
PHYSICAL REVIEW D VOLUME 32, NUMBER 11

Baryon self-energy due to the pion-quark interaction

1 DECEMBER 1985

K. G. Horacsek, Y. Iwamura, * and Y. Nogami
Department of Physics, McMaster University, Hamilton, Ontario, Canada L8S 4M1

(Received 25 March 1985)

We examine the baryon self-energy due to the pion-quark interaction, more specifically, how the

self-energy varies among the ground states of the baryon octet and decuplet, and also from the

ground to excited states. A nonrelativistic constituent quark model is used in which quarks are
bound in a harmonic-oscillator potential. For the excited states we examine the lowest even- and

odd-parity states in the nucleon sector. We find that the variation of the self-energy within the same

strangeness sector is quite small, i.e., of the order of 30 MeV or smaller. For example, the pion con-

tribution to the 6-N splitting is (20 MeV. In arriving at this small variation it is crucial to take ac-
count of the spin dependence of the quark energy that enters in the energy denominator of the self-

energy calculation. The individual energy shift is sensitive to the (ad hoc) form factor associated
with the pion-quark interaction, and also to the quark excitation in the intermediate state. However,

this sensitivity is strongly reduced in the difference between energy shifts for different baryon states.

I. INTRODUCTION

In the last several years a number of papers have ap-
peared examining the pion-quark interaction. In those pa-
pers, which we will cite in due course, the pion is treated
(phenomenologically) as an elementary particle, and is in-
corporated either into the MIT bag model' or into the
nonrelativistic constituent quark tnodel (NRQM).
Despite the considerable effort expended on the pion in-
teraction, however, there still seems much to be clarified.
Among other problems, in the present paper we will con-
centrate on the effect of the pion-quark interaction on the
baryon masses, in particular, on the mass splitting.

A good example that illustrates the problems we have
in mind is the pion effect on the b-N mass splitting. It is
generally accepted that this and other mass splittings
among the octet and decuplet baryons are mainly due to
the spin-spin interaction between quarks which arises
from the gluon exchange. Is the pion effect also impor-
tant in this connection? For this question one finds con-
flicting results in the literature.

Consider the one-pion-exchange (OPE) potential be-
tween quarks, which is proportional to r;.v&cr; oj, where
v and tr are the isospin and spin operators of the quark,
and the subscripts i and j refer to the quarks. The expec-
tation value of g, v; v~o; oj is 15 for N, and 3 for b, .
This is essentially how an appreciable pion contribution to
the 5-N splitting was obtained. This is in contrast with
several other calculations, which all indicate that the pion
effect in the b;N splitting is much smaller. ' The origin
of the difference can be traced to the following. In all the
calculations of Refs. 2 and 5, in addition to the OPE pro-
cess, the self-energy diagram of Fig. 1 is taken into ac-
count. The crucial point is, when a pion is emitted by a
quark, the quark spin can flip. If there is already a spin-
spin correlation among the quarks in the system (which
presumably is due to the gluon interaction), it affects the
quark energy in the intermediate state. The self-energy

effect of Fig. 1 therefore becomes state dependent. This is
a pionic analog of the atomic Lamb shift. The OPE ef-
fect is also affected by the spin-spin correlation among the
quarks, and it becomes quite different from the expecta-
tion value of the OPE potential. What is remarkable is
that, when the contributions of the self-energy and OPE
are combined, the state dependence of the pion effect on
the baryon mass shift becomes much smaller than that of
the expectation value of the OPE potential. Although
there are differences in detail among the models and cal-
culations of Refs. 2 and 5, the feature described above is
common. In contrast, this feature is not considered in
Ref. 4.

