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Symmetry-breaking patterns in left-right-symmetric models:
How to ensure natural flavor conservation and a soft CP violation
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A detailed analysis of the symmetry-breaking patterns in left-right-symmetric models is per-
formed, looking for a soft violation of CP and requiring the absence of Higgs-boson-induced flavor-
changing neutral currents in the light-Higgs-boson sector. The difficulties typical of pseudomanifest
left-right-symmetric theories in ensuring both properties are discussed. An alternative approach is
proposed in which the Weinberg-Salam projection of the left-right model is naturally flavor conserv-
ing and CP is spontaneously violated in the manner of Weinberg without effects of Kobayashi-
Maskawa phases.

I. GENERALITIES
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where gL ——g~ =gLz is required. It is an easy matter to
verify the well-known correspondence with the standard
Weinberg-Salam (WS) model at low energies (i.e., in the
limit of neglecting all right-handed effects) by identifying
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Left-right-symmetric models have been introduced
about ten years ago' as a natural extension of the standard
model, mainly in order to justify on physical grounds the
typical P-violating structure of weak interactions.

Starting from the gauge group G~z =—SU(2)L,
X SU(2)2t XU(1), one is led to assume an initial left-right
symmetry of the Lagrangian, by ascribing to the
spontaneous-symmetry-breaking mechanism of the local
gauge symmetry the natural basis of the maximal parity
violation at low energies. As a consequence, parity res-
toration is to be expected beyond the mass scale at which
the spontaneous breakdown is supposed to happen.

According to the L-R-symmetry requirements, quarks
(and similarly leptons) are symmetrically placed in left
and right doublets:
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where a = 1, . . . , X is the generation index, and the repre-
sentation content with respect to the gauge group is expli-
citly indicated.

Similarly, gauge vector bosons consist of two triplets
W~z =(3,1,0), W~z

—= (1,3,0), and a singlet 8"=—(1,1,1),
with covariant derivative

where g and g' are the two couplings appearing in the
usual analysis of the gauge group Gws =SU(2)1. XU(1)r.

Two kinds of problems are raised by an approach based
on an initial left-right symmetry. First, the agreement of
a similar model with the present status of the low-energy
phenomenology. This on general grounds involves the
specific structure of the neutral currents, to be
parametrized in a consistent way in terms of five parame-
ters, and more specifically concerns the "contamination"
coming from the right-handed counterpart: the present
limit of the 8'L-Rz mixing, derived using semileptonic
decay data in a very general framework, constrains a
realistic model based on GL~ and leads to a lo~er bound
on the M~ =—M~ mass scale.

R

The second order of problems is more strictly related to
the theoretical framework in which L-R models can be
developed. They involve (i) the possibility of ascribing not
only P violation but also CP violation to the same
spontaneous-symmetry-breaking mechanism, by requiring
both violations be regulated in a natural way by the typi-
cal ratio ML, /M~ which fixes the hierarchy of the mass
scale and (ii) the possibility of ensuring in a natural way
the suppression of flavor-changing neutral currents in
these models in which neutral-Higgs-boson interaction
terms proliferate because of the rich Higgs structure re-
quired by the larger group.

This latter problem has been examined in the past.
Here it will be analyzed more deeply, by paying particular
attention to the requirements that natural flavor conserva-
tion (NFC) imposes on the general structure of the
symmetry-breaking patterns of a L-R-symmetric theory.

The paper is organized as follows. In Sec. II the diffi-
culties arising in a minimal model of both manifest and
pseudomanifest L-R-symmetric theories are considered.
The different solutions to the symmetry-breaking-pattern
problem are analyzed in light of the effects of the intro-
duction of a further discrete symmetry in Sec. III. A real-
istic model is developed in Sec. IV, the conclusions being
drawn in Sec. V. Three appendixes contain the technical
details.
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II. A MINIMAL MODEL

The minimal Higgs content assuring a symmetry-
breaking pattern of the group GLR which gives mass to
the fermions, preserves only electromagnetic (EM) gauge
invariance, and breaks parity spontaneously, consists of
two kinds of Higgs multiplets, gL R and @. In particular
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(4)
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R
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doublets under SU(2)L and SU(2)R, respectively, uncou-
pled to quarks and leptons, are responsible for the first
stage of the symmetry breaking of GLR, whereas the

'
y(p) y(+) '

(p) (5)

doublet under both SU(2)L and SU(2)R, has the role of in-
ducing the final breaking [down to U(1)EM] and, at the
same time, it gives mass to the fermions through the Yu-
kawa Lagrangian (only quarks are considered here)

L,,=g.,r, peg~, +g.,r,~e gp, +H.c. , (6)

where a, P run on the different generations and
@=r2@*F2 [Altern. atively, the breaking can be realized
by two L-R-conjugate triplets EL(1,0, —, ) and b,R(0, 1,—', ),
which can couple to the leptons. However, no substantial
differences can be found as far as the general properties of
the symmetry-breaking patterns are concerned. ]

As it will be seen in Sec. III, the first stage of the sym-
metry breaking is properly realized by taking

0
(x, ) =0, (x„)=

the second stage of the symmetry-breaking pattern is,
along usual lines, dependent on the specific structure of
the most general quartic (renormalizable) Higgs potential
built up in terms of the fields XL,XR,+. In Appendix 8 a
detailed study is reported, whose results will be used here.

From the Yukawa Lagrangian (6) the mass matrices of
the quarks of given charges qu and qd are easily derived
in the form

where I i and I 2 are symmetrical matrices, real if the La-
grangian is supposed CP invariant.

The NFC requirements in the sector of neutral
currents (NC's) induced by the neutral bosons are satisfied
by L-R models. But problems arise in the sector of
Higgs-boson-induced NC. Let us discuss, by looking for a
spontaneous CP violation, the possibility of realizing NFC
in the present minimal model, by considering the Higgs-
boson-induced flavor-changing NC originated by direct
neutral Higgs exchange. Let U„L(R), Ud L(R) be the biuni-
tary transformations called to transform quarks of given
charge defined in the "weak basis" into mass eigenstates
("strong basis" )

(s) (w) (s) (w)9,L(R),L (R)q, L (R) Cd, L (R) Ud, L (R)qd, L (R) (10)

Uu L(R), Ud L(R) are required to satisfy

UuLMu UuR =Du ~ UdLMdDdR =Dd .

D„and Dd being the (not necessarily real) diagonal mass
matrices of u- and d-like quarks, respectively. [In order
to simplify the notation, we do not absorb extra phases
into the quark fields, so that Du, Dd do not necessarily
have positive eigenvalues and a further biunitary transfor-
mation involving diagonal unitary matrices will be, in

By allowing (N) to have the form

k 0
(8)

general, considered in order to get positive eigenvalues
(but the problem is irrelevant here). ]

The general structure of the piece of I.r which de-
scribes the coupling of the neutral Higgs bosons is easily
found

LF = 2, 2 Ig uL [Du(k $1 k Q2 )+UcLDd UcR( k 4'i +k/2 )]guR

+'VdL[Dd(kfi k 02 )+ U LD U R( k 0'i +k 02 )]CdR 1+ (12)

where

UcL {R) UuL {R) dL {R)

corresponds to the generalized Cabibbo mixing in the
L (R) sector.

Now, when the explicit form (8) of ((()) is considered, if
5 is the relative phase of k and k' (in the following,
without loss of generality k =h, k'=h'e' with h, h', 5
real parameters, since the features of the symmetry-
breaking pattern depend only on the relative phase 5), we

I

are faced with two possibilities.
(1) The relative phase 5 satisfies sin5=0 ( k and k' rela-

tively real). This is the case known in the literature as
manifest left-right symmetry (MLRS) characterized by
U,L ——U,R because of the assumed I- Rsymmetry of the-
Lagrangian. An inspection of the mass-squared matrix of
the neutral-Higgs-boson sector [partially diagonalized in
Eq. (B10)] shows that in the usual scheme of mass hierar-
chy required by the V —2 structure of the low-energy
phenomenology, i.e., U &&h,h', the Higgs-boson com-
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H„,= [h y,"„'—h (y",„'c,—y", , 's, )]/H (15)

which is a combination of heavy-mass Higgs bosons
(M -u ). Light and heavy Higgs bosons are not discon-
nected: the mixing angle, however, is very small
[tan28;, =(h —h' )/u ]. It follows that, to a good level
of approximation but not in an exact way, neutral light
Higgs bosons induce a diagonal NC and reproduce at the
SU(2)L XU(1) level the main features of NFC.

