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Unique chiral three-preon model of quarks and leptons
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A unique chiral three-preon model of quarks and leptons is deduced without referring to the re-

sulting composite states. This model is based on the gauged E6SO{10) preon symmetry where E6
and SO(10) are the metacolor and color-Aavor groups, respectively. The model has several notable
features. The anomalies of the underlying theory are reproduced by pseudo-Goldstone bosons which
acquire masses on the SO(10) scale. The model predicts three generations of ordinary. quarks and
leptons when SO(10) descends to the standard group through SU(4)~&SU(2)L &SU(2)~ but not
through SU{5))&U(1). It can explain the correct ordering of the gauge hierarchy in terms of the
preonic structure of the Higgs composites. The model predicts a large number of exotic fermionic
composites at relatively low energies.

INTRODUCTION

The recent detection of the t quark' completes the third
generation of quarks and leptons and lends even greater
attractiveness to the hypothesis of a common origin of the
three generations of quarks and leptons (i.e., preon
models). It is generally agreed that if quarks and leptons
have a composite structure, the mass scale AMC of the
binding force (which we call "metacolor") must be at least
1 TeV and probably substantially higher. The resulting
condition AMc))Mq I is very different from its analog in
QCD, namely, AQcD Mb y (AQcD is the mass scale),
and places a major constraint on preon-model building. A
successful preon theory must be able to predict at least
three generations of massless quarks and leptons on the
metacolor scale, in contradistinction to the quark theory
where the hadron masses are comparable to the QCD
scale.

Many different versions of the preon model have been
proposed to deal with this basic problem, ranging from
purely fermionic to fermion-plus-boson models, from
models with elementary to those with composite gauge
bosons, from supersymmetric models to those which are
not. The most conservative approach is to model the
preon theory after the quark theory by using three fer-
mionic preons, elementary gauge bosons, and no super-
symmetry. This approach was pursued by two of the au-
thors (Y.T. and R.E.M.), starting with the gauged preon
group GMC (metacolor) s GcF (color-flavor). A systemat-
ic search was carried out in that paper (which we will
refer to as the TM paper) for a three-preon model satisfy-
ing a number of fairly general conditions and basically
only one candidate preon model was identified.

Recently, an additional constraint has been placed on
three-fermionic-preon models of quarks and leptons by

Weingarten, Nussinov, and Witten, which hereafter is re-
ferred to as the WNW constraint. In particular, they have
shown that the mass inequality for bound states,

M(qy5q) (kM(qqq),

must hold in any vectorlike theory (vectorlike with respect
to the binding force). In Eq. (1.1), M(qy5q) is the mass
of the lightest (nonsinglet) meson, M(qqq) is the mass of
the lightest baryon, q is a spin- —, constituent, and k is a
constant of the order of unity. This mass inequality re-
quires composite J= —, fermions to be accompanied by
less massive composite charged pseudoscalars. Since there
is no evidence for charged J=O bosons as light as quarks
and leptons, this result eliminates vectorlike three-fermion
preon models of quarks and leptons. As a consequence, it
has mistakenly been argued that all three-fermion preon
models of quarks and leptons are killed by the WNW con-
straint.

However, this conclusion is not warranted since the
proof of the WNW mass inequality depends on an essen-
tial property that holds. for any vectorlike but not always
for chiral theories, namely the doubling of the Dirac-
operator eigenvalues Thus, if a three-fermion preon
model is based on the chiral coupling of the preons to the
metagluons, it is possible to escape the WNW constraint.
Furthermore, if there exist no two-preon condensates
(which is natural in chiral theories as we discuss in Sec.
III), then the inequality (1.1) loses its meaning. Therefore,
chiral three-fermion preon models can still survive. In
particular, the model found in the TM paper, i e.,
E6C3I G4q2 [—:SU(4) X SU(2)L X SU(2)z ], with two (left-
handed) preon representations [(27;4,2, 1) + (27;4, 1,2)],
survives the WNW test. However, this model was un-
covered through the requirement that at least three gen-
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erations of quarks and leptons should emerge out of
three-preon composites. That is, we had to refer to the re-
sulting composites in order to fix the model, as had been
the practice.

In this paper, we take a more heuristic approach in the
sense that we look for a chiral three-fermion preon model
without referring to the resulting composites. As a first
step in this direction, we employ the group-theoretical
method. Dynamical questions, e.g., mass scales, etc., will
be left for future investigation. This exercise would only
be of academic interest if the resulting model did not
agree even qualitatively with the real world. However, it
turns out that the unique chiral three-preon model that we
find has many promising features, as will be seen.

We begin by considering the preon world with all gauge
couplings but the metacolor turned off. The symmetry is
then GMc Gcz where the metacolor group GMC is
gauged, but GcI; is a global color-flavor symmetry, part
of which is subsequently gauged. We use the following
mild assumptions:

1. Quarks and leptons are three-preon composites.
2. The (massless) preon transforms under a single ir-

reducible representation (irrep) of a simple metacolor
group.

3. The metacolor sector is asymptotically free (ASF).
4. The metacolor sector is anomaly-free (ANF).
5. The preon transforms under a single irrep of the

gauged subgroup of GcI:.
Assumptions 1—4 uniquely fix the metacolor group to

be E6 with its representation (rep) 27 (or its conjugate).
Assumption 5 fixes the gauged subgroup of Gcz as
SO(10) with the rep 16 (or its conjugate). The derivation
of these results is carried out in Sec. II.