The problem discussed above naturally leads to the fol-
lowing. In evaluating the self-energy effect of Fig. 1 for
the ground-state baryons such as X and 6, it was assumed
in all of the works cited in Refs. 2 and 5 that, apart from
the spin and isospin flipping the quarks remain in the
ground-state configuration. This (often implicit) assump-
tion has no logical basis. In the last few years it has been
realized that effects of the quark excitation in the inter-
mediate state can be very large —so large that the self-
energy may diverge. ' When the MIT bag model with a
sharp, fixed bag radius is used, the self-energy diverges
even if the finite (spatial) size of the pion is introduced.
In order to suppress the divergence, two modifications of
the bag model have been considered. One is -to make the

N Nor&
FICx. 1. Nucleon self-energy due to the pion-quark interac-

tion. In addition there are one-pion-exchange diagrams which
are not shown here.
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bag surface smeared, and the other is to assume that
the pion-quark interaction is smeared both in space and
time. ' An advantage of the potential model is that it has
no such divergence, provided that the finite size of the
pion is taken into account. Still it is interesting to know
how important the effect of the quark excitation is; we
will see that it is not very important as far as the mass
splitting is concerned.

Yet another problem that is closely related to those dis-
cussed above is how the baryon self-energy varies from
the ground state to the excited state. For example, consid-
er the self-energy diagram of Fig. 2 for an excited state
X . The lowest-energy intermediate state is such that X*
is de-excited into X. In that case, depending on the pion
energy, the signature of the energy denominator can
change. Hence the self-energy of S' could be quite dif-
ferent from that of the ground state X. This variation of
the self-energy has to be taken account of in fitting the
nucleon excitation spectrum.

The purpose of this paper is to examine the problems
we have pointed out above: (i) the pion effect on the
baryon mass with and without taking account of the spin
dependence of the quark energy, and (ii) the effect of the
quark excitation in the intermediate state. Throughout,
we are 'interested in the state dependence, rather than the
absolute value, of the baryon self-energy due to the pion
interaction.

For the model of the pion-quark interaction, we choose
the NRQM. Our model baryon consists of three nonrela-
tivistic (hence massive) quarks bound in a common
harmonic-oscillator potential. %'e assume that the gluon
field has been eliminated already and replaced by the
harmonic-oscillator confining potential and an effective
spin-spin interaction between quarks. The pion is treated
as an elementary particle (of a finite size), and is assumed
to interact with quarks through the pseudovector cou-
pling. For the ground-state baryons we examine all of the
octet and decuplet, except Q which does not interact with
the pion. For excited states we consider only the lowest
even- and odd-parity states in the nucleon sector.

There are other possible models for the pion-quark in-
teraction, for example, those of Ref. 5. However, as far as
the properties of the ground-state baryons are concerned,
all of the models of Ref. 5 lead to very similar results.
Yet our model is the simplest; all the matrix elements that
we need for the pion effect can be obtained explicitly in a
closed form. We believe that the features that we examine
are common to those models. At this point one may raise
a natural question: why do we not choose the bag model
with relativistic quarks? It would be sufficient to point
out that the bag model, in its usual static-cavity approxi-

FIG. 2. Self-energy of nucleon excited state N*.

mation, is beset with difficulty in calculating transition
matrix elements. Since we discussed this earlier ' '" let us
only note here that the bag radius varies froIn one state to
another and the quark wave functions of different states
are not orthogonal to each other. The pion-quark interac-
tion depends on the bag radius but what bag radius should
one take if two states of different radii are involved?
There is a way out of this difficulty by means of a
"dynamical bag model, "" which we shall pursue else-
where.

II. MODEL

The Hamiltonian for our model baryon is given by

(2.1)H =Hq+H +H;„, ,

3 p
2

a, =g ' +V(r) ++V. .. ,
i=1 i)J

H;„,=(4n. )'~ gr; f drp(
~

r —r;
~

)cr; VP (r) .
ia

(2.2)

(2.3)

Here H~ is the standard Hamiltonian for the free pion
field. The notation is essentially the same as that of Ref.
2. In H», V(r) is the "shell-model potential" which we
assume to be

V(r)= —,'mg r (2.4)

where I is the mass of the u (and d) quark. With this
shell-model potential we use single-particle wave func-
tions for the quarks. A disadvantage of this approach is
that the wave functions contain spurious center-of-mass
(c.m. ) motion. However, all of the wave functions that we
will use contain the c.rn. motion in the same form, and
hence we believe that the c.m. effect varies little from one
baryon to another, and from the ground to excited states.