But this scheme does not allow for a spontaneous CP
violation. If CP is not a symmetry of the Lagrangian,
then in general the Yukawa coupling matrices I &, I 2 are
Hermitian, but not real. CP violation is "hard" and
takes place via the usual mechanism of Kobayashi-
Maskawa (KM). If conversely CP is a good symmetry at
the Lagrangian level, U,L and then U,~ can be made real.
The vacuum expectation values of the scalar fields are
also real and there is no viable mechanism inducing CP
violation spontaneously.

(2) The relative phase 5 of O and O' is different from
zero. We disregard the case in which I ~ and I 2 are not
real: as above, it leads to a "hard" CP violation, which
can be parametrized in the manner of Kobayashi-
Maskawa within a scheme of nonmanifest L-R symmetry
with a large number of unspecified parameters.

Let us consider then I ~, I 2 real and symmetric. It is
realized that the so-called pseudomanifest L-R symmetry,
where the two L and R Cabibbo matrices are not indepen-
dent, but related through

and M„,Md of Eq. (9) are symmetrical but not, in general,
Hermitian. A large amount of attention has been paid re-
cently to this kind of approach, the interest due to the
possibility of connecting CP violation to the quantity
(h/h')sin5, and then to the amount of WL-Wz mix-
ing. ' '" CP violation here can be described in a simple
way only in a four-quark approach, since in the (realistic)
case of three generations, two sources of CP violation can
be found, the first due to the interference between L and
R currents, the second one purely left-handed in character
and due to the KM structure of the mixing matrix,
without the possibility of obtaining definite predictions
concerning their relative importance (even though under
the rather arbitrary assumption that the KM mechanism
is not the main contribution to the well-known parameter
e of the E-K mixing an upper bound to M~ can be de-
rived. ")

The above description of CP violation is rather unsatis-
fying, at least from an aesthetical point of view, because
of' the appearance of the KM phase. But this is not the
main problem that pseudomanifest L -R symmetric
theories have to face. The analysis of the most general
Higgs-boson potential consistent with gauge and L-R

bination which induces diagonal couplings in
LP'(H =h +h', cs =—cos5, s5=—sin5)

Hd ——[hPP' h—'(P'2„'cs+ P'2 ss)]/H

is characterized by light mass [(mass) -h, h' ], whereas
nondiagonal couplings are induced by

symmetries shows that, if the two vacuum expectation
,values (VEV) are relatively complex (i.e., sin5&0), then
the minimum condition applied to the potential leads to
well-specified constraints involving VEV s and Higgs-
boson couplings. As shown in Appendix 8, this enlarges
the light Higgs-boson sector and introduces flavor-
changing NC induced by light Higgs bosons [(mass)
-h2, h' ]: therefore, the approach appears incompatible
with the requisite of NFC in the WS projection of a pseu-
domanifest L, -R-symmetric gauge theory.

Let us discuss the possibility of removing the above dif-
ficulty. It is obvious to discard the solution sin5=0
which clashes with the requirement of a spontaneous CP
violation induced by the relative phase of O and O'. The
possibility that also the coupling which induces the
flavor-changing contribution is diagonal must be equally
ruled out: from the structure of Eq. (12) it follows that the
condition being exactly what is required by a simultane-
ous diagonalizability of both M„and Md, it would imply
a meaningless Cabibbo mixing. The only way out is then
an approximate vanishing of the Higgs-boson coupling:
this has been analyzed by Gilman and Reno' for both
manifest and pseudomanifest theories. For both it is
shown that the s==d flavor-changing neutral-Higgs-boson
coupling cannot be made to vanish and, therefore, the
relevant neutral-Higgs-boson mass must be raised in the
multi-TeV region in order to avoid too large contributions
to AM~ and/or e. Even though the situation is a bit less
drastic in the pseudomanifest case because of the presence
of further (unknown) phases, whose value can be "adjust-
ed" in order to allow a smaller Higgs-boson coupling to
sd and ds (Ref. 11), it seems very difficult (and unattrac-
tive too) to force the scheme by demanding these phases
to preserve from the appearance of flavor-changing effects
induced by Higgs-bosons belonging to the mass scale of
the left-handed vector bosons.

We can conclude this section by noting that, even
though a minimal model may account for the main
features expected in a SU(2)L X SU(2)g XU(1) gauge
theory of the electroweak interactions (in particular it
gives mass to the fermions and breaks parity spontaneous-
ly), several problems are raised by the further require-
ments of spontaneous CP violation and natural flavor
conservation in the Higgs-boson sector. There are two
possibilities.

(i) NFC is accomplished to a good level of approxima-
tion in the light-Higgs-boson sector (small mixing among
light and heavy Higgs bosons, the light component being
flavor diagonal), but CP violation is "hard" in character
since it can be related only to a KM phase in the Lagrang-
ian. This is the typical situation of a manifest L-R-
symmetric approach.

(ii) Alternatively, CP violation can be connected to the
relative phases of O and O' in the expectation value (8).
Even if the three-generation case is rather involved, it is
reasonable, as shown by Chang, ' that the appearance of a
KM phase does not change the general feature of the
two-generation case, where CP violation is directly related
to the relative phases of O and O'. However sin5&0, re-
quired by a spontaneous CP violation, enlarges the light
Higgs-boson sector with uncontrollably large flavor-
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changing contributions which cannot agree with the re-
quirement of NFC in the light sector.

In both its versions, the. minimal model is rather un-
pleasant and characterized by either unspecified parame-
ters or specific constraints, with a general inadequacy to
satisfy NFC and spontaneous CP violation. In Sec. III
the possibility of circumventing these difficulties will be
analyzed.

III. A DISCRETE SYMMETRY

It is evident from the arguments of Sec. II that to en-
large the Higgs-boson structure by no means modifies the
conclusions, which are related to the difficulty of obtain-
ing at the same time NFC in the light sector and a clear
source of spontaneous CP violation. The difficulty, in
fact, resides in the symmetry-breaking pattern itself. Ac-
cording to the approach proposed in Ref. 6, we consider
here the effect of a further discrete symmetry imposed on

QnL~Q L C'~e'

Q e in—/2Q @ e i ~I2@—
(17)

D symmetry cannot be justified in the framework of the
gauge group GLR. But it could be the remnant of the
symmetry breaking of a larger unifying group.

The most general renormalizable Higgs-boson potential
compatible with gauge invariant. ce and the discrete I.-R
and D symmetries takes on the form

~D +(XL,R )+ I D(@)+I D(XL, R

where

(18)

the Lagrangian, whose effect is essentially to force each 4
Higgs boson to contribute to the mass matrix of specific
kinds of quark (u-like and d-like quarks). Let us assume
then the following invariance requirements (D-symmetry
requirements):

~(XL,R ) 8 (XLXL +XRXR ) + 4 pl(XLXL +XRXR ) g p2(XLXL XRXR )

VD(4) = —pi Tr(N @)+—,
'

A, I[Tr(@f4)] ++A2[Tr(4 C&)+Tr(@ @)] ++A3[Tr(i'~@)—Tr(@ @)] (19)

+D(XL,R~@) ill[ r(@ C )](XLXL+XRXR)+i22(XL@@XL+XR@ CXR )

(Properties related to the structure of 4 have been taken into account in order to simplify the general structure of the po-
tential. )

First step of the symmetry-breaking pattern

This is related to the vacuum expectation values of XL and XR. By assuming

0 0(XL)=, (XR)=

and disregarding the trivial solution vL
——v~ ——0, which would correspond to an unbroken gauge symmetry without any

Higgs-boson mechanism at work, we have three possible solutions to the symmetry-breaking-pattern problem:

(I a) UL
——UR, symmetric solution with residual L-R symmetry.

UL and UR+0
(Ib)

UI. VR
partially asymmetric solution, I.-R symmetry is broken.

VI =0
(Ic) 0

' totally asymmetric solution, with total breakdown of L Rsymmetry. -
VR

The above solutions, analyzed in terms of the gauge
hierarchy problem, correspond to (Ia) no hierarchy, (Ib)
finite hierarchy, and (I c) infinite hierarchy, respectively, a
possible parametrization being the ratio of the masses of
the gauge bosons associated with the I. and R parts of the
gauge group. It has been stressed that no freedom is
left to arrange for a finite hierarchy [solution (Ib)] at the
tree level, the transition region separating the two remain-
ing solutions not being smoothed by inserting radiative
corrections in the manner of Coleman and Weinberg'
that leave intact the form of the phase transition.

