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Methods for performing accurate computations of eigenvalues and eigenfunctions of the static-
model Hamiltonian with weak and intermediate coupling are considered. The best results are ob-
tained by using coherent-meson-pair states constructed from invariant-pair-free states with up to six
p-wave 7 mesons in a single internal-mode state. The additional states needed for an accurate com-
putation of excited-state energies are exhibited. The best ground-state wave functions are obtained
by imposing constraints that are known to be true for the exact ground-state wave function.

I. INTRODUCTION

The static model (SM) of the nucleon-pions system, that
is to say, the model system whose Hamiltonian is

Hgy= [ o(k)a](k)a,(k)dk

f o-kv (k)

T |
k) +a,(k)]dk
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(1.1)

has been studied for quite a long time;! it describes the in-
teraction of p-wave pions with a distributed source with
spherically symmetric density v(r). The Fourier
transform of v(r) is ¥(k); both v and ¥ are real, and the
summation convention is used for the isospin index A. In
the past this model has been used to interpret low- and
medium-energy scattering of p-wave pions by nucleons, as
well as static properties of the nucleon dressed by its pion
cloud. More recently, with the general acceptance of the
picture of the nucleon as consisting of a quark-gluon core
region surrounded by a region dominated by pions, the
static model has come .to be regarded as a possible way of
learning about the current form factor v in (1.1) that de-
scribes the interaction of the core with the pion field; it is
expected that o(k) will provide information about the na-
ture of the core itself.2 The usefulness of the information
obtained will depend critically on the accuracy with which
0(k) can be determined from the comparison of theoreti-
cal quantities with experimental data; this paper is devot-
ed to the consideration of methods for computing proper-
ties of the static model accurately.

Recent work® has shown that the most direct way of
treating a static-model Hamiltonian is to decompose the
field creation and annihilation operators a}t(k) and a, (k)
into internal and external parts. In the pion static model,
the internal part of each operator involves a single p-wave
pion mode with three components. When the choice of
the separation into external and internal fields is made so
as to minimize the effects of the external field in the
ground state of the Hamiltonian, the appropriate ortho-
normal mode function components have been shown to be
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Note that I; and the internal modes ¢; are independent of
the coupling strength f and depend only on the shape of
the source density v(r). In terms of these modes, the
decomposition of the field operator is

a;‘(k)=AM¢,-(k)+aix(k)

(summation convention now for the p-wave index i as
well), where the nonzero commutation relations of the
creation and annihilation operators 4 ;; and A4,; are

[AM’AL‘] =5;~y5ij ’

and the external field is required to be orthogonal to the
internal modes,

[ 6t (®)a§(k)dk=0 .

Under this decomposition of the field operators, the Ham-
iltonian splits into internal, external, and interaction parts:

(1.3)

(1.4)

(1.5)

HSM=Hm H™+ HYu HYuT,
H=w[A"4—Gp-(4T+ 4)]=wn™,

(1.6)
*= [ ok)af k)af (k)dk
Y=(4"-Gph [ X(K)af (k)dk,
where p and the dot product are defined by
Pri=TrO; »
(1.7)
B'C=B}~,'CA,' .

The internal Hamiltonian H™ contains only the
internal-mode operators; it describes the “internal system”
that consists of the source plus meson field in the internal
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modes only. The operator H™ has a discrete spectrum
that is bounded below and is the result of the interaction
of the internal modes with the source. The relative spac-
ing within this spectrum is determined by the intrinsic pa-
rameter G, which is the only parameter in 2™ and is given
by (1.2); it is evident that G is a normalized coupling
strength. The scale of the spectrum of H'™ is determined
by the parameter

w= [ olk)p (K)dk=(o) , (1.8)

which, like ¢;, is independent of the coupling constant f.
It is sometimes convenijent to write H'™ in the form

H"=G*WH,=VH, ,
(1.9)
Hy=-L[4"a4—Gpa'+4)]=L pin
A~ Gz[ —Gp + ]_ G2 ’

since the ground-state energy of H, is less dependent on
G than the ground-state energy of H™.