The other potential V, in H» is the "hyperfine interac-
tion" which represents the spin-dependent part of the
gluon-exchange potential. As a simple illustration we
consider

Pl
~s,ij =~ (2.5)

The expectation values of V, for the octet and decuplet
ground states are. listed in Table I; from this all of the
mass formulas of De Rujula, Georgi, and Glashow can
be derived. Since V, does not depend on the oscillator
coordinates, the three oscillators (i=1,2, 3) remain un-
coupled.

In H;„„»;~,cr;, and r; are those of quark i ( = 1,2, 3), P
is the pion field, and p describes the norilocality of the in-
teraction. Qf course it is understood that only the u and
d quarks interact with the pion. The m.q coupling con-
stant f» is related to the n.N coupling constant f~ by

f, = sfiv tv'=o. og . (2.6)

We will use the usual plane-wave expansion of P(r). Then
it is convenient to introduce the interaction form factor
u (k)= I drp(r)e'"' For u (k) we. assume the form
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TABLE I. Baryon mass splitting due to V, of Eq. {2.5);
x =m„/m, . The numerical values {in MeV) are those used in
the calculation presented in Sec. VI. The parameters used are
A, =48.8, m„=mq ——336 MeV, and m, =538 MeV. The last row
shows the empirical mass splittings in MeV.

and obtain

(v
~

e'"'~ 0)=f dr/„*(r)e'"'alp(r)

4mi Gm(k) Yi~(k

with

(3.6)

From V,

Experiment

6k
293
293

4{1—x)A,

73
77

6xi,
183
192

6xA,
183
212

G~(k)= f dr r j~(kr)f~(r)fp(r) .

The AEO becomes

(3.7)

U (k)=exp( —k /A~ ) . (2.7)

&Ep ———J g (2l + 1)
nl co+E~

(3.8)

I

It would be reasonable to assume that the nonlocality
represented by p is about the size of the pion. The empiri-
cal rms radius of the pion is' (r )~'~z=0. 663 fm. We
choose the value of A which corresponds to this rms
radius through ( r ) =f d r r p =3/A~ . Hence
A~=516 MeV=3. 74m

where

k v (k)J[f(co)]=y f dk f(co) . (3.9)

Equations (3.3)—(3.8) are valid for any central potential
V(r). With the harmonic-oscillator potential (2.6), Eq.
(3.8) can be further reduced to'

III. SINGLE-QUARK CONTRIBUTION
WHEN V, =0

Let us begin with a fictitious model which contains
only one quark, and evaluate the self-energy due to the di-
agram of Fig. 3. The single-quark state is determined by

oo t ll ]
bE() —J e-—

n f co+n7j'

where

t =&Iri, IC =k /(2m) .

(3.10)

(3.11)

Hef. =EA" (3.1)

[ 1)=
[ lp ), ) 2) =

/
2$ ) .

For the ground state, the self-energy is given by

(3.2)

bEp ——— g f dk-

)&(0/e '"'( v)(v/e'"'/0), (3.3)

where

3
y

m

2

(3.4)

In evaluating the matrix elements in Eq. (3.3) we write P„
as

where v=(n, l, m) and we set the ground-state energy
Eo ——0. Throughout this section we assuxne that V, =0.
With potential (2.4), E„=nri, n =0, 1,2, . . .. For the ini-
tial state of the quark we consider ls, 1p, and 2s. We
denote the ground state by ~0) or interchangeably by

~
ls ). Similarly for the excited states,

Note that the l summation has been done.
In the tight-binding limit q~oo, only the n =0 term

contributes, and bEp z ———J[co ']. In order to exam-
ine the loose-binding limit g~0, it is convenient to
rewrite Eq. (3.10) as'

b.Ep ———J f d A. e "exp[t (e "~—1)] . (3.12)