More generally it can be shown that both solutions (I a)
and (Ib) have to be ruled out on the basis of the appear-
ance of a number of massless Higgs-bosons larger than
that required in order to give mass to R and I. gauge bo-

sons. According to the detailed analysis of the extremum
conditions and Higgs-boson masses performed in Appen-
dix A,

UR&0, It follows that p2(UL —UR ) =0,

so that the partially asymmetric solution (Ib) either goes
into (Ia) or implies p2 ——0. The latter represents a very
restrictive condition on the Higgs-boson potential whose
symmetry is in fact enlarged to SU(4), with the appear-
ance of two more massless Higgs bosons induced by the
breaking of the larger symmetry, not reabsorbed by the
gauge vector bosons through the Higgs-boson mechanism.

We are led then to discard solution (Ib), corresponding
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to the partially asymmetric solution. But a similar situa-
tion happens also in the case of the symmetric solution
(Ia): as shown in Appendix A, independent of the specific
choice concerning the symmetry breaking induced by
(@),a further neutral massless Higgs boson appears, not
"eaten" by the massive neutral vector bosons. Also in this
case the approach is characterized by a symmetry larger
than that of the gauge group Gl&. it corresponds to

SU(2)L, XSU(2)g XU(1)L, XU(1)g

[further enlarged if p2 ——0 is assumed, as required by the
partially asymmetric solution (Ib) discussed above] whose
generators, with usual notations, are given by II [z~, IL ~~~,
and FL~~~. A symmetry-breaking pattern corresponding
to both UL and Uz different from zero breaks both U(1)L
and U(1)~ separately [and not only U(1)1.+~ which de-
scribes the gauged U(1)]. It follows that an extra massless
Higgs boson, which cannot be "eaten" by massive gauge
bosons, will be present at the end of the symmetry-
breaking mechanism, this independent of the specific
form of the second stage of the symmetry breaking itself.

Even though physical Goldstone particles have been
often called upon to play a physical role in the literature,
we are led to discard both solutions (Ia) and (Ib), which
do not seem to satisfy phenomenological requirements,
and lead to instability of the residual symmetry. '

Let us, therefore, select solution (Ic), corresponding to
the total asymmetric solution vL

——0, u~ ——u&0, as that

evading the unwanted massless Higgs boson in the theory
and satisfying the physical requirements of a maximal
breakdown of the I.-R symmetry. The problem raised by
the infinite hierarchy' is solved in a realistic approach
which involves N Higgs bosons, responsible to the second
stage of the symmetry breaking.

It is worth noting that D symmetry is not relevant in
the analysis of the first stage of the symmetry-breaking
pattern: it merely simplifies the form of the potential
(and then the calculations). What is relevant is the as-
sumed I -R symmetry, maximally broken by the assumed
solution.

The second stage of the symmetry-breaking pattern

According to the arguments developed above, let us as-
sume the first stage of the symmetry-breaking pattern sat-
isfies the stability conditions leading to the select solution
(Ic), corresponding to the totally asymmetric solution
Ul ——0, u~ ——u&0. Our attention is now turned to the
second stage of the symmetry breaking, from SU(2)I
XU(1) down to U(l)EM, under the effect of the D sym-
metry displayed at the beginning of this section. The de-
tails of the analysis are reported in Appendix A, where ex-
tremum conditions and Higgs-boson masses are explicitly
calculated.

In a way rather similar to that adopted in the above
analysis of the first stage of the symmetry breaking, we
may distinguish three different symmetry-breaking pat-
terns, corresponding to

(11a) k =O'WO, symmetric solution.

(IIb) &,&'WO, k&k', partially asymmetric solution.

(IIc) k&0, k'=0 (or vice versa), totally asymmetric solution .

(23)

It can be shown that (II a) is a particular case of (IIb),
obtained in the limit a2 ——0 in the potential VD(gl. ~,N) of
Eq. (19): no phase transition is present going from (II a)
to (II b) and the two cases can be analyzed together.

In the analysis of the solution (IIb), it is easily seen that
the effect of the D symmetry is to force 5, the relative
phase of k and k', to satisfy either of the following:

(i) sin5=0,

(il) cos5 =0 .
(24)

Alternative (i) corresponds to Hermitian mass matrices
M„and Md, characteristic of a manifest L -R symmetry.
If CP is supposed a good symmetry at the Lagrangian lev-
el, violated only because of the spontaneous symmetry
breaking characterizing the theory (spontaneous CP viola-
tion), then M„and Mq become real and symmetric
without any viable mechanism of CP violation.

Alternative (ii), conversely, describes a pseudomanifest
I.-R symmetry, with k and k' relatively complex: even if
the Lagrangian is CP invariant, the two mass matrices
M„and Md are complex (and symmetric), but not, in gen-
eral, Hermitian, and the relative phase 6 can be called to

I

produce the desired CP-violating effect in the theory.
The two solutions above do not correspond to the only

possible value of the phase 5. A third possibility is open,
6 arbitrary but

(25)

in the potential VD(@) of Eq. (19). Condition (iii) intro-.
duces in the potential a rotational invariance which elim-
inates the 5 dependence: this however enlarges the sym-
metry of the Lagrangian and leads to a further massless
Higgs boson (besides the would-be-Goldstone bosons due
to the spontaneous breakdown of the gauge symmetry).
According to the general attitude adopted in the analysis
of the first stage of symmetry breaking, alternative (iii)
will be disregarded.

The two alternatives (i) and (ii) of Eq. (24) can be treat-
ed together. In Appendix A the mass-squared matrices of
charged and neutral Higgs bosons are derived and diago-
nalized, in order to obtain the mass-squared eigenstates
(only a partial diagonalization is performed in the case of
the neutral Higgs bosons). From the analysis of the
mass-squared matrices (A27), (A28), (A29), and (A30) of
Appendix A the foBowing statements can be made.

(a) Of the two pairs of charge-conjugate massive Higgs
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bosons, one, XL
—', uncoupled to the quarks, is heavy. The

other one, however, given by the combination
[T2 ~2U2+(g2 Ii

i 2)2 ~2 Ii2+g12]

[(g2 I i 2)X(+)+U(p y(+)+gi&+isy(+))]
T

(26)

i.e., dominated, in the limit U »h, h', by P'i ', ()) z
—', which

are coupled to the quarks, has a light mass squared [given
by M =az(h —h' ) —II (A2cs —i(,ps ), where either
cs=O or ss=O must be taken] so that effects of transi-
tions operated by a light charged Higgs boson are to be
expected in the theory.

(b) Neutral Higgs bosons consist (apart from the two
would-be-Goldstone bosons of the theory) of six physical
particles: two of them, XL,

" and XL„', uncoupled to the
quarks, are heavy, the combination ( H =h +h' )

H3 =—[h 'Pi —Ii (csP'z —ssg2„') ]/H (27)

has light mass squared [see Eq. (A31)]

M~ ———(A~+A3)(h +h' )(cs —ss ) . (28)

Of the remaining three Higgs, two are light and weakly
mixed to the heavy "quasieigenstate" X~,'. More precise-
ly, H~ and H~ given by Eqs. (14) and (1S), respectively,
correspond to the combinations

Hg ——(hHi —h'H2)/H,

H~ ——(hH2 —h 'H
i )cs /H ssH3, —

(29)

(30)

where H( and H2 are combinations of light eigenstates,

weakly mixed with X~„' [the mass-squared matrix M~ ' of
XP,', Xz„', H), and H2 is given in (A29)]. It follows that,
in both cases (i) and (ii) of Eq. (24), flavor-changing NC s
induced by light-Higgs-boson combinations are present in
the theory and cannot be avoided. Moreover, also in the
case of a further, rather arbitrary, mass hierarchy h »h'
(or vice versa), flavor-changing NC's cannot be
suppressed, the only effect being, in the ss=O case, of
varying the relative importance of Hi and Hz in inducing
nondiagonal transitions. In conclusion, NFC cannot be
ensured in the light-Higgs-boson sector, unless specific
(and quite arbitrary) fine-tuning of the parameters appear-
ing 'in the Higgs-boson potential is per'formed.