In Sec. III, we examine the phenomenology of this
unique E6SO(10) model in some detail. The model
predicts the correct ordering of the gauge hierarchy. All
composite fermions are massless on the metacolor scale.
With an additional assumption, the meta-Pauli principle,
the model predicts precisely three generations of ordinary
quarks and leptons as well as numerous exotics. Another
interesting prediction of the E6@SO(10) preon model is
that the composite SO(10) group should descend through
the Pati-Salam group SU(4)XSU(2)1 XSU(2)z, but not
the "Georgi-Cxlashow" path SU(5) X U(1). At the end of
Sec. III we briefly discuss the related E6(3G422 model pre-
viously identified in the TM paper. Some concluding re-
marks are given in Sec. IV.

est global (chiral) symmetry of the model is then
U(N)L XU(N)~. All such preon models are ruled out by
the WNW constraint. In contrast, in chiral theories,
such pairing is not mandatory.

For chiral theories, we will restrict ourselves to the sim-
plest situation in which the preon transforms under a sin-
gle rep of the metacolor group so that %=(R,N). First,
we show that R must be complex. If 8 is "real" and N
even, the model is vectorlike and the WNW constraint
eliminates this possibility. If N is odd, one can always
divide the preon 4 into two parts, 4& and +2, where

(R,N——=2n) and 0'2 ——(R, 1). Then, quarks and lep-
tons must be made out of either %'2 alone or a mixture of
both, but not '0& alone, since the WNW constraint applies
to the %~ sector. However, since the division of 4 is arbi-
trary, one can always choose 'P2 such that at least some of
the quarks and leptons are made up only of 4'&'s. This
model is then ruled out by the WNW constraint. Conse-
quently, GMc is limited to those groups which have com-
plex reps. In particular, if we limit ourselves to a simple
group, then the choice is only GMc ——SU(n) (n & 3),
SO(4n + 2) ( n )2), or E6.

Next, the ASF constraint on GMC must be considered,
if preons exist at all. I.et us consider for simplicity the
case where R is an irrep. Then, the group SU(n) (n )3)
is excluded, because single complex irreps with no
anomalies are very rare in SU(n) and, indeed, their di-
mensions are so large as to violate the ASF (Ref. 9). For
SO(4n + 2) ( n )2), the spinor reps are the smallest com-
plex reps. The ASF restricts the number of color-flavors
N to be less than 11Xn X2 ". Thus, for SO(10),
N &22; for SO(14), N & 9, etc. For other reps, N is small-
er, since the fermion contribution to the 13 function is pro-
portional to the second-order index, which is proportional
to the dimension of R. For three-fermion preon models
of quarks and leptons, the rep is further restricted by the
singlet condition, i.e., R &CR &R must contain a singlet.
For those reps with congruence classes, (1,1), (1,3), (0,2) of
SO(4n + 2) (n )2) (Ref. 10), this is impossible. For those
complex reps, belonging to (0,0), this is incompatible with
the ASF. Thus, SO(4n+ 2) (n &2) is excluded for three-
fermion preon models. The remaining candidate, E6, con-
tains exactly one complex rep which satisfies the ASF and
the singlet condition, namely 27 (or its conjugate). In
this case, N & 22. Summarizing, if 6MC is simple and R
is a single complex irrep, then the only solution obeying
the ASF, ANF, and singlet conditions is

II. SEARCH FOR GMc GcF GMC ——E6 with R =27 and X & 22 . (2.1)

A. What is GMC?

First, we must clarify the distinction between vectorlike
and chiral theories. For convenience, our massless preons
are all left handed. (Recall that any theory can be written
entirely in terms of left-handed fermions. ) Suppose a
preon transforms under a rep (R,N) of GMcGcz. The
theory is said to be vectorlike (with respect to GMC) if, for
every preon which transforms as R, there exists another
preon which transforms as R so that the preon + is
(R,N)+(R, N). One consequence of this form is that the
eigenvalues of the Dirac operator come in pairs. The larg-

B. What is GcF?

The largest global group for chiral theories is U(N).
This may be broken, as happens in vectorlike theories. A
simple criterion exists for deciding whether the global
symmetry GCI; is broken or not, namely the 't Hooft
anomaly-matching condition. " If the anomalies associat-
ed with composites and preons do not match, then Gcz
must be broken (but the reverse does not always hold).
For vectorlike theories, Weingarten' has shown that
U(N)L XU(N)z must be broken. Vafa and Witten' have
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shown that the subgroup U(N)1+~ is not broken. In
chiral theories, one can find solutions where the anomalies
match'" if one allows several flavors and/or several reps
for the metacolor group. However, if one restricts oneself
to a single irrep, V=(R,N), and fermionic composites
consist of three fermionic preons, then no solution exists
for X)3, as 't Hooft has shown. " Consequently,
Gcp ——U(%) must break into some subgroup of U(X),
HcF, where the anomalies match.