Expanding this AEo into g and carrying out the A, in-
tegration for each term, we obtain

bEp= —J + + '' ' (313)
I

~+& (co+E)

The first term in the expansion is b,Ep p p, which is ex-
actly of the form expected. The quark kinetic energy K in
the energy denominator -is due to the recoil. It is clear
that AEO „0is sma1ler in magnitude than AEp &

. As
the binding becomes stronger, the quark becomes less
mobile and the effective quark energy in the intermediate
state diminishes.

Next let us turn to EE„ for excited states. The wave
functions of those states are related to that of the ground
state by

@„(r)=f„I(r)YI~(r), r=(0,$) (3.5)
i1)= z i0), (3.14)

vr

r

3 2
2 Q2

J

(3.15)

where b =I/(mg). For
~
1) we have taken that of

(l,m)=(1,0). Define S„(k,k') by

Fbi. 3. Self-energy of a single quark. S„(k,k')=+A„(n )e ' '[v')(v'
~

e'"'~ n), (3.16)
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So(k, k') = exp

where A„can be any arbitrary (lm-independent) coeffi-
cient. The integrand of EE„ is of the form of S„(k,k).
For the harmonic oscillator, So(k, k') is given by'

n

b (k2 k2) ~ ~n b kk'

1
P3)2 = 3+g crt'crJ. (4.2)

l)J
Then (H +H~ —Eo) ' in the calculation of the SQ con-
tribution can be written in the form of

QP1/2 +&P3/2

w~ere

(4.3)

Using Eqs. (3.14) and (3.15), other S„'s are obtained by

=2 a'
S1(k,k') = 2, S11(k,k'),b' ak, ak,'

2 3S,(k, k') =—
3 2

(3.18)

3
So(k, k') .

h, 2
(3.19)

In the actual calculation that follows, A„of Eq. (3.17) de-
pends on k, but in using Eqs. (3.18) and (3.19) the dif-
ferentiations with respect to k and k' do not operate on

It is now straightforward to derive hE for those ex-
cited states. They are'

(co+E ) (co+E„+5) ', for N,a='
1

b='
1 (4.4)(co+E„5),— (co+E„), for b. ,

and 5 is the energy difference between S=—,
' and

states; V, of Eq. (2.5) gives 5=6K,. Expression (4.3) has to
be placed between two vertex factors: (o1 k) (o1 k).
Anticipating the angular integration with respect to k we
find

k
(cr1 k) ~g o'; crJ (cr1.k)~ I

—cr1.(cr2+o3)+cr2 cr3I
l)J

1 t"hE= —J e 'g, , F„(t)
o n. co+n 'g

where

(3.20) —1 for X,
1 for 5. (4.5)

and

F„(t)= '

—[(t —n) +2n],
3t

6t
I[(t —n) —n] +4n(n —1)I

Hence

(3.21) g &1 (a 1 k)(a Ii2+ b 3/2 )r1 (~1 k

k2 (5a +4b) for N,
(4a+5b) for b, . 4.6)

n'= '

bE(0 1)=2bEO+bE1 .
IV. SINGLE-QUARK CONTRIBUTION

VFHEN V, &0

(3.23)

We continue to examine the SQ contribution but with

V, &0 in this section. Consider the process of Fig. 1 for
N. In the initial state the total spin of the three quarks is
S = —,. When the pion is emitted the quark spin can flip,
and hence the total spin of the three quarks in the inter-
mediate state is either S = —, or —,. Therefore, the factor
(co+E„) ' in b.Eo of Eq. (3.3) has to be replaced with
an appropriate combination of (co+E„) ' and
(co+E +5) ' where 5 is the energy splitting between
S = —,

' and —,
' due to V, . The weighting factors for these

two terms can be determined as follows.
Introduce the projection operators Ps for S = —,