The term H°®* is just the energy of the external meson
field without interaction; since the internal field is square
integrable, the external part of the field is the only part
that can describe pions that have asymptotic plane-wave
components corresponding to scattering states. Actual
scattering of the external pion field is generated by the
residual Yukawa interaction, contained in H Y" and its ad-
joint, of the external meson field with the internal system.
Transitions between internal states that accompany the
emission of an external meson have a strength that is pro-
portional to the corresponding matrix element of the
internal operator 4 —Gp. The momentum dependence of
the external-meson emission is in the functions X;(k), the
part of w(k)¢;(k) that is orthogonal to ¢;(k),

Xi(k)=[w(k)—W]¢;(k) ;

like the functions ¢;, these functions are independent of
the coupling strength f.
The splitting of the Hamiltonian Hgy in (1.6) implies a

two-step approach to determining its eigenvectors. The '

first step is the determination of the discrete states of H'™.
These states lie within the internal subspace, generated by
the operators 4" and p acting on the bare source states, of
the full Hilbert space. The second step is the calculation
of the effects of adjoining the rest of the Hilbert space,
generated by the operators act acting on the internal sub-
space. That this is a reasonable procedure was demon-
strated in a previous study,* where the ground-state ener-
gy in the single-mode approximation was compared with
an elaborate computation’ that involved as many as six
pion-field modes. Of course, scattering of pions first ap-
pears at the second stage of the procedure. The two-step
approach means that the coupling-constant renormaliza-
tion constant z is to be considered the product of zj,, the
renormalization constant for H'" alone, and z.,, the addi-
tional renormalization due to interaction with the external
modes. The results of Ref. 4 indicate that z.~1, and
that z;, is responsible for nearly all of the coupling-
constant renormalization.

A previous paper® has given the formalism for comput-

(1.10)
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ing the scattering once the eigenvalues and eigenstates of
H™ are all known. The present work is devoted to the
study of H™ itself. As noted above, the spectrum of H'™
is necessary for computing meson scattering; it is also re-
quired for the determination of the potential between two
static sources of meson field.* The techniques used in
treating H™ will also be useful in considering other
static-source problems, such as a system of gluons in-
teracting with a static source consisting of quarks. The
spectrum of H'™ was also treated in Ref. 4; reasonable, but
not completely satisfactory accuracy was obtained with
the techniques available at that time, the main limitation
being that meson states were available only for up to four
mesons. A recent paper’ has classified states with up to
six p-wave 7 mesons. The present work uses the results of
Ref. 7 to obtain results for weak and intermediate cou-
pling in the static model that are accurate enough to be
used in computations of the source-source pion potential,
for example. For strong coupling, the procedures given
first by Pauli and Dancoff® and developed further by Par-
mentola® can be used.

In addition to energy eigenvalues, the ground-state
wave function is important for determining the coupling-
constant renormalization. The present work shows that
the use of constraints can help to provide a better state
vector than is given by simply minimizing the expectation
value of the Hamiltonian.

II. PRELIMINARIES FOR Ai®

It is easy to get a lower bound on the spectrum of hin
by rewriting it in the form

h"=(4—Gp)'(4—Gp)—9G?, 2.1)

where pp=9 has been used. Thus —9G? is a lower
bound; it is also the correct ground-state energy to order
G2

From the commutation relation

[4,h"]=4—Gp 2.2)

it follows that the matrix elements of 4 —Gp are zero
within any eigenvector multiplet of 4™:

R iu)=¢ |iu) = (i,u|A—Gp|i,v)=0, (2.3)

where p and v run over the indices of the (2T +1)(2J+1)
substates of the (7,J) multiplet i. Note that 4 —Gp is
the internal operator associated with emission of an exter-
nal meson, so that (2.3) also expresses the fact that no
eigenstate of H'™ can emit or absorb an external meson
without simultaneously making a transition to an eigen-
state of H'™ belonging to a different eigenvalue of H'™.
This is the criterion that was used to determine the
internal-meson mode functions in the first place; it en-
sures that the meson field around any internal state is
correct through first order in the external meson field.

The coupling-constant renormalization constant zj,,
which depends on G, is defined in terms of the matrix ele-
ments of the operator p that involve only the ground state
|g) of hi™. Let |go) be the bare source state; then zj, is
given by
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(glplg)=zin{go|p|80)=2ip , (2.4)

and the renormalized coupling constants Gy and fy are
defined by

Gr=zinG ,
fR =zinzexf22inf )

where the fact that z., is close to unity has been used.
Since it follows from (1.2) that

_2fR2
47’

and fr2/4m is known to be 0.08, the coupling constant
Gy is reasonably well determined once the source func-
tion v is assumed to have a particular shape. For this
reason it is often useful to give the various quantities de-
rived from A'™ as functions of Gy rather than as func-
tions of G.