Once GCF is broken, massless Goldstone bosons must
appear. ' In vectorlike theories, these Goldstone bosons
can be made heavy by introducing mass terms for preons
in the fundamental Lagrangian which explicitly break the
Gcp symmetry' (but do not break GMC). Furthermore,
once GCF is broken into the vector subgroup, the compos-
ites usually acquire masses of the order of A„„„,even
without explicit masses for preons. In chiral three-
fermion preon models of quarks and leptons, one cannot
introduce explicit mass terms to make Goldstone bosons
heavy, since such terms are forbidden by the gauge invari-
ance of GMc. Hence, we must use gauge-boson radiative
corrections to make Goldstone bosons heavy' and so we
must at least gauge a subgroup Hcp, of the unbroken
global symmetry Hcp (we may have HCH=Hcp). Here,
it is necessary to gauge a subgroup of the global symme-
try. (On the contrary, if the anomaly matched, then it
would be a mystery why a subgroup of the global symme-
try had to be gauged. ) Radiative corrections to the masses
of fermionic composites can still be avoided, if the gauged
subgroup is chiral, or there exists an unbroken discrete
symmetry to forbid masses to the composites. '

Once HCF is gauged, preons have quantum numbers
with respect to this group and thus must be anomaly-free
(ANF) for the consistency of the gauge theory. The preon
rep for the gauge group Hcp must be complex; otherwise,
composites will be "real" and the survival hypothesis tells
us that they become heavy. ' The constraints on HCF and
its rep are very strong: the group must have a complex
rep (of dimension less than 22) and it must be ANF. If
the preons transform under a single irreducible re@, then
Hcp is SO(10) and the rep is spinor or antispinor. We do
not have to assume that Hcp is simple to prove this. If it
is simple, the result is obvious, since E6 is eliminated by
the ASF condition. If Hcp ——G& XG2 [neither of G; is
U(l)], we assume that the rep transforms nontrivially
under both groups, i.e., X=(r„r2). Since it must be
complex, one of the groups must be complex. The ASF
and ANF conditions uniquely pick up this group to be
SO(10) with a spinor (or antispinor) rep. The ASF condi-
tion (N&22) tells us that the other rep must be trivial,
since dimX=dimr~ Xdimr2. Since SU(16) has no sub-
group that contains SO(10) and has a 16-dimensional rep,
it follows that Hcp ——Hcp ——SO(10). Consequently, as
long as we limit ourselves to a single complex irreducible
representation of H ~F, the choice is uniquely fixed
without referring to the resulting composites; that is to
say

Gcp ——U(16), Hcp ——Hcp ——SO(10),

(2.2)

1V =16 (or 16) .

III. COMPOSITE MODEL BASED ON E6 SO(10)

We turn now to a closer examination of the unique
E6SO(10) chiral preon model and conclude the section
with a brief comparison between our previous model
E6(36422 and this model. The gauge-invariant Lagrang-
ian for the preon has the global symmetry

SU(16) && Z&6, (3.1)

where the naive U(1) symmetry is broken by the
metacolor instanton and is reduced to the discrete Z~6
symmetry. Note that the gauge invariance of E6SSO(10)
prevents a bare mass term for the preon. As we have
mentioned in the previous section, the symmetry SU(16) is
broken into SO(10), where the anomaly matches trivially.
Associated with the breaking are (255 —45)=210 Gold-
stone bosons which transform as an irreducible rep 210
under SO(10). These acquire masses on the SO(10) scale
via radiative corrections. '

A. Composite scalars

At the composite level, metacolor is presumed to be
hidden: all composites transform as metacolor singlets.
We shall begin our discussion by examining the composite
scalars. First of all, one should note that there are no
two-preon metacolor singlets, which are Lorentz scalars,
since the only candidate P/P vanishes by the equation of
motion. At the four-preon level, there exist composite
scalars. With the omission of the Lorentz structure, these
can be written as

The choice of taking spinor or antispinor is fixed by how
we embed the standard group, SU(3)c)CSU(2)L &&U(1), in
SO(10). See Sec. III and the Appendix. Note that preons
and composites share the same gauged anomaly-free
SO(10) symmetry. Consequently, our unique chiral preon
group is E6sSO(10) with 4'=(27, 16).

If we loosen the condition that the preons transform
under a single irreducible rep of HcF, there are more
choices. For example, any subgroup of SO(10) is a solu-
tion: e.g., Hcp ——SU(5) and %=1+5+10 (or its conju-
gate), or Hcp ——G422 with N =[(4,2, 1)+(4,1,2)] (or its
conjugate) are solutions. However, if we consider the con-
ditions imposed on the three-preon composites by the
family structure (see Sec. III), the first possibility is ruled
out while the second possibility survives. Thus, the model
E6(3G42z can also serve as a chiral preon model of quarks
and leptons. Note that this choice was the sole survivor in
the TM paper. The reason why E6SO(10) was rejected
in that paper will be explained in Sec. III. While the
uniqueness of the E6SO(10) model stems from the use of
one complex irrep, it is interesting to inquire whether oth-
er solutions with two irreps exist and, if so, whether they
give the correct family structure for ordinary quarks and
leptons. This analysis is carried out in the Appendix and
we find that while we can identify severa1 other chiral
preon models with two complex irreps, none of them, ex-
cept E6G4qq, meets the family-structure test. Thus, we
must refer to the resulting composite states to fix a model
if we use more than one irrep of the gauged subgroup of
Gcp for the preons.
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P PPP -1+45+S4+210+ (3.2)

(P 'CP) (P 'CP) (P 'CP) (3.3)

and their complex conjugates. One might think that one

All of these composites are invariant under the discrete
symmetry Z~6. Hence, even if these scalars acquire vacu-
um expectation values (VEV's), the discrete symmetry is
unbroken. We have indicated only the lower-dimensional
reps and their multiplicities are omitted. It is noteworthy
that these scalar composites contain terms which
transform as singlets under all five independent U(1) gen-
erators of SO(10): k3, A, 8, T3L, , T3&, and (8 L).—Thus,
if any of these acquires a VEV, the rank is preserved.
Other terms, which are singlets under SU(3) color and
U(l)EM, can break the rank. However, it turns out (after a
brute-force calculation) that they always break both
SU(2)L and SU(2)~ [with or without breaking U(1)~ z ].
Furthermore, these cannot give masses to composite fer-
mions, since they belong to the congruence class (0,0), but
not (0,2), of SO(10) (Ref. 10). Consequently, only those
scalars, which do not break the rank, can be used
phenomenologically.

