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%e show that the analytic type-II solutions of the Yang-Mills field equations obtained previously do pos-

sess a bifurcation point.

Employing the ansatz3

Al[ = n'f (x)/(gr), n'= x'/r,
AP= e„~n~[a (x) —I]/(gr),

p, (r) = n, q (x)/(gro'),

(2a)

(2b)

Recently, there has been some discussion on the stability
and bifurcation property of the solutions of the Yang-Mills
(YM) field equations with external static sources. ' 8 For
the external source specified in the Abelian-gauge frame
with vanishing Kronecker index, the bifurcation picture has
been clarified. Thus, when the bifurcation parameter e is
equal to zero, only the spherically symmetric Abe1ian
Coulomb solution exists and is stable. As soon as e & 0,
the external source density picks up an axially symmetric
term and bifurcation takes place. Three branches of solu-
tions emanate from the bifurcation point; two of them, the
non-Abelian magnetic dipole solutions, are stable and de-
generate in their energy value, while the remaining unstable
branch is the Abelian Coulomb solution continued from
e & 0. The bifurcation picture is pitchforklike and the onset
of bifurcation is associated with a decrease in symmetry of
the gauge-fieM configuration from the spherical symmetry
(e = 0) to the axial symmetry (e ) 0).

%hen the external static source is specified in the radial
frame with Kronecker index equal to one, it was found that
there exists a class of solution, called the type-II solution, '
which requires a minimum nonzero source strength for its
sustenance. Unlike the Abelian-Coulomb-solution case,
these solutions come in two branches and are spherically
symmetric. Although all the numerical type-II solutions
indicate bifurcation, the analytic expressions reported in
Ref. 5 did not seem to have a bifurcation point. The analyt-
ic type-II solutions given by Ref. 6 do have a bifurcation
point, but these solutions necessitate the presence of a non-
vanishing external source current, jP(x)&0. Furthermore,
in their analysis, both the energy and the total charge are
gauge dependent. In this Brief Report we wish to reconsid-
er the analytic solution of Ref. 5 and show that it can
indeed possess a bifurcation point. We shall follow the no-
tations of Ref. 5.

The SU(2) YM equations in the presence of an external
static source are

(D Fyv) jv svp

= Q A~ —Q A~ + ge'~AbA'

where g is the gauge-field coupling constant, ro is a parame-
ter of the dimension of length, and x = r/ro, the YM equa-
tions reduce to the following coupled nonlinear equations:

—f"+ 2a' j'/x2 = xq,
—a"+ (a' —1 —f') a/x'= 0

(3a)

(3b)

(4)

Q = d'r[p, (r)p, (r)l' '= ' dxx'Iq(x) I . (5)
g 4 O

The analytic type-II solutions obtained in Ref. 5 are

a(x) =tanhU, (6a)

II

f(x) = x 2U' — —1
tanh U

sech U, (6b)

where

U(x) = g b, (x-' x'+'), —x= 1, 2, 3, . . . . (6c)

For %=1, the solutions do not seem to indicate a bifurca-
tion point. However, for %=2, we find after some tedious
search that the analytic solutions (6) do exhibit a bifurcation
point: the total energy ( and the total external charge Q
reach their respective minimum value when b1 =0.63000
b2=0.00007. The solutions a(x) and f(x) with bt and b2

near the bifurcation value and their corresponding external
charge-density distributions are as shown in Figs. 1(a),
1(b), and 1(c). In Fig. 2, we display the change of the total
energy with the total external charge as the parameters b1
and b2 are varied. At the bifurcation point, g(g ro/47r)
= 11.940057 and Q (g/4m) = 18.271 114. As a matter of in-
terest we plot g vs Q in Fig. 3 for a fixed. bt=1.200 but
varying b2, there is no bifurcation for this set of b1 and b2

values. Note that the crossover point corresponds to two
different b2 values. In Table I we list the values of b1 and
b2 for which g and Q assume their respective minimum
values, where we have defined /3= b&/b2. ~e also provide

The prime means differentiation with respect to X. The to-
tal energy g and the gauge-invariant total charge Q are,
respectively, given by

r

(a')2+ (a2 1)2+ & (jt')2+ f2a2
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FIG. 2. Variation of the total energy g vs the total external
charge 0 for bt =P b&, P = 9000.
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FIG. 1. (a) The function a(x) with b&=pb&, p=9000. Starting
from the curve with the lowest value of a'(l), these correspond to
b&=0.00007, 0.00010, and 0.00020. (b) Profiles of the function
f(~) with b~=pb~, p=9000. Starting from the curve with the
lowest peak value, these correspond to b~=0.00007, 0.00010, and
0.00020. (c) Profiles of the external source density q(x) with
b& =pb&, p=9000. Starting from the curve with the lowest nega-
tive value, these correspond to b&=0.00007, 0.00010, and 0.00020.
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FIG. 3. Variation of the total energy ( vs the total external
charge g for a fixed bi = 1.200.
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TABLE I. Values of b2 and bt=Pb2 for which the total energy g and the total charge Q assume their
respective minimum values.

Value of
p

Values of b2
for which g
is minimum

Values of b2
for which Q
1s minimum

Values of b2
belo~ which f(x)

is imaginary

35
70

110
250
500
800

1200
3000
5000
9000

0.01600
0.00800
0.005 00
0.002 30
0.001 10
0.000 70
0.00047
0.00019
0.000 11
0.00007

0.02200
0.01000
0.00600
0.00270
0.001 30
0.00080
0.00049
0.00021
0.00013
0.00007

0.01600
0.00800
0.005 00
0.002 10
0.001 10
0.000 70
0.00045
0.000 19
0.000 11
0.00007

the values of b& and b2 for which g and 0 assume their respective minimum values, where we have defined P= bt/b2 We.
also provide the values of bt and b2 below which the function f (x) becomes imaginary, that is, below which the solutions
are not acceptable. Note that in the search for a bifurcation point, we vary the parameter b2 for each fixed value of P, rather
than vary b2 for each fixed value ofb 1. In other words, we vary b2 and bl simultaneously such that their ratio is fixed each
time.
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