(2.5)

Grl=Isz,, (2.6)

III. METHODOLOGY FOR &'t

The term N state will be used to denote a state of the
source plus internal-mode pions that has isospin and spin
each T; a generic N state consists of components each of
which has a definite number n of internal-mode pions and
definite isospin T and angular momentum L for the pion
part of the N state. Since!® there are no internal-mode
pion states with (TL) equal to (01) or (10), the allowed
pion components of N states have (TL) equal to (00) and
(11). The internal-mode operator A4-A is invariant under
isospin and space rotations; it destroys an invariant pair
of internal-mode pions. An invariant-pair-free (IPF) state
of the internal-mode pions is one that satisfies

A-4| y=0. 3.1

Reference 7 lists all the IPF states with up to six pions for
a single p-wave pion mode and shows how to construct
states that contain invariant pairs from the IPF states.
From the tables in Ref. 7 it can be seen that there are
12 IPF N states and 23 N states with up to and including
six internal-mode pions. The parentage tables in the same

-2.6 T T T T T T
Ground—state energy of p"
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“2:8 I oEEP 1
= ECP1
-2.9 F .cepy A
ECP2 .
-
-3.0 ~ 4
3.1 :
-3.2 L | 1 L [ 1
000 005 00 0I5 020 025 030 035

1/n

FIG. 1. Ground-state energy computed with explicit pairs
(EEP), with one pair-coherence parameter (ECP1), and with two
pair-coherence parameters (ECP2) when the normalized cou-
pling constant G is 0.81476. The energy is plotted against the
number of states n used in the computation. i
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FIG. 2. Ground-state reduced matrix element of 4 —Gp for
the state computed with explicit pairs (EP state), with one pair-
coherence parameter (CP1 state), and with two pair-coherence
parameters (CP2 state) when the normalized coupling constant
G-is 0.81476. The value of the reduced matrix element is plot-
ted against the number of states » used in the computation.

reference make possible the construction and diagonaliza-
tion of the 23X23 matrix of 4™ in the subspace of these
23 explicit-pair (EP) N states; the lowest eigenvalue,
which will be denoted EEP, is an upper bound and a good
approximation to the lowest eigenvalue of 2™,

An alternate procedure uses coherent-meson-pair
(CMP) states.* For each n-pion IPF state |n,a), there is
a one-parameter family of CMP states | n,a,y ) that satis-
fies

A-A|n,ay)=y|nay); (3.2)
these states are given explicitly by
| n,a,p) =g9+z,,(yAT‘AT) |n,a),
(3.3)

i (v—=2)1 v

x
m=0 2"ml(v+2m —2)!

84(x)

Now the 12X 12 matrix of the Hamiltonian can be com-
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FIG. 3. Comparison of ground-state energies computed with
and without enforcing the constraint that the expectation value
of A —Gp be zero. In both cases one pair-coherence parameter
was used. The energy is plotted against the number of states n
used in the computation.
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FIG. 4. Comparison of renormalization constants computed
with and without enforcing the constraint that the expectation
value of 4 —Gp be zero. In both cases two pair-coherence pa-
rameters were used. The renormalization constant is plotted
against the number of states » used in the computation.

puted for the CMP states, with each state having its own
pair-coherence parameter y, and diagonalized to give the
eigenvalue spectrum. Finally, the coherence parameters
can be chosen so as to minimize the lowest eigenvalue of
this matrix. It turns out that it is sufficient to use only
one, the same for all the IPF states, or two, one for the
(00) states and one for the (11) states, coherence parame-
ters; the values of the lowest eigenvalues at the respective
minima will be denoted ECP1 and ECP2.

Figure 1 shows EEP, ECP1, and ECP2 plotted against
1/n for G=0.81476, which is the value of G that was
used in Refs. 4 and 5; n is the number of states used in
each calculation:

Maximum number of mesons 0 1 2 3 4 5 6
n for IPF states 1235 7 9 12

n for total states 1 2 4 7 11 16 23

(3.4)

0 T T T T

Ground-—state energy of Hp

-4

-8

FIG. 5. Ground state of H™ computed with two coherence .
parameters without constraint on the matrix element of 4 —Gp.

The number of coherent-pair states used in each computation is
n. The line at —3 is the strong-coupling-limit value of the
ground-state energy.
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FIG. 6. The renormalized coupling Gx as a function of the
unrenormalized coupling G.

From Fig. 1 it is clear that the coherent-pair calculation
produces better results with fewer states than the calcula-
tion with explicit pairs.

A check on the accuracy of the state vectors can be ob-
tained from the matrix elements of 4 —Gp, which, ac-
cording to (2.3), are zero within any eigenvector multiplet
of H™ All of the ground-N-state matrix elements of
A —Gp can be expressed in terms of a single reduced ma-
trix element by dividing each one by the corresponding
bare source matrix elements of the source operator p/3.
Figure 2 shows a plot of this reduced matrix element for
the ground state for the same three cases that were plotted
in Fig. 1. Again the superiority of the coherent-pair
method is evident.