At the six-preon level, the only composite scalars are of
the form

could form preon scalars out of three P's and three P's.
All such terms would have to consist of contractions of
Po'&P or P[o'&, tr„]P. A careful examination indicates that
they all vanish. The six-preon composites are not invari-
ant under Z&6. Therefore, if any of these acquires a VEV,
the discrete symmetry is broken. The SO(10) decomposi-
tion of the six-preon composites is '

PPPPPP —10+120+ 126+210'+ (3.4)

Again we have given only the lower-dimensional reps and
have neglected their multiplicities. It turns out after a
long and tedious examination that none of the six-preon
condensates transform as singlets under all five commut-
ing generators of SO(10). Therefore, if a six-preon com-
posite scalar acquires a VEV, it must reduce the rank of
the group.

In the descent of SO(10) to SU(3)c XU(1)EM (=63~ ),
one commonly has one (or more) stages of symmetry
breaking in which the rank of the group is preserved, fol-
lowed by stages in which the rank of the group is broken.
If the Higgs bosons are indeed composite scalars, then our
E6CISO(10) preon model must be able to explain the pat-
terns of symmetry breaking and the Higgs quantum num-
bers to implement them. 'A typical chain obtained from
the ordinary grand unified SO(10) model is as follows:

SO(10)~G422~G3)P2 [—:SU(3)c XU(1)~ L, XSU(2)L X SU(2)g]
210 45

~G32( [—:SU(3)c X SU(2)L, XU( 1 )r]~G3'[
126 10

(3.5)

where the Higgs reps are shown underneath the arrows.
From the analysis of the previous paragraph, it follows
that the first two stages of symmetry breaking in Eq. (3.5)
must be achieved by the four-preon scalar composites,
while the remaining two stages can be accomplished by
six-preon scalar composites. It is not unreasonable to as-
sume that the four-preon composites bind at a higher
scale than the six-preon composites, thus leading to the
correct ordering of the gauge hierarchy.

B. Composite fermions

We now consider the composite fermions which are
composed of three preons and are metacolor singlets. The
mass term for these composites would appear as

(PPP)'C (PPP) (3.6)

which violates both the discrete symmetry Z&6 and the
SO(10) gauged symmetry. The reason why it breaks the
SO(10) symmetry is obvious, since the multiplication of
six 16's of SO(10) belongs to the congruence class (0,2),
but not (0,0), to which a singlet belongs. ' These two
symmetries keep the fermionic composites massless on the
metacolor scale. [On the other hand, the mass terms for
bosonic (scalar, vector) composites are not forbidden by
these two symmetries. ] The composite fermions acquire
masses spontaneously through Yukawa couplings of the
form

(PPP)'C (PPP)(P P P P P P ) . (3 7)

Once the six-preon composite scalars get VEV's, then
both the discrete symmetry and the SO(10) symmetry are
broken and the fermions acquire masses of the order of
the VEV of the six-preon composite scalar times some
constant. Since the mass terms for chiral fermions must
break both SU(2)L and SU(2)~ [or U(1)z ], the mass scale
for the VEV of six-preon composite scalars must be of the
order of M(WL ) or M(Wg). Hence, all the masses of
fermionic composites (including exotics) will be of that or-
der. That is, in chiral gauge theories, the masses of chiral
fermions (including exotics) should be accessible in the
not-too-distant future.

Now, we look into the family structure of composite
fermions. By the Pauli principle, the composite wave
function must be totally antisymmetric under
E6SU(16) XSU(2)L,~;„(the L-spin notation reminds us
that all our Weyl spinors are left banded). As is well
known, in QCD, one must make a stronger assumption in
order to reproduce the hadron spectrum, namely, that the
composites are antisymmetric under SU(3)c X SU(2N)
(where N is the number of flavors) although the Pauli
principle only requires that the antisymmetricity is for the
product SU(3)c X SU(X) X SU(2). In QCD the symmetry
SU(2N) emerges out of the SU(X) flavor symmetry and
the nonrelativistic SU(2) [=SO(3)] spin symmetry. Con-
sequently, we make the analogous assumption that in our
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model, the three-preon composites transform under the
totally antisymmetric rep of SU(32) (meta-Pauli princi-
ple). (Note that the singlet of E6 is in the totally sym-
metric part of the multiplication of three 27's. )

The breaking of the totally antisymmetric rep of SU(32)
into SU(16) XSU(2)L,„;„is

(BRA), =
~g

— (~~ EP)(- alii|)

4960~(1360,2)+ (560,4) (3.8)

1360~16+144+ 1200, (3.9)

560~S60, (3.10)

The first term on the right-hand side of Eq. (3.8) gives the
spin- —,

' left-handed fermions, and the second term the

spin- —,
' left-handed fermions. As Weinberg and Witten

have observed, massless spin- —, particles (even massless

spin-1 particles) are inconsistent at the level of the global

symmetry GcF. However, once part of Gcp 1s gauged,

they can arise without any inconsistencies, in the same

way that massless spin-1 gauge bosons are allowed. Con-

sequently, these spin- —,
' particles do not have masses of

the order of the metacolor scale, but of the order of the

scales in the gauged SO(10) group; from the argument

above, this implies of the order of M(8'L) or M(8'z).
Here, we are using GcF only as the tool for applying the
meta-Pauli principle. The actual contents are gauged

SO(10) particles. The SO(10) content of these SU(16) reps

1s

where we have embedded 16 of SU(16) in 16 of SO(10).
Evidently, the E6g SO(10) preon model predicts a large
number of composite fermions at relatively low energy.
Dynamical considerations may reduce the number of ex-
otic fermions in the preon case. We note that no mirror
fermions exist.