Let us consider now the ca'se (II c), in which only one of
the complex neutral Higgs bosons in 4, say (()'( ', develops
a nonzero vacuum expectation value, i.e.,

(@)=diag(k, O) . (31)

According to the mass-squared matrix (A36) all mas-
sive charged Higgs bosons are now heavy in the scheme
u»h=

~

k ~. As far as neutral Higgs bosons are con-
cerned, Xi(; and Pi; play the role of would-be-Goldstone(o) (o)

bosons ("eaten" by the neutral gauge vector bosons) and
XI;, Xl„, (I)2;; P2, are mass-squared eigenstates of large(o) (o) (o) (o)

mass [see Eq. (A38)]. The two remaining Higgs bosons,
Xz„' and (I)'i„, whose mass-squared matrix is given by
(A39), are "quasieigenstates" weakly mixed, the former
heavy and the latter light. Being in this case

(o) (o)~d =air i ~ad =02r (32)

the only light neutral Higgs boson is strictly flavor diago-
nal and weakIy mixed with a heavy Higgs boson uncou-
pled to the quarks. Conversely, flavor-changing NC's are
induced by a heavy Higgs boson [M ((()z„')=a2U +A2h ]
and are suppressed to the same extent as right-handed
currents are suppressed too. It is worthwhile to note that
the above symmetry-breaking pattern realizes exactly the
features of the minimal WS model in the light-Higgs-
boson sector: only a neutral Higgs-boson doublet partici-
pates to the play, one component "eaten" by the neutral
(light) gauge vector boson, the other component, the only
physical Higgs boson, being flavor diagonal. No charged
light Higgs bosons are present, the remaining rich Higgs-
boson structure involved by the enlarged gauge symmetry
being confined to the larger mass typical of the right-
handed vector bosons.

A first-order phase transition then takes place, with a
discontinuous variation of the state of the physical sys-
tem: the symmetry-breaking pattern characterized by
(4)—:diag(k, O) cannot be obtained as the limit for k' —+0
of the symmetry-breaking pattern in which (4& )
—:diag(k,k'), and the two symmetry-breaking patterns
give rise to a different physics. Qnly the former realizes
NFC in the light sector and does not admit light charged
Higgs bosons, i.e., in reproducing the main features of the
WS model, it agrees with the present status of the "low-
energy" phenomenology, in which flavor-changing NC's
are highly suppressed and evidence of light charged Higgs
bosons is still lacking.

A further argument in favor of the totally asymmetric
solution (IIc) comes from the analysis of the different
solutions in terms of the parameters entering the Higgs-
boson potential. As is well known, they represent free pa-
rameters, subjected only to the requirement of renormal-
izability of the theory. However, they are, in general, con-
strained by the minimization conditions. It seems reason-
able to argue that the most general solution corresponds
to that solution which leads to less severe restrictions on
the parameters. The comparison of the symmetry-
breaking patterns analyzed before (without loss of general-
ity let us assume s~ ——0: the case c~ ——0 is obtained by in-
terchanging the role of A2 and —A3), can be performed by
considering the regions in the parameter space allowed by
the different solutions. In principle, we have to do with a
large number of parameters, as it can be seen from the
general expression of the Higgs-boson potential [Eqs. (18)
and (19)]. However, only two of them are relevant to our
purposes, a2 and A,2, since the restrictions imposed by the
minimization conditions do not differ in a sensitive way
for all the other parameters involved. In the case of solu-
tion (IIc), corresponding to k'=0, the allowed region in
the plane (a2, Aq) is represented in Fig. 1 by the shaded
area, delimited by the kz positive semiaxis and the straight
line a2U +A,2h =0. Conversely, solution (IIb) is allowed
only on the points of the straight line a 2()
+A,2(h —h' )=0 belonging to the half-plane A,@&0, the
two solutions being disconnected.

It is worthwhile to observe that in the limit u &~h the
dashed area is maximal and tends to the half-plane a2 & 0,
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whereas the straight line corresponding to the region al-
lowed in case (IIb) goes into the negative A,z semiaxis
which, on the other hand, corresponds to the allowed re-
gion in case (II a), i.e., k =k'.

We can conclude that the totally asymmetric solution
of the symmetry-breaking-pattern problem not only en-
sures the absence of flavor-changing NC induced by light
Higgs bosons, but also represents the solution compatible

. with the largest generality of the parameters of the poten-
tial, as a result of the minimization problem.

IV. A REALISTIC MODEL

e tm/2q) @ e —g m/2@

the most general Yukawa coupling takes on the form

(34)

FKx. l. Comparison of the allowed regions in the parameter
subspace corresponding to the plane (a2, A, 2) of the two solutions
to the symmetry-breaking-pattern problem. The dashed area is
the allowed region of the totally asymmetric solution {IIc),
whereas only the points belonging to the straight line
a2v +A,2{h —h' )=0 are allowed in the case of the partially
asymmetric solution {IIb).

On the basis of the arguments developed in the above
sections, it follows that the totally asymmetric solutions
are to be preferred on physical grounds, as far as both the
two stages of the symmetry-breaking pattern are con-
cerned.

However, the totally asymmetric solution is not able to
give mass to both u-like and d-like quarks in a minimal
version of the model, i.e., when only a @ Higgs boson is
present. Moreover, if the Higgs-boson structure is not en-
riched, a spontaneous CP violation cannot take place. A
minimal version in which all quarks take mass requires
two N Higgs bosons

'y(o) y(+)
' 'q(0) y(+)

'
.

@1= ~( —) x(0), ~ @2= .(.( —) y.(0) (33)
.9'2 P2

transforming in an opposite way under D symmetry

Lz =Q L, l ) +)Qp~+Q L,I z @zQpz(+H. c.aP aP

so that the mass matrices (9) become now

(35)

m„=k, r, , m„=k2'r2, (36)

in terms of the totally asymmetric solution to the
symmetry-breaking-pattern problem

(e, ) =diag(k(, 0), (ez) =diag(kz, O) . (37)

If the Lagrangian is supposed CP invariant, I ) and I z are
real and symmetric matrices and the transition from the
"weak" to the "strong" quark basis can be expressed in
terms of biorthogonal transformations 0„, Od (with
O„I ——O„z(, Odl ——Odz( because of the L R-symmetry), in
terms of which the mass matrices can be diagonalized.
The phases coming from the, in general, complex values
of k) and kz can be reabsorbed through a redefinition of
the physical fields.

Generalized Cabibbo mixing is then realized through an
orthogonal matrix O, =O„Od, and there is no KM CP-
violating phases, either in the left or in the right sector.
CP cannot be violated in the. manner of Kobayashi-
Maskawa, and a mechanism like that of Weinberg, ' re-
quiring at least three @ Higgs bosons, appears as the only
possible source of CP violation. A detailed analysis of
the mechanism of CP violation in this approach, and of
its physical implications, will be given elsewhere. '

Despite the fact that adding a second 4 Higgs boson
makes more cumbersome the analysis of the correspond-
ing Higgs-boson potential, the main aspects of the totally
asymmetric solution analyzed in the. above section are
maintained. Moreover, now all quarks take mass through
the symmetry-breaking mechanism. In Appendix C some
detail of the features of the model are reported. From the
analysis of the most general renormalizable Higgs-boson
potential [it consists of 22 terms and is given in Eqs. (Cl)
and (C2)j these statements follow.

(1) The extremum conditions require all phases to be
zero, and, in a way similar to that considered at the end of
Sec. III, the most general solution compatible with the pa-
rameters entering the potential corresponds to the totally
asymmetric solution (37). A more accurate analysis will
be performed dsewhere it will be seen that a third
Higgs boson 43, uncoupled to the quarks, is required in
order to have solutions leading to a spontaneous CP viola-
tion. )

(2) The mass-squared matrices of the neutral Higgs bo-
sons are given by Eqs. (C5), (C6), and (C7). All physical
Higgs bosons belonging to the light mass scale (M -k )
are expressed in terms of P'( and PI (neglecting the
small mixing with components uncoupled to the quarks),
whereas all other eigenstates have large mass-squared
-U, in particular those expressed as combinations of Pz

'

and y,").
(3) The above masses realize NFC in the light Higgs-

boson sector, in this way reproducing the typical situation
of the WS model, even though not in its minimal version,
since two light doublets are present. By extracting from
L~ of Eq. (35) the single terms corresponding to Higgs-
boson-induced NC's, it is easily seen that NC's induced by
(t)') ',PI

' are diagonal:
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—(w) (w) (0} —(s) (s) (0)q.L~lquR 41 =q.LD.q.R41 /kl,
—(w} (w) (0)+ —(s) (s) (0)e e
q dL ~2qdR 41 'q dLDdqdR41 /k2

and those induced by pz
' and $2

' are nondiagonal:

'q dL ~lqdR 0'2 'q dL D qdR02 /kl—(w) (w) (0) —(s) T (s) (0)

(38)

V. CONCLUSION

If L -R symmetry is a good approach to weak-
interaction physics, in the appealing picture of justifying
through the spontaneous breakdown of the gauge symme-
try the appearance of a maximal effect of parity violation
in weak interactions at "low" energies, then a considerable
relevance is played by the specific pattern of the symme-
try breaking, because of the different physical effects
which follow.