' and —,
'

by

1
P1)2 = 3 —g O'; cTJ. '

l)J
(4.1)

n —1 for lp,
n —2 for 2s . (3.22)

So far we have considered only one quark. When there
are three quarks, the total b,E due to diagrams of the type
of Fig. 3 is simply a sum of three single-quark (SQ) con-
tributions. For example, for 0 1=—( is) ( lp) we obtain

When V, =O, i.e., 5=0, then a =b =(co+E„) '. The
prescription is now clear; (co+E ) '=(co+ng) ' of Sec.
III is to be replaced by (5a+4b)/9 for N, and by
(4a +Sb)/9 for b, , where a and b are those of Eq. (4.4).
Exactly the same prescription applies to = and:-* except
that 5=6xA, with x =m„!m,.

For A, we take 5=4(1—x)A, for the S= —,
' intermediate

state and 5=2(2+xQ, for S = —,. For X and X', the in-

terrnediate state with S = —, can have isospin I=0 or l.
Therefore the intermediate state has to be projected into
I=0 and 1, and appropriate 5's have to be incorporated
accordingly. This prescription is correct for the n =0 in-
termediate states, but only approximate for n &1 states
The origin of this complication is that the spin-projection
operator P& does not commute with V, when the masses
of the quarks are not all equal. For = and:-' this does
not cause any problem, but it leads to a complication for
A, X, and X . However, we believe that the above
prescription which is summarized in Table II is a very
good approximation.

Before ending this section we note that the term
"single-quark" contribution is a misnomer. It obviously
depends on the spin correlation among the quarks through
5 that enters into the energy denominator. The SQ contri-
bution is therefore state dependent. It cannot simply be
renormalized away.
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TABLE II. Projection of the intermediate state; generalization of Eqs. (4.6) and (5.3) to other octet
and decuplet baryons. For X, the subscripts 0 and 1 refer to the isospin of the intermediate state. SQ
and ex refer to the single-quark and exchange contributions, respectively. For ex only the n =0 inter-
mediate state contributes. The coefficients in SQ+ ex correspond to those of Eqs. (2.6)—(2.12) of Ref.
2.

SQ+ ex

3 (Sa +4b)

3 (4a +5b)

3 (a +2b)

27 (ap+2a))+ 9 b

27 (ap+2a ~ )+ '9

—,'(a+8b)
—,
' (4a+ Sb)

9 (a +2b)

9 ( —2a +5b)

3 (a +2b)

~~ ( —ap+2a )+2b)
—(2a —4a, +5b)

9 (25a +32b)

9 (8a +25b)

3 (a +2b)

27 ( 3a p +8a ] +4b )

~~ (3ap+2a)+10b)

V. PION-EXCHANGE CONTRIBUTION

In addition to the SQ contribution EEso examined in
Sec. IV, we have the contribution from the OPE diagram,
which we denote by b.E,„. Let us begin with EE,„ for the
nucleon ground state, i.e., 0 =(1s) with I =S= —,. If we
assume that V, =0, we find

It would be in order at this point to examine the rela-
tion between the present calculation and that of Ref. 2.
The b,Esca for iV and b, are given by

t" 1 5 4b.Esp(Ã)= —J e +
u n! 3 co+nri co+nrj+6

E,„(0 ) = ——', J[e '/co] . (5.1)
(5.4)

The factor —", arises from the spin-isospin algebra. The
same result is obtained by taking the expectation value of
the OPE potential

r

t" 1 4 5
b, Esp(h) = —J e +

0 n! 3 co+nrj 5co+—nrj

f 2

VOFE g &i &j ~i crj
l)J

e
—m p;.

2 5(r;~)
m~ The AE,„ for N and 4 are

(5.5)

(5 2)

If it is for the b. ground state, with I =S= —', , the fac-
tor —', of Eq. (5.1) will be replaced by —', . This difference
between b,E,„ for ¹ and b, seems to have caused a
widespread impression that the pion effect contributes sig-
nificantly to the Nb, mass splitting. This is a fallacy as
we will show in Sec. VI.