Since the matrix elements of 4 —Gp are crucial for the
scattering calculation, in particular, the vanishing of ma-
trix elements of 4 —Gp within an exact eigenvector mul-
tiplet, a computational technique that ensures the vanish-
ing of the matrix elements of 4 —Gp within the ground-
N-state multiplet was also investigated. The basis for this
technique is the observation that (2.3) means that the
ground state of H'" is the state that minimizes the expec-
tation value of H'™ subject to the constraint that the expec-
tation value of A —Gp vanish. The minimization with the
constraint is performed by using the standard Lagrange

—20 | \
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—40 ! I L 1 1 1
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FIG. 7. Plot of E,/Gg? where E, is the ground-state energy
of h™, and Gy is the renormalized coupling.
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multiplier method, which requires many evaluations of
the lowest eigenvalue of corresponding 12X 12 or 2323
matrices and therefore was only applied to the coherent-
pair (12< 12) subspace. Figure 3 shows the unconstrained
energy ECP1 and its corresponding constrained value; the
constraint does not drastically affect the computed energy
while it, of course, significantly improves the computed
expectation value of 4 —Gp. The indicated improvement
in the state vector that is obtained by using the constraint
is also apparent in Fig. 4, which shows the renormaliza-
tion constant determined by the various methods. The
value obtained with the constraint differs from the uncon-
strained one; the explicit-pair calculation favors the con-
strained value of the renormalization constant.

The result of these various comparisons is that (1) the
best value of the energy is the one obtained with two
coherence parameters in an unconstrained computation,
and (2) the best values of parameters that depend on the
ground-state wave function, such as the renormalization
constant or the expectation value of the meson number
operator, are obtained by using two coherence parameters
in a calculation in which the matrix elements of 4 —Gp
are constrained to be zero within the ground-state multi-
plet.

In order to indicate how the calculations converge with
the number of pions, Fig. 5 shows the ground-state energy
of H, plotted against G for various values of n, the max-
imum number of 7 mesons in the state-vector com-
ponents; the energies were computed with two coherent-
pair parameters and without constraining the wave func-
tion. .

Excited states of the A'™ do contain invariant pairs, so
that a computation that uses just the CMP states based on
IPF states does not give good convergence for the excita-
tion energy of the first excited state of A'™. Various ways
of adding states with invariant pairs can be imagined; a
simple and effective method for adding such states is
based on the observation that the “derivative” CMP states

1
Cnaly) dy

| n,a,p,d)= n,a,y)

are easily seen to be orthogonal to all the states | m,B,y )

35 T T T T T T .
30 |- e
25 |

20

Gr

FIG. 8. The ratio of the expectation value n, of the pion
number operator in the ground state of H™ to Gg? plotted
against the renormalized coupling Gg.

3041

vy vs Gp

Gr

FIG. 9. The ratio of the pair-coherence parameter y to the
expectation value of the pion number operator in the ground
state of H'™, plotted against the renormalized coupling Gg.

and are normalized if the c,,(y) are chosen suitably.
Moreover, the derivative states |n,a,y,d) are not IPF
states, so that they are a simple set of states that can be
added to the variational subspace in order to introduce the
possibility of invariant-pair excitation. With the tech-
niques described in Ref. 4, it is straightforward to work
out the matrix elements that involve these derivative
states. When the derivative CMP states are included in
the computation, there are two CMP states for each IPF
state, and the sizes of all matrices are doubled.

IV. RESULTS FOR A"

The dependence of the renormalized coupling constant
Gpr on the unrenormalized one G is shown in Fig. 6, while
Fig. 7 displays E, /Gg?, where E, is the ground-state en-
ergy of h'". The Gy dependence of the expectation num-
ber of the pion number operator in the ground state of
H'™ is shown in Fig. 8, and Fig. 9 shows how the ratio of
the pair-coherence parameter y to the pion number expec-
tation varies with Gi. The derivative CMP states are
used in the computation of the excitation energy of the
first excited N state; Fig. 10 shows the results.

Excitation energy of 4

/ \ first excited state of hin

0.0 0.2 0.4 0.6 0.8 1.0
Gr

FIG. 10. The excitation energy of the first excited N state of
R
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V. SUMMARY

Various techniques for computing approximations to
the eigenvalues and eigenfunctions of the internal Hamil-
tonian A" of the pion static model in weak and intermedi-
ate coupling have been considered. The best methods uti-
lize coherent-meson-pair states and, when needed, also
derivative CMP states. The ground-state energy can be
computed accurately by an unconstrained matrix diago-
nalization, while the best ground-state wave function is
obtained in a matrix eigenvalue minimization over vectors
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constrained to satisfy a condition known to be fulfilled by
the exact ground-state wave function. The computation
of excitation energies requires the enlargement of the ma-
trix subspace; an appropriate set of derivative CMP states
has been shown to give adequate results.
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