In particular, it is of interest to enlarge the effect of the
spontaneous breakdown of the gauge symmetry in such a
way of including also CP violation within the physical
consequences of this peculiar mechanism: it becomes the
natural source of all the violation effects, starting from a
highly symmetric Lagrangian. Furthermore, if realized,
this allows to avoid the well-known difficulties related to
a hard CP violation.

At the same time, in order to reproduce the "low"-
energy physics well described within the SU(2)L)&U(1)2
features of the WS model, a peculiar character has to be
required, known as "natural flavor conservation, " i.e., the
absence of flavor-changing neutral currents, which are ex-
perimentally suppressed at least to the order +GAL. This
requirement, because of the structure itself of the theory,
cannot be satisfied in a rigorous way: Higgs-boson-
induced flavor-changing NC cannot be avoided without
spoiling the meaning of the generalized Cabibbo mixing. '

But, from a less restrictive point of view, it can be reason-
ably required that NFC is realized in the "light" Higgs
boson sector: the %S projection of the L-R-symmetric
theory is then flavor conserving, and flavor-changing
NC's are naturally suppressed, the typical parameter regu-
lating this suppression being the ratio (ML/MR), which
operates the suppression of right-handed currents.

In light of the above arguments, NFC in the light sector
and a spontaneous violation of CP are assumed as guiding
principles in the analysis of the symmetry-breaking pat-
terns of an L-R symmetric gauge theory.

—(w) (w) (0)e —(s) (0) )yc ayeq.LI'2q R02 q L Dd 'q R42 /k2

where 0, =O„Od is the generalized Cabibbo mixing. It
follows that, as required, flavor-changing NC's are
suppressed to the same extent as right-handed currents are
suppressed too.

It is worthwhile to note that, by deriving along usual
methods the mass matrices of charged and neutral vector
bosons, the above approach leads to disconnecting CP
violation from the JYL-8'R mixing, which is absent when
the totally asymmetric solution (37) is adopted: WL and
W~ are mass eigenstates, in agreement with the limits de-
rived from the present estimates of the mixing effects in
the weak-interaction data.

A possible source of spontaneous CP violation can be
found in a pseudomanifest L-R-symmetric theory, by as-
cribing it to the relative phase 5 of k and k' in the expec-
tation value of N (Refs. 10 and 11). But it was shown in
Sec. II that this leads to flavor-changing contributions in
the "light" Higgs-boson sector, in disagreement with the
NFC requirement stated above.

The phase 5 can be constrained to assume specific
values by imposing to the Lagrangian a further discrete
symmetry, given as D symmetry in Sec. III, which forces
the relative phase between k and k' to assume only trivial
values. Once D symmetry is applied, then, as has been
shown in Sec. III, the only solution of the symmetry-
breaking pattern problem which ensures NFC corresponds
to the totally asymmetric solution. A first-order phase
transition takes place [so that solution (31) cannot be de-
rived in the limit k ~0 from solution (8)] and an analysis
in terms of the parameters appearing in the Higgs-boson
potential shows that the solution ensuring NFC is, at the
same time, the most general solution when represented in
the parameter space.

A realistic model based on the above approach requires
however that all quarks take their mass from the spon-
taneous symmetry-breaking mechanism, the same mecha-
nism being responsible of the CP violation. Both argu-
ments lead to an enlargement of the Higgs-boson content:
at least two 4 Higgs bosons are to be introduced in order
to give mass to u-like and d-like quarks, and a third
Higgs boson, uncoupled to the quarks, allows us to
select ' CP-violating solutions in the manner of Wein-
berg.

The approach then ensures in a natural way, without re-
cursion to fine-tuning of parameters, (i) the absence of
Higgs-boson-induced flavor-changing NC, suppressed to
the same degree of suppression which characterizes right-
handed currents; (ii) the absence of WL-WR mixing, in
agreement with the present limits deduced from the exper-
imental data; (iii) a source of spontaneous CP violation,
mainly related to b,S='2 transitions with a strong
suppression of b.S=1 contributions, which satisfies the
Sanda-Deshpande argument, ' is superweak in character
(being e'/e ~ 10 ), and appears as the first "palpable" in-
direct evidence of right-handed-current effects. 5'7

APPENDIX A: EXTREMUM CONDITIONS AND
HIGGS-BOSON MASSES ( D SYMMETRY ASSUMED)

Here the technical details related to the discussion of
Sec. III are reported. Extrernum conditions 'and corre-
sponding mass-squared matri'ces of charged and neutral
Higgs bosons are derived under the assumption that a
discrete symmetry D, given by Eq. (17), characterizes the
problem.

We start then from the Higgs-boson potential (18) and
(19) and take for the VEV's (XL), (XR), (@) the general
forms (20) and (8), respectively. Without any loss of gen-
erality, we can assume k=h, k'=h'e' with h, h', 5 real
parameters, since only the relative phase between k and k'
is relevant. Since no dependence on the phases of UL and
U~ is present, they can both be taken as real parameters. —

The extremum conditions read ( cs =cos5, ss ——sin5)



3028 D. COCOLICCHIO AND G. L. FOGLI 32

=VL[ —p + , p)(—VL +VR') —,p—2(uL +UR')+a)(h'+h')+a2h ]=0,
aUL,

(A 1)

P +YP)(UL +VR )+ zp2(UL +VR )+al(" +I) . )+a2I1 ]=0 y (A2)

aI
=h[ p—( +a((uL +vR )+A((I1, +I)' )+ll' (A2cs A—3ss )]=0,

Bh'
=h'[ —p) +a1(vI +vR )+a2(uL +vR )+A)(h +h' )+h (A2cs A3s—s )]=0,

av~ 2 2=
5

= —h h' (A2+A3)cs ss =0 .

(A3)

(A4)

(A5)

The above conditions induce well-defined constraints on
the parameters, depending on the specific choice of the
symmetry-breaking pattern. Let us consider the case
UL&0, UR&0: from (Al) and (A2) it follows that

a, (vL +UR )+(A2cs A,,s—s )(h' h' —)=0,
(A2+A3)csss =0, (A9)

UL +0
~0 p2(UL VR ) 02 2—

so that we have either (compare with Sec. III)

(A6)
the two conditions on the right to be simultaneously satis-
fied. The former imposes a specific constraint on the pa-
rameters, which will be discussed later. The latter relation
leads us to select one of the following possible cases:

(i) cs=O, (A10)

or

(Ia) UL
——UR&0, (A7) (ii) ss=O,

(111) A, 2+A3 —0 .