So far we have assumed V, =O. In order to take ac-
count of V„again we have to project out the quark inter-
mediate state into S = —,

' and —', . For X and 5 this goes as
follows:

b,E,„(X)=—J e , 10 1 2
9 6) &+5 (5.6)

b.E,„(h)=—J e —t 2 2 5

9 co —5 cd
(5.7)

hE«, (X)=——,
' J e

co co+ 5
(5.8)

If we take only the n =0 part of b,Eso, we find
AE«, ——AEs~+AE, „ to be

'

b, E (b«, )=——,
' J e (5.9)

Qadi~(a

i.k)(aPi&z+bP3/2)r2cg(&p k)+(1~2)
r

(5a +10b) for X,
9 ( —2a+5b) for b, ,

(5.3)

where a and b are those of Eq. (4.4) with v=O. When
V, =O, then a =b =co ', and b.E,„of Eq. (5.1) follows
for ¹ Hence the prescription for including V, is clear.
Tote that ~F-,„ is no longer equal to the expectation value
of the OPE potential of Eq. (5.2).

Remembering that J/9= fq I of Ref. 2, and Eq. (2A), one
can see that Eqs. (5.8) and (5.9) agree exactly with Eqs.
(2.6) and (2.7) of Ref. 2, with the understanding that
u~ (k)e ' in the present calculation corresponds to u (k)
of Ref. 2.

Although we are going to give numerical results in the
next section, let us have some preliminary note regarding
the Xb, mass splitting. In Ref. 2 b,E«, was calculated by
setting 5 equal to the observed NA mass difference; it was
found to be practically degenerate (within a few MeV) be-
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tween X and A. This means that the pion contribution to
the XA mass splitting is very small. Uehara and Kondo
used the same formulas with different form factors, and
found that the pion contribution is somewhat larger but
still only about 10% of the observed Xb, splitting.

For the excited states we consider the lowest even-

parity and odd-parity states of the nucleon. For the
even-parity excited state the spatial part of the wave func-
tion is given by

g(L =0+)=v'2/3(ls) (2s)+v'1/3(ls)(lp) (5.10)

FIG. 4. One-pion-exchange contributions to the self-energy.
The thick line represents a quark in an excited state.

which is totally symmetric among the three quarks. '

This is combined with the totally symmetric spin-isospin
function, i.e., the same spin-isospin function as that of the
ground state. The SQ contribution is given by

~Esg(L =0+)=—,[5bE(ls)+26E(lp)+2bE(2s)] .

3Gpp

where

~—«00 +2GOOG22)
1 2

2 1 1+G02 +
co —2'g Q) +2'g

(5.12)

(5.11) G02 ——(0 (
e'"'( 2) =v'2/3 —e

2
(5.13)

The OPE contribution is somewhat tedious. Let us il-
lustrate the calculation by taking only 0 2= ( ls) (2s).
First, note that e ' in Eq. (5.1) is Goo where Goo is that
of Eq. (3.7); i.e., Goo ——(0

~

e'"'
~

0 ). If we assume V, =0,
the bE,„(0 2) is obtained from bE,„(0 ) by the following
substitution:

2
Ggp=(2~e'"'~2)= 1 ——+—e

3 6
(5.14)

The correspondence between the terms in Eq. (5.3) and the
diagrams of Fig. 4 should be obvious. The effect of V,
can be included by using Eq. (5.3), and we arrive at

AE,„(L=0+)

10, 4t t2J e ' 1 ——+—
9 9 9

2 t2 1 1 2 2—+ + + + +
co Q) +5 27 co+ 2'g co —2' co+5+2'g co+ 5—2YJ

2t
1

9 3

1 1 2 2+ + +
Q7+ 7j' co —x] co +6+ 'g co —5—7j

(5.15)

where 5=6K,. The total contribution is given by this EE,„pl subEsO of Eq. (5.11).
For the odd-parity state which we denote by P(L = 1 ), we combine the orbital angular momentum L = 1 and the

spin S = —,
' into J =

2 . The orbital, spin and isospin parts are all of mixed symmetry. %'e obtain

b Eso(L = 1 ) =26E ( ls) +hE( lp), (5.16)