We have three SO(10) irreps of spin- —, and a single ir-

rep of spin- —, fermions. If we now identify the 16 rep of
SO(10) with an ordinary fermion family, our model yields
just one family. This was the reason why E6SO(10) was
rejected in the TM paper. In the present approach, the
question of family structure is posed in a more subtle
fashion: Are there any intermediate stages of the break-
ing of SO(10) where we" can identify at least three families
of ordinary quarks and leptons? The answer to this ques-
tion clearly depends on the path of descent from SO(10).

In the breaking of SO(10) to the standard model, there
are two possibilities: either the group passes through
SU(5) &&U(1) as an intermediate step, or it passes through
Gq2z [see Eq. (3.5)]. In traditional SO(10) grand unified
theory where the ordinary fermions consist of three copies
of 16's, both possibilities lead to three families of quarks
and leptons. This is in marked contrast to what happens
in our model, where the particle spectrum depends on
what path one takes. In our model, only the path through
G42z gives rise to precisely three copies of (4,2, 1) and
(4, 1,2), i.e., three families of ordinary quarks and leptons,
in addition to exotics. On the other hand, the path
through SU(5) &U(1) yields only one family plus exotics.
Consequently, new gauge bosons, in addition to exotic fer-
mions, flourish in the "desert" below 10' GeV. Let us
prove these statements.

First, we show that the path through SU(5) X U(1) pro-
duces only one family. The breaking of the three reps 16,
144, 1200 of SO(10) is as follows:

16~1(—5)+5(3)+10(—1),

144~5(3)+.10( —1)+5(7)-+15(—1)+24( —5)+40( —1)+45(3),

1200~5(3)+10( —1)+5(7)+10( 1 1 )+ 15( —1)+24(—5)+40( —1)+40(9)+45(7)+45(3)+45(3)

(3.1 1)

+50(7)+75(—5)+ 126( —5)+ 175( —1)+210(—1)+280(3),

where the U(1) quantum number is given in parentheses. If the U(1) symmetry were not broken, we could end up having
three 5(3)+10(—1). Note also that only one singlet exists. However, U(1) must be broken and thus the use of the sur-
vival hypothesis' leads to the result that the light fermions are only 1+5+10+10+ -,where the ellipses denote the
higher-dimensional particles. Hence, we have only one family plus exotic fermions for the path SO(10)~SU(5) X U(1).

In contrast, if SO(10) breaks into Gq22, each of the three spin- —, reps contains a single generation of ordinary quarks
and leptons; to wit,

16~(4,2, 1)+ (4, 1,2),

144~(4,2, 1)+ (4, 1,2) + (4, 3,2) + (4,2, 3)+ (20,2, 1)+ (20, 1,2), (3.12)

1200~(4,2, 1)+(4,1,2)+(4,3,2)+(4,2, 3)+(20,2, 1)+(20,1,2)+-(20', 2, 1)+(20', 1,2)

+(20,4, 1)+(20,1,4)+(20,2, 3)+(20,3,2)+(36, 1,2)+(36,2, 1)+.(36,2, 3)+(36,3,2) .
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Note that (4,2, 1) + (4, 1,2) is the single generation of
quarks and leptons. Although a large number of exotics
is predicted, these exotics belong to the same congruence
class of quarks and leptons for G4zz. Thus, we do not
have mirror fermions. These exotic fermions will popu-
late the mass scale around M(R'I ) and M(WR). For
spin- —,

' fermions, we have:

560~(4,2, 1)+ (4, 1,2) + (4, 3,2) +.(4,2, 3 )

+(4,4, 1)+(4,1,4)

+ (20, 2, 1)+(20,1,2)+(20,2, 3)

+(20,3,2)+(36,2, 1)+(36,1,2) . (3.13)

PipX16X144,

pt26X 144X 1200,

$)2pX 16X 144, $)ppX 16X 1200,

p ]2p X 144X I200

(3.14)

where Pt26 is responsible for the breaking of SU(2)z or
U(1)z, P&p is responsible for the last stage of symmetry
breaking, and $~2p is the (antisymmetric) Higgs rep that
connects generations. The values of Yukawa couplings, in
principle, can be determined by the dynamics of preons.
The explicit evaluation is a formidable task. We can
speculate that the Yukawa couplings are in proportion to
the second-order indices of the fermion reps for the diago-
nal part. Then, the mass increases with the dimension,
which in turn leads to the identification of 16, 144, and
1200 as the first, second, and third generations, respec-
tively. If the off-diagonal couplings are dominated by the
Higgs 10 (as is usually assumed), then neither 16 nor 144
can couple to 1200. Thus, one would expect from the
first interaction in Eq. (3.14) that the first two generations
mix with each other but not with the third generation.
These qualitative results are consistent with the known
phenomenology for ordinary quarks and leptons. Detailed
calculations of the masses and mixing angles on the basis
of the E6SO(10) model are under way.

We conclude this section with some remarks about the
difference between the E6I3ISO(10) and E6642z models
under the following headings: (1) Goldstone bosons; (2)
gauge hierarchy; and (3) masses of composite fermions.