(A 1 1)

(A12)

(Ib) UL&0, UR&0, UL&VR, but p2
——0 . (AS)

Further restrictions come from the relations (A3), (A4),
and (A5). Let us assume h&0, h'&0. It is easily derived

The two solutions (I a) and (Ib) given in (A7) and (AS),
respectively, can be discussed together, by applying the re-
striction (A6) to the elements of the Higgs-boson mass-
squared matrices. As far as charged Higgs bosons are
concerned, we find the (Hermitian) mass-squared matrix

y(+ )

a2(h —h' )

R

0
a2(h —h' )

y(+ )

Q2UL A e

a2Ug h
—a2VL —/l (A2cs —A, 3ss )

2 2 2 2

CX2UI h

u,U~h'e'
—hh '()(,2cs i A3ss )— ,

a2VL —Il ()(,2C s —A 3$s ) ~

(A13)

where, in case (I a), vI ——uR must be taken.
Whichever of the conditions (A10)—(A12) is applied, i.e., independently of the second step of the symmetry-breaking

pattern, we find two pairs of charge-conjugate massless charged Higgs bosons (exactly those required in order to give
mass to the charged gauge bosons 8'L—R). They can be evidenced by applying successively to the above mass-squared
matrix M~+—' the two unitary transformations

H UL, h'
H~' H~

0
Ul

0

0 0
(A14)

h'a'
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2hh' e'sZT'
H.
T

0
T

U'=

UL
2hh' e ' 0-hS

0
hh' HUR

2(h2 hiz) u eis (h2 hiz) 0
AST ST

0

S
T

(A15)

where

~2 hz+hi2 gz H2+u 2 gzgz H2u zgz+4hzhizu 2 T2 gz+(h2 hiz)2

It is easy to find

U'Um(+-"U+ U'+ =8

0 0

az(h —h' 2) 1+
S

0

0

0
2

UL T—2CK2hh UL UR e
HhS

0
2 2

az(h —h' ) +H (A,zcs —A, 3ss )
2 I2 L 2 2 2

H S

(A16)

The dependence on uL, uR, h, h' is rather involved. In the physically most interesting case uR »h, h', uL (and eventually
h, h' »uL ) the submatrix corresponding to the two massive Higgs bosons takes on the form

r

2

az(h —h' ) 1+
H

U

2Q;2hh' e
H

2

az('h —h' ) H(Azcs —k3ss )
2, 2 L 2 2 2

H

(A17)

which describes two light [(mass) -h, h' ] charged Higgs bosons.
I.et us now consider the mass terms of the neutral Higgs bosons: after some standard algebra one finds

M (XL,")=0, M (XRi~) =0,
the (symmetric) mass-squared matrix of the remaining Higgs boson being given by

(A18)

(0) (0) (0)
Lr +Rr

(pl P2)uL (Pl +P2)uL uR 2aluL h

(P1 —pz)uR 2a (uR"

2kih

y(0)

2(a1+az) uL h 'cs

2(a(+ az)uR h 'cs

2(A, , +Az)hh'cs
2A, (h

' cs + (A 2+k 3)h cs

y(0)

0
0
0

—(Az+A3)hh'ss
(A,z+ A, 3)h

' (ss cs )—

y(0)

(a(+az)uLh ss
2(a, +a, )u„h's,
2(A, 1

—A, 3)hh 'ss

2A, (h sscs
—(A,z+ A,3)hh 'cs

27(.)h' ss (Az+A3)h c—s

(0)
+Lr

(0)
+Rr
y(0)

y(0)

y(0)

y(0)

(A19)

A separation into two disjoint sets can be obtained through a rotation Os acting on the components of Pz '.

~(0)2
I

(p, pz)uL (p1+pz)u—LuR 2a,uLh 2(a(+ az)uLh'

(p1 —pz)uR 2a(uR h 2(a1+az)uR h

2A, ,h
2 2hh '(A, , +A,zcs —&3ss )

2A, ih

(A20)

—h' (Az+A3)(cs —ss ) hh'(Az+A3)(cs —ss )—
(0)2

2 —h' (Az+A3)(cs —ss )
(A21)
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MH' exhibits a further massless Higgs boson in both cases (i) and (ii) of Eqs. (A10) and (Al 1), whereas case (iii) of Eq.
(A12) implies two massless Higgs bosons. We are led to disregard this last case, —A,q

——A, 3, which introduces a further
symmetry in the Higgs-boson potential and an excess of massless Higgs bosons. The relative phase of k and k is then
constrained, this being the effect of imposing D symmetry, to take on the trivial values corresponding to either cs =0 or
sg ——0.

As far as MH' is concerned, it can be rotated through the matrix ( V =vL +u~ )
1

1 0
0

u)t/V —uL /V 0 0

vI /V uz/V 0 0

0 0
0 0

(A22)

By applying condition (A6), it follows that

—4p2UL UR / V 0 0

Op.M~ Oy =
p(V 2a(h V 2(a(+a2)h'V

21(h 2hh'(A, )+A,2cs —A, 3$$ )

2X)h'

(A23)

with evidence of a further massless Higgs boson in the partially asymmetric case (Ib) of Eq. (A8).
In conclusion, as discussed in Sec. III, in cases (la) (symmetric solution: ul ——vR&0) and (Ib) (partially asymmetric

solution: uL &0, u~&0, vl &ug, but p2
——0) we find three and four massless Higgs bosons, respectively, i.e., in both cases

more massless Higgs bosons than those required by the gauge symmetry breaking. Moreover, because of the D symme-

try, the relative phase 5 between k and k is restricted to the trivial values required by either cs =0 or $s =0, if the possi-
bility Az+k3 ——0, which introduces a further massless Higgs boson into play, is excluded.

I.et us discuss now the totally asymmetric solution:

(Ie) vL =0, vg =v+0, (A24)

where the alternative choice ui &0, u~ ——0, leading to similar conclusions, is evidently discarded on physical grounds.
I.et us assume h&0, h &0, corresponding to Eq. (A9) and characterized by the three possible eases listed as (i), (ii), and
(iii) in Eqs. (A10)—(A12). The (Hermitian) mass-squared matrix of the charged Higgs-boson sector is now given by

(+)2

+(+)
L

p2u +a2(h —h' )

&(+)
R

0
a2(h —h' )

y(+)

0
a2Uh

—h (A,2cs —A, 3$s )

y(+ )

0
n2Uh'e"

—hh '(A2cs i A3$s)— ,

—h' (A,pcs2 —A, 3$s )

g( —)

+R
y( —)

y(
—)

(A25)

It can be diagonalized through the unitary matrix [now II =h +h' and T =H u +(h —h' ) ]

U"=

0

Q 0

0 0
h —h' h h —h' h'

T H T H
h'
H'

(A26)

h —h'
0 T

h
U T

U e

with the resulting diagonal mass-squared matrix

p2v +a2(h —h' ) 0 0 Q

Uii~(+ )2 Ut t+
H

0 0
0

0
0

a2(h —h' ) H(A2cs 'i(3$—s ), —,

(A27)
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In the usual scheme v »h, h', one of the massive Higgs bosons is heavy, the other one light, whereas both the two mas-
sive Higgs bosons were light in the previous cases (I a) and (I b) [compare with matrix (A17)].

Going to the neutral Higgs bos'ons, we have

M (X'r,")=p2v, M (Xz ) =0 . (A28)

The (symmetric) mass-squared matrix of the remaining Higgs bosons can be made block diagonal, as in the case of ma-
trix (A19), through the same rotation Os. the two disjoint sets of Higgs bosons correspond to

(0)2M~ I

p2v 0

piv 2aivh 2(ai+a2)vh'

2A, (h 2hh'(A, (+A2cs —A3ss )

2i, ih'

(A29)

(0)2M~
—h' (A2+A3)(cs ss—) hh—'(Az+A3)(cs ss—)

—h (X2+A3)(cs ss —)
(A30)

MIr' is identical to the matrix (A21) obtained above

[cases (I a) and (Ib)] and leads to the same conclusions: if
solution (iii) is excluded (two massless Higgs bosons from
Mrr

' ), then we have one massless Higgs boson if either

c~ ——0 or s~ ——0. The other mass eigenstate has light mass

x(+)
L

P2U +0'2h

~(+) y(+) y(+)

0 0 0
a2uh 0
cz2U 0

0

M z h'/Pi +h (csPz szPz„')—
(h2+h'2)ryz

(h +h' )(A2+A3)(cs —ss ) . (A31)
which can be diagonalized in the form

p2v +a2h 0

(A35)

MIr' given in (A29) must be compared with the corre-

sponding matrix (A23), deduced in cases (Ia) and (Ib).
The only difference is

aq(v+h ) 0 0
(A36)

0
M2(g(0) ) v 2 (A32)

under the action of the orthogonal matrix
without any constraint on pz. In conclusion, we find in
the (Ic) case, i.e., when the totally asymmetric solution is
adopted, only two massless neutral Higgs bosons, as re-
quired by the gauge-symmetry breaking, and of the six
massive neutral Higgs bosons, three have heavy mass
(M -v ) [see Eqs. (A28), (A30), and (A32)], the remain-
ing three are light. With respect to the previous cases (I a)
and (Ib), a massless neutral Higgs boson becomes of
heavy mass. Moreover, the constraint (A6) does not exist:
p2 has only to be positive.