2, 2t 1 2 35
AE,„(L=1 )= ——J e' 1+— + t

3 3, co ci)+5 162
1 1 2+ + +

67+'g co —'g co+'@+5
(5.17)

The hE„,(L = 1 ) is the sum of b,EsO and b,E

VI. RESULTS AND DISCUSSIONS

In the preceding sections we have derived the pion con-
tribution to the baryon mass, with and without V, . Let us
now present numerical results. For the parameters in the
model, the pion-quark coupling constants and the cutoff

momentum A have been specified in Sec. II. We assume
the u-quark mass to be m„=336 MeV from the
magnetic-moment consideration. For m, we take
m, =538 MeV, which, together with A, , gives a reasonable
fit for the baryon mass splitting (Table I). The value of A,

could be chosen such that V, and the pion effect com-
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TABLE III. The (negative of the) single-quark self-energy in MeV derived in Secs. III and IV. For
EE(1s) the results with 5=0 and those for X and 5 when 5&0 are shown. For 1p and 2s, they are for
% with 5&0. Breakdown for the contributions from intermediate states (n =0, 1,2, 3) is shown. The
last row for each value of r) is the total g„" 0.

g (GeV)

0.4 0
1

2
3

Total

26
12
6
3

51

1s

22
11
6
3 I

45

43
15
7
3

72

1p

15
17
9
5

53

2s
N

2
7

17
9

45

0.5 0
1

2
3

Total

31

12
5

2
53

26

11
5

2
46

51

14
6
2

75

15

20
9
5

54

—5

4
20

9
36

bined yield a best fit for the baryon mass splitting. We
have not done so because, as we will see, the pion effect on
the mass of splitting is quite small. For the oscillator
constant g, we take 0.4 and 0.5 GeV, which we believe to
cover a reasonable range of g. '

Table III shows hE for a—single quark, given by Eqs.
(3.10) without V„and also with V, for N and b, . Contri-
butions from intermediate states are listed. It is evident
that the assumption of the frozen quark configuration is
grossly misleading. The contribution from the frozen
configuration (the intermediate state with the same spatial
configuration as that of the initial state) could be only a
fraction of the total sum. This is very similar to what was
found in Ref. 8. Note also that

~

b,EO
~

decreases as g de-
creases. The weak-binding limit of Eq. (3.12) turns out to
be 44.2 MeV.

Table IV gives b,E„,with the breakdown for b.Eso and
The table also compares the results with V, and

those without V, . Note that the mass splitting b, Nand-
X-A become much smaller when V, is taken into ac
count. ' When V, is included the self-energy tends to be
larger in magnitude for the decuplet than for the octet.

This effect is in the direction opposite to that of the V, .
Note that the pion effect lowers 6 relative to ¹ For the
X-A, although the pion effect is small, it is in the same
direction as that of V, . Table V shows the pion contribu-
tion to the nucleon excited states. Again the state depen-
dence of the self-energy is substantially reduced when V,
is taken into account. Overall, with V, included, the pion
effect on the mass splitting within the same strangeness
sector is (30 MeV.

In our calculation we took the shell-model approach
with H~ of Eq. (2.2) and used single-particle wave func-
tions. However, all of the three quark wave functions that
we have used, when rewritten in terms of the c.m. coordi-
nate R and the Jacobi coordinates p=(r~ —r2)/V2 and
A, = (r&+ rz+ 2r3) /V 6, contain exactly the same R-
dependent part. ' Therefore the effects of the spurious
c.m. motion cancel, in a very good approximation, in the
difference between self-energies of different baryons or be-
tween the ground and excited states.

