
case we would ch'oose $13. For four generations we would
add $14 and f24. For five generations we would add $15,
$25, and f35 etc. Obviously, all the indices may be per-
muted in any way.

A related question is to choose a suitable independent
set of invariant phases. This may be done recursively.
For three generations we have I~23. At four generations
we add the two triangles I~&4 and I234 generated by the
new vertex. At five generations we add the three new tri-
angles I/25 I/35 and I34q, and so on.

We end with some brief remarks.
(1) The existence of CP violation in the theory requires

at least one invariant phase I~k to differ from zero. Note,
however [see (3)], that I,jk will appear in weak amplitudes
in the combination S;J.SbSJk exp(iI;Jk), i &j & k. Thus the
three associated mixing angles also should not vanish for
a particular invariant phase to be effective in producing
CP violations.

(2) Although any possible way of parametrizing U is
theoretically on the same footing, certain parametrizations
have practical advantages. In Ref. 2, it was noted that the
three-generation choice U=co23co12co, 3 is representative of
a class for which, to good accuracy, the three mixing an-
gles O~q, 623, and 0&3 coincide with the experimental tran-
sition amplitudes

~

U ~, ~
U,b ~, and

~
U„b ~. Further-

more, the CP-violating amplitudes are proportional to
~

U~
~ ~

U~b
~ ~

U»
~

sin(I123), so
~
I123

~

=m/2 gives a
convenient practical measure of maximal CP violation. A
similar parametrization for four generations has been
presented. It has also been noted that in some theoretical
models for the KM matrix, the invariant phase associated
with the present order of the co,z's taking on the value m. /2
corresponds to maximal CP violation. Incidentally, a
natural definition of maximal CP violation for the N-
generation case would require each invariant phase to take
on the value m/2 X(odd integer). In the model of Ref. 7
applied to four generations the three independent invari-
ant phases I~23, I&24, and I234 were seen to be maximal.
I]34 is also seen to be maximal by using the constraint Eq.
(6).

It should be remarked, as discussed in more detail in
Ref. 2, that taking an invariant phase to be ~/2 as the cri-
terion for defining maximal CP violation, clearly depends
on the separation of the KM parameters into "angles"
( CP conserving) and "phases" ( CP violating). This
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(13b)

Equation (13a) is the same as (5) which then implies that
the Izk are invariant under the full transformation (2' ).
It is interesting to also consider the behavior of the phases
of the elements of U itself under the transformation (2' ).
Defining

U=—
f UJ Je 'J,

we have

X1J~X,J +a; —aJ+ p;

Evidently, suitable invariants in this case are

I,P, (X)=XJ+XJk —X;k —XJJ (i &j& k)

(14)

(15)

Now let us specialize to three generations. For a parame-
trization (4' ) like

l $22 l I(33U=diag(e, e,e )A@23 12»
we find to good accuracy (see Ref. 2)

X;J=P;J+P;; (1&j),
+El ll (16)

Then the invariant in (15) is simply our invariant phase

separation in turn depends on the particular parametriza-
tion scheme chosen. The choice discussed in the preced-
ing paragraph seems to us the most reasonable one, al-
though various other points of view have been expressed
in the literature.

(3) We now point out that the invariant phases defined
in (6) are unchanged under the full rephasing transforma-
tion (1). In other words, in addition to invariance under
the transformation (2) which leaves the identity invariant
we consider transformations which alter the identity.
Specifically, replace (2) by

U~BPUP, B=diag(e ',e ', . . . ) (2')

The phases in B were previously denoted as the "trivial"
ones. For the present purpose we must parametrize U in
such a way that the "diagonal" generators (members of
the Cartan subalgebra) are included,

U=diag(e' ",e' ", . . . ) Q co;J (4')
& &1

For the (realistic) case of small mixing angles, the N
phases P;; are approximately the phases of the diagonal
elements of U. Now notice that U as written in (4' ) is
form invariant under the transformation (2' ) if we replace

(13a)

I;,k(X) =I,,„(p) (1 &j& k ) . (17)

[Equation (17) will also hold when there are more than
three generations if the mixing angles are suitably small
and a suitable order (see Ref. 2) of the co;J's is used. J

We can now answer, at least to practical accuracy,
Greenberg's question of how to relate a suitable combina-
tion of invariant quartic structures in U and U to a con-
venient object like the invariant phase parametrizing U.
Using (17) yields

arg( U12 U22 U23 U 31 ) I123(X) 1123(0 ) (18)

arg(UJ UJJ &J/, Uf„)=1jk(y.) (1 &j&k)

It should be stressed that both the invariant phases I,Jk
and the more complicated objects involving UUfUUf are
fully invariant under all rephasings. The former have the
advantages of a simpler "geometrical" interpretation and
fewer redundancies; also they correspond to a direct pa-
rametrization of U using the generators of the U(X)
group. Any parametrization using the U(J1J ) generators
has the same transformation laws (13a) and (13b). Note
that the X UJ matrix elements themselves really do not
give a true parametrization of the theory since they are
not independent of each other.

(4) The parametrization (4) would hold for the leptonic
analog of the KM matrix if the neutrinos were massive
Dirac particles. For Majorana neutrinos the situation is
more complicatedas ,discussed in the first of Ref. 3. The
simplest case is when the mixing matrix is square rather
than rectangular (no "right-handed" neutrinos present).
Then the transformation (2) no longer leaves physical pre-
dictions invariant. Hence, the invariant phases are not
sufficient. Rather, every CP phase p;J (i &j) must be re-
tained and CP violation begins at the two-generation level.
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wherein we have identified the relevant quartic invariant.
There are, for three generations, eight other different CP
violating quartic invariants of the form

arg( U b Ubc U d Ud

but the one in (18) is sufficient. The generalization to
N & 3 is immediate:
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