(1) With regard to the Goldstone bosons, the E6I3164zz
model predicts 234 (=255 —21) Goldstone bosons (not
210) with the quantum numbers

234=(1,1, 1)+(15,1, 1)+2(6,2, 2)

+{15,3, 1)+(15,1,3)

+(10,2,2)+ (10,2,2) . (3.15)

The difference of 24 between 642& and SO(10) comes

Hence, there exists one family of spin- —, quarks and lep-
tons, plus many exotics.

Now, we turn our attention to the mass matrix of
spin- —, particles. The diagonal couplings for each genera-
tion can be given by both Higgs reps 10 and 126, while
the off-diagonal generation-connecting couplings are

from one of the (6,2,2) terms. Note that while in
E6SO(10), 210 (=255 —45) Goldstone bosons belong to
a single irrep of SO(10) and thus all of them acquire
masses on the SO(10) scale, in E6I31 64q2, Eq. (3.15) tells us
that we must deal separately with a singlet Goldstone bo-
son with respect to G422. However, this would not be a
problem since the singlet should behave as a "Majoron, "
which couples very weakly to matter.

(2) The attractive features of the ordering of the gauge
hierarchy in the E6SO(10) model are replicated in the
E66422 model. Thus, a four-preon composite scalar like
(15,1,1) breaks 64&2 into 63j22 [see Eq. (3.5) for notation]
without reducing the rank of the group, whereas a six-
preon composite scalar like (1,2,2) breaks 63&& into 63&,
reducing the rank by one.

(3) When we come to the problem of the masses of
composite fermions, the E6SO(10) model seems capable
of providing a more "natural" explanation than the
E6(3G422 model for the large mass ratios among the three
generations of ordinary quarks and leptons. In the former
model, the rapidly increasing dimensionalities of the
SO(10) reps may offer a simple explanation of the increas-
ingly larger average masses of the three generations. In
the latter model, we end up with exactly the same three
generations of ordinary quarks and leptons and thus we
must seek another explanation of the mass ratios. One
possibility is to differentiate (4,2, 1) (—= T) and (4,1,2)
(—= V) in the E66422 model. In that case it has been
shown that TTT (together with VVV) gives rise to one
generation and TVV (together with TTV) gives rise to two
generations. By applying an argument of Nussinov's, it
seems possible to show that M(TVV))M(TTT). This
mass inequality, together with the 2 & 2 mass matrix asso-
ciated with the TVV composites, could still lead to a satis-
factory mass ordering of the three generations. The corn™
parison between the E6SO(10) and E664q2 models be-
comes more subtle when we look at the exotic fermions
that they predict. In fact, the G4qz quantum numbers of
the exotic fermions are exactly the same for the two
models. The only difference arises from the identifica-
tion of which exotic composite belongs to which genera-
tion, a nuance which conceivably could be checked by ex-
periment.

IV. CONCj' UMNCz REMARKS

In this paper, we have reexamined the choice of a possi-
ble three-fermion preon model of quarks and leptons, by
taking account ab initio of the mass-inequality constraint
on vectorlike composite theories and by referring to the
composite states in a minimal way. The constraint found
by Weingarten-Nussinov-Witten can be circumvented by
insisting on chiraI coupling of preons to metagluons. This
approach leads uniquely to E6 as the metacolor group be-
cause it is the only simple group with a single complex
anomaly-free irrep that contains a singlet in the three-
preon composite rep and can be asymptotically free. This
is to be contrasted with QCD where two basic complex ir-
reps for quarks, 3 and 3 of SU(3), are responsible for its
vectorlike character and ensure its freedom from
anomalies. (Note that we use Weyl fermions. ) An impor-
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tant difference between the SU(3) color and the E6
metacolor groups also shows up in connection with the
application of the generalized Pauli principle to three-
fermion composites: SU(3)c contributes an antisym-
metric part to the color singlet, while E6 contributes a
symmetric part to the metacolor singlet. The choice of E6
as the metacolor group seems inescapable, in the sense
that it is very natural to use one complex irrep for a chiral
theory and two conjugate complex irreps for a vectorlike
theory.

The choice of the color-flavor symmetry GCF also turns
out to be remarkably restrictive under some general condi-
tions: that the metacolor group is asymptotically free and
the gauged sector of GcF is free from anomalies. If we
limit ourselves to a single complex irrep of the gauged
subgroup of GCF, then we are compelled to choose the
gauged subgroup to be SO(10) with %=16. This con-
clusion follows without using any input from the observed
family structure of quarks and leptons.

If we enlarge the number of complex irreps of the
gauged color-fIavor group to two and take account of the
observed family structure of the quarks and leptons, we
are led to 6422 with K = [(4,2, 1)+(4,1,2)] as the only vi-
able possibility (see the Appendix). Since 6422 is a (maxi-
mal) subgroup of SO(10) and 16 decomposes into
(4,2, 1)+(4, 1,2), this model is evidently a close relative of
the E6SO(10) model and, indeed, makes very similar
predictions (as noted at the end of Sec. III).