Let us assume the totally asymmetric solution (Ic) as
the most significant one in the description of the first step
of the symmetry-breaking pattern. It is interesting to
compare, as far as the second step is concerned, the solu-
tion considered above, k, k'&0, corresponding to the con-
dition (A9) rewritten now in the form

h~0 a2v +(A2cz —A3sz )(h —h' )=0,
h'+0 (Ay+A, 3)csss =0, (A33)

with the totally asymmetric case, in which either k or k'
is zero. Let us assume

k&0, k'=0 . (A34)

The totally asymmetric solution (A34) leads to a charged-
Higgs-boson mass-squared matrix given by

1 0 0 0
0 h/b, v/b, 0
0 —v/b, h/b, 0
0 0 0 1

(A37)

Rr 'Y1r

prv 2~&vh X
(0)2 2 (0)

2pi Ii

(A39)

which indicates a heavy Higgs boson and a light Higgs
boson slightly mixed. In particular P'r„' (see Sec. III) is
flavor diagonal. Its small mixing with XR„', uncoupled to

All massive charged Higgs bosons are now heavy
[(mass) -v ], whereas in the k, k'&0 case one of them
was light, as can be seen from the mass matrix (A27).

Going to the neutral Higgs bosons, it is easy to derive

M (XP )=pzv, M (Xz )=0, M (Xl.„')=p2v

M (Prl )=0, M'(P2 )=aviv' —A3h', (A38)

M (Pz„')=a2v +A,zh

The only mixed states correspond to the mass-squared
matrix
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quarks, ensures naturally fiavor conservation in the light
Higgs-boson sector.

violating piece must be added. The most general potential
can be written as V= V&+ VD~, where

APPENDIX B: EXTREMUM CONDITIONS AND
HIGGS-BOSON MASSES (D SYMMETRY RELAXED)

I'Dv= [ —p)z +a3(&l.&L +&~&g )
2

+ —,
'

A,,Tr(C 4 t)]—,
' Tr(C C t+4 tC ) . (81)

Here the most general case is considered, in which D
symmetry [see Eq. (17)] is relaxed. According to the ar-
guments of Sec. III, the first stage of the symmetry-
breaking pattern is assumed to obey the requirements of
the totally asymmetric solution (Ic) of Eq. (A24). To the
D-symmetric potential VD of Eqs. (18) and (19) a D

(The trilinear terms are neglected, by assuming, as usual
in these cases, a reflection symmetry acting on the N field.
It is evident that, in the case of D symmetry, trilinear
terms are zeroed directly by the D symmetry itself. ) The
extremum conditions take on the form

=u[ —p + —,(P) —Pz)v +a)(h +h' )+azh' +2a3hh'cs]=0,
U

pl +alu +~1(h +h )+(~zcs ~3sf )h ]+h cs[ p]z +a3u + A4(h +h )+A4h ]:0 (83)

p) +(a)+az)u +~((h +" )++zcs &3s—s )h ] +hcs[ —p(z +a3u + —,A4(h +h' )+A4h' ]=0, (84)

as
==hh'ss[ —p)z +a3u + —z'X4(h +h' )+(Az+A3)hh'cs]=0.

Let us consider the symmetry-breaking pattern characterized by

(II a) ss&0, h, h'&0,

(85)

which corresponds to the pseudomanifest I. Rsymmetr-y discussed in Sec. II. The (Hermitian) mass-squared matrix of
the charged Higgs boson is easily deduced after some algebra:

+(+)

pzu +az(h —h' )

~(+) y(+ )

0 0
a,(h '—h ') a,uh

A, 3h

y(+)

0
a2Uh

'e'

A,3hh'e'

X3I '
XL
g( —)

y(
—)

y( —)

(86)

The corresponding eigenstates are given by [H =h +h', T =H v +(h —h' ) ]

XL,
—' Higgs boson with M =pzu +az(h —h* ),

T

1 (+) h —h2 &2

vHXz — (h PI
—'+ h 'e —'

Pz ') would-be-Goldstone boson,

(87)

—(h're+'sP') —+' —h P~z~') would-be-Goldstone boson,0

T
—[(hz —h' )gz+—'+u(hpI —'+h'e —'

pz
—')] Higgs boson with M =Az& +az(h —h' ),

so that, in the usual scheme u »h, h, one pair of charge-conjugate Higgs bosons is heavy, the other one of light mass.
Going to the neutral-Higgs-boson sector, we find [as in (A38)]

M (&P. )=pzv M (&Pt ')=0 M (&I )=pzv (88)

the remaining states being characterized by the (symmetric) mass-squared matrix
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g(0) y(0)

p(v 2a)uh+2a3uh cs
2A(h +(4+F3)h' cs

+214hh 'c
g

y(0)

2(a) +az) uh 'cs+ 2a3vh

(2~(+Az X3)hh'cs

+A4(h +h' csz)
2A (h' cs + (A 3+/(3)h z

+2/(, 4hh 'cs

y(0)

—2a3uh ss
—(Az+A3)h' sscs

A,4hh'ss
—(A.z+ A, 3)hh'ss

—A,4h SgCg

(/ z+A3)h' ss y(0)

y(0)

y(0)

2(a)+az)vh ss XRz

2(/(, ) —A 3)hh 's s
+A,4h SgCg

sscs
+A,4hh'sg

—X4h' Sg

2A, ih' sg

(89)

With rotations similar to those applied in Appendix A, the above matrix can be partially diagonalized in the form

~H =0Hos~H Os&H(0)2 (0)2 T T

piv 2mivH +2a2v
h —h'

2azuhh '+ 2a3U csH
—2n 3UHs ~ 0

hh'
+40'3U cg 2(/(, zcs —A, 3ss )(h —h' )

, 2 hh'

H
2(A +—z/()3hh' csss /4H —ss 0

2A, )H +4(Azcs —A,3ss )
2 2 2 g2k 2

H
+4/(, 4hh 'c s

+A4(hz —h' )cs

(h —h' )
(/zcs —A, 3ss )

H
+A, H

—(/(z+A3)(h —h' )csss

(gz+A, 3)H ss 0

(810)

the corresponding "quasieigenstates" (so called since
weakly mixed each other if u »h, h') being, respectively,

" (~z~ s+(t'z~(
H

(0) (0)
+Rr =+Rr ~

H(= fhP)„'+h'(Pz, cs+$2~1'ss)]/H,

Hz =—[ h'Q'), '+ h (Pz, 'c—s+ P'z 'ss )]/H,

H3 =—[h pI +h( pz„'ss+pzi'cs—)]/H,

G —= [—hP')i'+h'( 4"'ss+4'a~i'cs—)1/H

(811)

[(h —h
' )H (

—hh 'Hz ] (812)

correspond to a combination of light Higgs bosons, as ex-
pected, but also those Higgs bosons inducing flavor
changing transitions are of light mass, being

H~ fhpz,
' ——h'(p—P„'cs+pp—ss)]=Hzcs H3ss-

H

(813)

where 6 corresponds to the second would-be-Goldstone
boson of the theory. H), Hz, and H3, in the usual
scheme u »h, h', all are of light mass: more precisely, the
eigenstates constructed predominantly in terms of H),
H2, and H3 have light mass and are weakly mixed to the
heavy "quasieigenstate" X~„' (the mixing goes to zero in
the limit u »h, h'). It follows that Higgs-boson terms in-
ducing diagonal transitions between quarks [compare with
Eq. (14)]

The situation is made more transparent in the specific
case h =h', which, in this case, can be obtained by merely
taking the limit h' —+h and u2 ——0. Massive charged
Higgs bosons correspond to

XI—+' with M =p/U
(814)

(((tI 'e+' —(I)z
—') with M =2A3h

2

and the neutral-Higgs-boson mass matrix (810) reduces to

Mg' (h =h')=

p]v 2V 2(a) uh +a3uhcs )

4A, )h +2(/(zcs X3$s )h +4A4h cs 0

23h

—2V 2a3vhss 0
—2(Az+A3)h csss —2/(. 4h ss 0

0

2(Az+A3)h ss

(815)
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which shows that Hz, which induces flavor-changing NC into play, is now diagonal, with M (Hz) =2k,3h .
Let us now consider the symmetry-breaking pattern corresponding to manifest I.-R-symmetric theories:

(nb) s, =O, h, h'~O.