The purpose of this paper was to examine two problems
stated in Sec. I. In summary we have found that (i) it is
important to include V„which strongly reduces the pion

TABLE IV. The (negative of the) self-energies in MeV of the ground-state baryons with and without V, . For the SQ contribution,
that from n =0 intermediate state is also shown. When V, =0, the self-energies are degenerate between X and X, and between
and:-*.

q (GeV)
V, =O

A
V,&0

X

0.4 n=0
all n

ex
Total

79
154
88

242

79
154

18
172

53
103
53

155

53
103

6
108

26
51

51

65
134
64

198

129
215

1

216

37.
80
37

117

52
102

4
106

81
136

3
139

19
41

39
66

41 66

0.5

ex
Total

n=0
all n

94
158
104
263

94
158
21

179

63
106
63

168

63
106

7
112

31
53

53

77
137
77

214

153
225

1

226

44
82
44

126

62
104

5
109

94
141

144

23
42

45
68

42 68
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TABLE V. The (negative of the) total self-energy of the nu-

cleon in MeV, consisting of the single-quark (SQ) and exchange
(ex) contributions. For the "total, " the results with V, =O are
shown in parentheses.

q (GeV) Ground state
Excited states

L =1 0+

04 SQ
ex
Total

134
64

198
(242}

142
81

224
(279)

140
52

192
(215)

0.5 SQ
ex
Total

137

214
(263)

145
92

237
(286)

136
55

191
(223)

effect on the mass splitting, and (ii) the effect of the virtu-
al quark excitation on the energy itself is substantial.
However, this effect is not very state dependent. The
small uariations that we found, after incorporating V, of
course, do not sensitiuely depend on whether or not the
n ) 1 contributions are included. On the other hand, for
other quantities like the magnetic moment, one is interest-
ed in the quantity itself for each baryon rather than the
difference of them among different baryons. Then the ef-
fect of the intermediate quark excitation will have more
serious implications. '

Before ending perhaps we should discuss an inevitable
question and/or criticism about the nonrelativistic nature
of our model. The self-energy process involves large vir-
tual excitation of the quark, which may require relativistic
corrections. As we emphasized, however, high quark ex-
citation on the mass splitting turned out to be unimpor-
tant. There is another source of ambiguity, i.e., the pion-
quark interaction form factor u (k). We assumed u (k)
of Eq. (2.7) and related A to the rms radius of the pion.
We believe that this is a reasonable choice for a

phenomenological model as ours. We are of course aware
that the baryon self-energy depends on A~; it diverges
when A ~Dc (point pion). However we confirmed that,
as long as A is not very different from what we have
chosen, the mass splitting is quite insensitive to A„.
Therefore, we believe that the features we found, for ex-
ample, how the 6-X splitting depends on the spin depen-
dence of the quark energy, are quite model independent.

In Sec. I we said that the state dependence of the self-
energy (Fig. 1) is a pionic analog of the atomic Lamb
shift. This analogy should not be taken too literally. In
the atomic ease the state dependence of the electron self-
energy arises mainly through the electron wave function,
whereas in the present pionic case it is due to the spin-
dependent quark energy. Our self-energy calculation is
similar to the famous nonrelativistic Lamb shift calcula-
tion of Bethe. ' Bethe introduced an ad hoc cutoff (-mc)
for the virtual-photon momentum; the result depends on
this cutoff. It was shown later that this dependence on
the cutoff can be suppressed by taking account of relativ-
istic effects. In our case, the momentum cutoff is pro-
vided by u„(k). Can we suppress the dependence on the
cutoff in a way similar to the atomic case'? We tend to
think not. In the atomic case the high-momentum contri-
bution can be related to the electron-scattering S matrix. '

For the quark we do not have such a scattering matrix.
Another more important difference is that in our case we
have to know more details of the pion-quark interaction at
high-momentum transfers. This is beyond the scope of,
not only our model, but all the models considered in Refs.
2, 4, and 5.
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