What are the properties of the E6SO(10) preon model
that sustain the hope that we may be on the right track to
obtaining a solution to the generation problem for ordi-
nary quarks and leptons? These encouraging properties
are the following: (1) A good reason exists why a sub-

group of the global color-flavor symmetry group must be
gauged. (2) All Goldstone bosons [210 of SO(10)] arising
from the breaking of the global SU(16) color-flavor sym-
metry down to SO(10) become pseudo-Goldstone bosons
via SO(10) gauge-boson radiative corrections and thus ac-
quire masses of the order of the SO(10) scale. Hence, the
Goldstone-boson problem is tractable in this model and
there is no need to satisfy the 't Hooft anomaly-matching
condition at the global SU(16) level; it suffices to do so at
the SO(10) level. (3) The chiral nature of the model im-
plies that there are no metacolor-singlet two-preon corn-
posites and so no contributions to quark and lepton
masses. [This fact also affects the decays of exotic
fermions —in contrast, in QCD, the high-mass states al-
most always decay into low-'mass states plus two-quark
scalar composites (pions, etc.).] It turns out that even the
four-preon composites are incapable of giving masses to
quarks and leptons. Only the six-preon composites and
beyond are capable of giving masses. This is the first clue
to understanding the order of the gauge hierarchy and
may help to explain why the masses of composite quarks
and leptons are much lighter than the metacolor scale. (4)
The generalization of the Pauli principle to the metacolor
degree of freedom leads to three spin- —,

' irreps of SO(10),
namely, 14, 144, and 1200. %'hen these reps are decom-
posed in terms of the G422 quantum numbers [the
SU(5) X U(1) path must be rejected], one is able to identify
precisely three generations of ordinary quarks and leptons

and a large number of exotic fermions [which are "inter-
nally" excited in the quantum numbers of SU(2)L, ,
SU(2)~, and/or SU(4)]. Note that there are no mirror fer-
mions. Since our approach is totally group-theoretical,
dynamical considerations may reduce the number of exot-
ic fermions. This may alleviate any potential conflict in
the renormalization group analysis. (5) Because of the
chiral structure, all the masses of the exotic fermions will
be of the order of M ( WL ) or M ( Wz ). Thus, if they do
exist, they should be seen in the not-too-distant future. (6)
The occurrence of each generation of ordinary quarks and
leptons corresponds to each of the three increasingly
larger dimensional reps of SO(10). This feature offers the
hope of explaining the substantial increases in mass as one
moves from one generation to the next. This model even
contains within it a mechanism that decouples the third
generation from the first two, a phenomenon which seems
to be showing up at least in the quark sector.

The observations (1)—(6) spelled out above make it clear
that the E6SO(10) group passes a number of important
tests. However, the ultimate usefulness of the model will
obviously depend on its ability to make reasonably good
quantitative predictions. In order to do so, we must per-
form dynamical calculations, although we are far from
understanding the dynamics of chiral theories. Once
these are done, we should be able to answer the haunting
questions: (1) the values of the mass scales in the theory;
(2) the fermion mass matrix and the mixing angles; (3)
mass inequalities among composites. The E6s SO(10)
model must still pass the test of low-energy phenomenolo-

ACKNOWLEDGMENTS

We would like to thank Professor R, N. Mohapatra and
Drs. G.. Senjanovic and D. Weingarten for useful discus-
sions. This work is supported in part by the U.S. Depart-
ment of Energy Contract No. DE-AS05-80ER10713.

APPENDIX A:
DEDUCTION OF THE GAUGED GROUP HCF

WITH TWO COMPLEX IRREPS
The case of one complex irrep for HCF led to the

unique choice HCF ——SO(10) with %=16, independent of
considerations about the family structure of the fermionic
composites. In the case of two complex irreps, there are
initially several choices, but the family-structure argu-
ment eliminates all but one, namely G42q [a maximal sub-
group of SO(10)]. Hereafter, for convenience, we do not
distinguish between HCF and HCF.

We begin by considering all possible combinations of
two complex irreps of various groups with their dimen-
sion less than 22 (the ASF condition). To avoid arbitrari-
ness, we assume that HCF does not contain any U(1)
groups as factors.

First, consider the case when HCF is simple. Since we
assume that the representation is complex, ASF restricts
the group to be SU(n) (n )3) or SO(10). Representations
that can be used are 5, 10 of SU(5); 6, 15 of SU(6); n of
SU(n) (n )7); and 16 of SO(10). Of course, their conju-
gates can also be used. The way to decide which one to
choose depends on how we embed the gauged group and
how we identify the ordinary fermions. The trivial two ir-
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reducible reps with no anomaly are N =n+n of SU(n)
( n & 3), but these are real. The nontrivial combination has
only one solution: N =5+10 (or its conjugate) of SU(5).
The combination of 6 and 15 is not allowed because of the
anomaly. Thus, for a simple Hc~, the only solution is:

Hcz ——SU(5) and N =5+10 (or its conjugate) . (Al)

Hcp ——SO(10)X SU(2)

For the case where Hcp is a product of two simple
groups, i.e., Hc~ ——G

& X Gz, we have two possible
quantum-number assignments: one is N =(r&, I)+(1,rz)
and the other is N=(r~&, r&2)+(rz&, r22). Since we as-
sume that the reps are complex, one of 6; must be SU(n)
(n ) 3) or SO(10), using the ASF condition. First, discuss
the case where N =(r&, 1)+(l,r2). If G~ ——SU(n) (n & 3),
then a complex rep r

&
is not anomaly-free, since its di-

mension is less than 22. Thus, one must take 16 (or its
conjugate) of SO(10). Then, the dimension of r2 is limited
by 5. Since SU( n) ( n )3) is not allowed by the ANF con-
dition and the other simple groups do not have reps small-
er than 6, Gz is fixed as SU(2). Thus, the solution is

sumed to be complex, the total dimension X exceeds 2 1

(the smallest is 24). Thus, the ASF condition forbids this.
Similarly, the possibility of' Hcz being the product of
more than three groups is not allowed by the ASF condi-
tion, using two irreps. Thus, we have exhausted all possi-
ble solutions with X being two complex irreps and satisfy-
ing the ASF and ANF conditions. Initially then we have
more choices than for the case of one complex irrep. We
next examine each candidate Hc~ with iwo irreps to
ascertain whether it is capable of producing a minimum
of three generations of ordinary quarks and leptons.