The (symmetric) mass-squared matrix of the charged Higgs boson is now given by (e =+1)
(816)

MH-(+)2

+(+)
L

pzu +az(h —h' )

+(+)
R

0
az(h —h' )

y(+)

0
a2vh

(h —h' )

y(+ )

0
a2vh'e

a2v hh'e

(h —h' )
av h'

(h —h' )

g( —)
L

g( —)
R

(817)

The mass-squared eigenstates correspond to those of the case examined above and listed in (87), in the limit ss ——0. Now,
however, both massive Higgs bosons have large mass:

M (XL, ')=pzu +az(h h' )—,
M ([(h —h' )XzI +u(hPI +h'Pz cs)]/H)=azu H /(h —h' )+az(h —h' ) .

(818)

Going to the neutral Higgs bosons, three of them satisfy also in this case Eq. (88) whereas the matrix (89) takes on a
block-diagonal form without mixing between real and imaginary components. After partial diagonalization

M~ =O~mH O~
(0)2 & (0)2 s T

piv
h'

2a )UH +2a2U

+4a3vhh —e
H

h h'
2A, (H +4k,z +4k,4hh'e

H

I

2a2vhh —e
H

+2a3U

2A, (h —h' )
H

+Ay(h —h' )

U H
h —h'

~ (h —h')
H2

0

0

0

0

(819)

UH
a2

h —h' 0

—A,3H

The corresponding change of basis leads to

(0)
+Rr ~

H) =(hg(, '+h'Pz„'e)/H

Hz = ( —h 'P'(„'e+ h P'z„')/H,

H =(h' p' 'E+hp' )/H,
6 = ( hP'),"+h'Ppg 'e) /H—,

(820)

H„d ——(h(()z„'—h 'P)„'e) =Hz (822)

sons. The Higgs-boson combination which induces
flavor-diagonal NC is given by

Hd (h PP,
' h'Pq, 'e ) /——H—

=[(h —h' )H) —h2h' Hez] /H

whereas flavor-changing NC are induced by the combina-
tion

where 6 is the would-be-Goldstone boson, and the
"quasieigenstates" XR„', H~, H2, H3 are weakly mixed in
the limit U »h, h'. It is easily seen that only H& has light
mass, all the other quasieigenstates being heavy Higgs bo-

which corresponds to a heavy Higgs boson weakly mixed
with the others.

Let us finally consider the case in which the
symmetry-breaking pattern is realized by the totally asym-
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metric solution

(IIc) h&0, h'=0 .

The charged-Higgs-boson mass matrix corresponds to

i.e., apart from the negligible mixings induced by the a3
and A,4 terms, we have also here the same situation as in
the analogous case discussed in Appendix A (where D
symmetry is imposed).

+(+)I.

P2U +a2h~(+)2

y(+ ) y(+ ) y(+ )

a2h a2Uh 0 XR

t22U 0
() y( —)

(824)

which is exactly the same as the mass-squared matrix
(A35) obtained in Appendix A (where D symmetry is im-
posed). It leads to two heavy Higgs bosons in the limit
U »h, h'. From the analysis of the neutral-Higgs-boson
sector

~2(y(0~) ) U
2 ~2(y(0~) ) ()

(825)
~2(y()', ))=0, ~2(yz(0)) =~2U2 —X3h 2,

and

APPENDIX C: GENERALIZATION TO THE
CASE OF T%'0 N HIGGS SOSONS

Here a brief account is given of the generalization of
the content of Appendix A to the case in which two N
Higgs, (I)1 and (I12 [see Eq. (33)], satisfying the condition
(34), are considered.

The most general renormalizable Higgs-boson potential
satisfying gauge, I.-R and D symmetries can be written in
the form

VD ——V(Xg,g)+ g V~(XI. ~,e;)+Vz3(e, )
i=I, 2

+ Vz)(+2)+ v(2(@1,@2),

(0)
+Rr

pyU

y(0)

2(x QUA

2A, h

y(0)

2CX3Ull

A,4h

azu +A.zh
2 2

(o)
+Rr

(0)

y(0)

(826)
I

where V(X~'zl), VD((I1;), and VD(X1, 21,@;) are easily ob-
tained from (19) (if )(41, A, l, A,z, A,3, al, az are the couplings
characterizing @), the corresponding coupling of 42 will
be indicated as pz, el, ez E3 pl pz) ~ The tel 111

V(2((I1),C&2) describes the coupling between @) and @2.. it
is given by

(C2)

By assuming the symmetry-breaking pattern

0

Vlz(@1,@2)=o 1Tr(@14,)Tr(@2@&)+—,
' oz[Tr((I)1@z)+Tr(4, @2)] + —,

' o3[Tr(@)@z) —Tr((I1)@2)]

+ 4(T4[Tr«'1@2)+Tr(c 1C2)] + 4 o5[Tr(@)C'2) Tr(@1@2)]'

+ 4 o6[Tr(%14 1)Tr(@2@z)+Tr(4, 41)Tr(4&&@2)]+—,
' o 7[Tr(@)4) )Tr(@&@2)+Tr(41@))Tr(@2@z)]

+o 8Tr(@,4,42&2) .

(&zl ) = (@()=diag(k(, k ),
the analysis of the extremum conditions, allows us to verify that, as far as the relative phases among the k;, k are con-
cerned, the most general solution, not implying specific constraints on the parameters of the potential, requires all phases
equal to zero. By assuming then all k;, k real, the extremum conditions reduce to

U [ I + 2 U (Pl Pz)+ 1(kl +k 1 )++zk 1 +131(kz +k2 )+Pzk2 ]=0
U

ak, I 1 +~1(kl +k 1 )+~2k) +(Tl(kz +k2 )+(rzkz +(o'4+(T8)kz ]

+ (o 2+ (74+o6+o 7)kzk 1 k 2
——0

k 1 [(+1+~2)U Pl +~1(kl +k 1 )+~zkl +~1(kz +k2 )+ozkz +(F4+~8)kz ]k)
1

+((rz+o4+o6+(r7)klkzkz =0, (C4)



3036 D. COCOLICCHIO AND G. L. FOGLI 32

k2
2lplu P2 +~1(k2 +k2 )+~2k2 +(Tl(kl +k 1 )+cT2k1 +(o4+~8)kt ]

+(cr2+o4+o6+o7)klk lk2 =0,

=k2[(pl+p2)u p—2 +E((k2 +k2 )+E2k2 +crl(kl +kl )+cr2kl'+(cT4+crs)kl ]
Bk2

+(cr2+o4+cr6+o7)kl k 1 k2 ——0 .

In a way quite similar to that used at the end of Sec. III, it is possible to show that the solution corresponding to
k 1

——k2 ——0 is the most general one, since it is compatible with the largest generality of the parameters appearing in the
potential (Cl). To be more specific, we have to compare the two allowed regions, one defined as a part of a hyperplane,
the other limited to the intersection of this hyperplane with another hyperplane, in the hyperspace of the parameters of
the potential. As in the simplest case described in Sec. III, the two solutions undergo a first-order phase transition.

By assuming therefore the symmetry-breaking pattern corresponding to the totally asymmetric solution (37), the mass
matrices of the Higgs bosons can be derived along standard lines (after a rather long algebraic manipulation). By limit-
ing our attention to the neutral-Higgs-boson sector, it is

y(0) q(0)

—(cr4+ cT3 )k2 (cT4+ o 3)k (k2
—(cr4+ o 3)k 1

2

y(0)

0
0

c22v A 3k 1 (cr3+ cr4+ cTg )k22 2 2

y(0)

0

(o4—o3)k, k2

p2V —E3k —(0'3+04+(T8)kl2 2 2

y(0)

y(0)

y(0) '

y(0)

(C5)

(r32
MH

(03
+Rr

P)U

y(0)

2'&Uk i

2X]k $

y(0)

2pluk2

2(cr, + cr4+cT())k) k2

2e)k2

y(0)

0
0
0

CX2U +~2k 1

+(cr2 —cT4 —crs)k2 2

y(0)

0
0
0

(o 2 + (T4 +cr6 + cT7 )k 1 k 2

p2u +e2k2

+ (cT2 cT4 o8)k 1
2

(0)
+Rr
y(0)

y(0)

y(0)

y(0)

(C6)

the remaining components being mass eigenstates according to

M2(XL, ,")=p2V2, M (Xg )=0, M (XI.,')=p2V'

By simple inspection of the above formulas the conclusions drawn in Sec. IV follow.
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