APPENDIX B:
FAMILY STRUCTURES FOR GROUPS

WITH TWO COMPLEX IRREPS

First, we look at the solution (Al) where Hc~ ——SU(S)
N =5+10. (The conjugate-rep case is easily done. )

We use the Dynkin notation for reps and employ the sur-
vival hypothesis to count the number of light fermions.

The composites in this model are as follows:

and (A2)

N=(16, 1)+(l,n) (n =2,3,4, 5) .

For the case where N =(r», r&2)+(r2~, r22), the dimen-
sion of r J is limited by 8, using the ASF condition. Thus,
we cannot use SO(10) as one of 6;. One of 6; must be
SU( n) ( n )3). For G ~

=SU(3), one cannot use both 3 and
6, because of X=dimr)] X dimr]z + dimrz) X dimrzz
(22 (ASF) and the ANF condition. Thus, the solution
for SU(3)XSU(3) does not exist, although real solutions
do exist, i.e., (3,3) + (3,3) or (3,3)+(3,3). The case where
Hcp ——SU(3) X62, with 62 a real group, is not allowed,
since the solutions would be real by the ANF condition on
SU(3). For G~ ——SU(n) (n &4), n can only be 4 or 5-by
the ASF condition, since the dim of the Gz rep is greater
than or equal to 2. However, for 6& ——SU(4) or SU(5), be-
cause of the ANF condition, solutions do not exist, al-
though real ones do exist, i.e., (n, 2)+(n, 2) with n=4 or
5 and G2 ——SU(2). This covers the possibility
Hcv ——G ] X Gz.

For the case where Hcp ——G ~ X Gz X G3, the natural
quantum-number assignment is N =(r», r&2, 1)
+(rz&, i, rzz). Since the total dimension N is equal to
dim r

& ~ X dim r ]z + dim rz~ Xdim rzz, dim r;J is limited to
8. Since the anomaly must cancel and the rep must be
complex, 6 ~ must be SU( n) ( n & 3). The solutions are:

Hc~ ——SU(3) XSU(2) XSU(2) and N =(3,n, 1)+(3,l, n)

(n =2,3),

Hcp ——SU(4) XSU(2) XSU(2) and N =(4,2, 1)+(4,1,2),
(A3)

Hcp ——SU(5)XSU(2)XSU(2) and N=(5, 2, 1)+(5,1,2) .

Another quantum-number assignment is N =(r»,
r/3)+(r2~, rqz, r23). In this case, since the rep is as-

5 X 5 X 5 = (0003)s+2(0011)M + (0100)g,
10X 10X 10=[(0101)+(0300)]g

+2[(1000)+(0101)+(1110)]M

+ [(0020)+(2001)]~,

5 X 5 X 10=(0000)+2(1001)+(0110)+(0102),

5 X 10X 10=2(0010)+2(1100)

+ (0002) + (1011)+ (0201),

(B1)

where the subscript indicates the symmetry property, i.e.,
S (symmetric), M (mixed), or A (antisymmetric). If we
regard one family to be 5+ 10 of SU(5) [(1000)+ (0010)
in the Dynkin notation], or its conjugate
[(0001)+(0100)], there exists no family structure. The
use of the meta-Pauli principle to diminish the number of
available spin- —, composites does no good. The reason is
that the meta-Pauli principle yields only (0011) from three
5's and one [(1000)+ (0101)+ (1110)] from three 10's.
Thus, we have only one 5 and two 10's. Hence, we must
give up the idea of family identification at the SU(5) scale.
What happens if we identify families at the standard-
model scale, i.e., G 3z $? By using the survival hypothesis
to pair off (2,3) with (2, 3) and (1,3) with (1,3), where we
use the [SU(2), SU(3)] quantum numbers, we are left with
7(2,3) + 5(1,3) + 13(2,1) + 10(1,1) without the meta-Pauli
principle and 7(2,3) + 5(1,3) + 7(2, 1) + 7(1,1) with the
meta-Pauli principle. Thus, the solution (Al) does not
yield the family structure at any scale.

Next, we look at the solution (A2) where

Hcp ——SO(10) XSU(2) with N=(16, 1) + (l,n) (n=2, 3,
4,5). Possible composites are known from the following
SO(10) quantum numbers:
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16X 16X 16=[(10001)+(00003)]g

+2[(00010)+ ( 10001)+ (00101)]~
+[(01001)]g ,

16X 16=[(10000)+(00002)]~+[(00100)]~, (B2)

16=(00001) .

The family structure at the SO(10) scale is given by
2(00010) and n (00001), i.e., (n —2) 16's without the
meta-Pauli principle. With the meta-Pauli principle, we
have one (00010) and n (00001), i.e., (n —1) 16's. Since

n can be 2, 3, 4, or 5, the number of families are 2, 7, 14,
or 23 without the meta-Pauli principle and 3, 8, 15, or 24
with the meta-Pauli principle. However, since the preon
(l, n) essentially plays the role of a generation quantum
number, the model is not interesting.

Lastly, we look at the solutions (A3) where
HCF ——SU( n) X SU(2) X SU(2) ( n = 3,4,5). However, these
solutions have been discussed in the TM paper and only
n =4 yields the right family structure.

Summarizing, we have shown that only
HCF ——SU(4) XSU(2) XSU(2) with (4,2, 1) + (4,1,2) is a vi-

able chiral three-preon composite model of quarks and
leptons when we allow two complex irreps for HcF.
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