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This paper concerns a relativistic model of a particle with internal structure: the quantum relativ-
istic oscillator. We distinguish the nonrelativistic limit of the overall motion from the nonrelativistic
limit of the internal structure. The latter limit is given in terms of a contraction between the algebra
of SO(3,2) and that of the three-dimensional harmonic oscillator. We analyze this contraction pro-
cess in detail and show that the quantum relativistic oscillator is the appropriate relativistic generali-
zation of harmonic internal motion.

I. INTRODUCTION AND SUMMARY

The relativistic quantum mechanics of extended objects
is of considerable current importance, both theoretically
and experimentally, primarily for determining and inter-
preting possible models for the spectrum of hadrons. The
relativistic rotator (rigid string or rigid stick), the sym-
metric top, the relativistic oscillator, and the relativistic
string are examples that have received more or less exten-
sive treatment. A unification of these models, at least in
part, can be achieved by the use of the spectrum-
generating-group approach, in particular by the relativis-
tic version using the group SO(3,2), which is itself an ex-
tension of the structure of the first relativistic
elementary-particle equation, the Dirac equation.

The present paper is concerned with the quantum rela-
tiuistic oscillator, a structure which may be defined in two
very different ways. One procedure is to give the Hamil-
tonian along with the Poincare generators and the genera-
tors of the SO(3,2) spectrum-generating group [see Eqs.
(4.1)—(4.5), below]. The quantum relativistic oscillator is
then obtained from a special class of SO(3,2) irreducible
representations (irreps) [see Eqs. (3.11)—(3.12b), below].
Alternatively, the quantum relativistic oscillator may be
defined as a restriction of the quantized relativistic string
to its lowest two modes: n =0 (center-of-mass transla-
tion) and n = 1 (lowest vibrational mode).

It is by no means obvious that these two definitions of
the quantum relativistic oscillator are in any way related,
nor is it obvious that these definitions achieve the desired
relativistic analog to the three-dimensional nonrelativistic
oscillator. %'e shall demonstrate that there exists a gen-
eral class of irreps of SO(3,2) that indeed fulfills our re-
quirements.

In considering the nonrelativistic limit of these models
one must keep in mind that, roughly speaking, two limits
of motion are involved. The first kind of motion is an

overall motion of the center of mass. The second kind is
internal, setting up the mass spectrum of the particles.
There is an analogy with the Dirac equation where the
internal motion corresponds to the Zitterbemegung.

The nonrelativistic limit in the sense of limiting oneself
to particle states which have a slow (relative to the speed
of light) motion of the center of mass is easily obtained.
These particles have the same mass spectrum as the parti-
cles of the relativistic theory. This is discussed in Sec. II.

The nonrelativistic limit of the internal motion is the
main topic of the present paper. The relativistic SO(3,2)
models considered, unlike the Dirac equation, allow an in-
teresting nonrelativistic limit for the internal motion. In
this limit one obtains the three-dimensional nonrelativistic
oscillator with its spectrum for the internal motion. To be
precise, in the rest frame of the particle we carry out an
"Inonu-Wigner" contraction for the SO(3,2) irreps. That
it is, in fact, sufficient to do just this in the rest frame will
be clear from the discussion in Sec. II.

Section III gives a brief resume of the SO(3,2) irreps
used in the contraction process. Section IV contains the
details of the contraction process by which we obtain the
nonrelativistic limit of the internal motion. We shall in
particular carry out in detail the contraction process by
which this class of irreps goes over into the nonrelativistic
three-dimensional harmonic oscillator, including the oscil-
lator Hamiltonian for the internal motion. The states be-
longing to an irreducible representation of the spectrum-
generating group SO(3,2) are uniquely labeled in the rest
frame by the representations of the SO(3)&(SO(2) sub-
group generated by S (the spin in the rest frame) and the
operator I o (see Sec. III). These two operators determine
the spin and a new "vibrational" quantum number,
respectively, of the set of Poincare irreps belongin'g to the
given SO(3,2) irrep. In the contraction limit we find that
the spin is related to the orbital motion of the (three-
dimensional) nonrelativistic oscillator, while the label sup-
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plied by I 0 contracts into the principal quantum number
of the nonrelativistic oscillator. For a somewhat different
approach, using a similar contraction, but not distinguish-
ing between internal and overall motion, see Ref. 8. The
final section, Sec. V, is devoted to conclusions.

PP;(X, t) = i— P;(X,t),

P P;(X,t)=(P +m )' P;(X,t),

Jp, (x,t) =X~ Pp, (x,t)+ ,' o—;Jp;(x,t),
(2.3)

II. NONRELATIVISTIC LIMIT OF THE OVERALL
MOTION OF THE MODEL

The nonrelativistic limit of a relativistic point particle
with rest mass m is, in physics, defined by taking the rela-
tivistic theory and considering only states which move
slowly: p ((m . For such states the Newtonian or
Schrodinger theory is a good approximation, provided one
uses as the Newtonian mass the rest mass of the relativis-
tic particle. Formally one may let c~ oo, or m ~ oo, but
this is not really what is the essence of the limit, c is fixed
(taken to be 1 in this paper) and Newtonian ballistics
works well using as mass the rest mass of the projectiles.

When taking the nonrelativistic limit of the Dirac equa-
tion there is a complication due to the Zitterbemegung
[this Zitterbewegung is analogous to the internal motion
of the SO(3,2) model of this paper]. The Dirac equation
may be cast in a manifestly covariant form as a constraint
on a four-component function g(x) of a four-vector x

(P "y„+m)g(x) =0 . (2.1)

PP(x, t) = —i $(x,t),

Pog(x, t) =p,(P'+ m ') '~'P(x, t),

The nonrelativistic limit of this equation may be dis-
cussed by studying solutions to (2.1), or more convenient-
ly, by introducing "Newton-Wigner" coordinates' via a
"Foldy-Wouthuysen" transformation. " These coordi-
nates correspond to an average position, averaged over the
Zitterbemegung. In these coordinates the Dirac equation
takes on a form which is equivalent to (2.1), but not as
manifestly covariant. The wave function in these coordi-
nates involves the average position X and t: P(x, t), the
generators for Poincare transformations, which for (2.1)
are the familiar P„, P„XX,+ —„' [y„,y„j, are'2

Ky, (X,t) = —,
' (PoX+XPo)y, (X,t)

+ , (P—,+m) 'tr;, &&PP, (x,t),
where i,j =1,2, . . . , 2s+1 and the a are the spin-s gen-
erators of the group SU(2). That (2.3) is a unitary irrep of
the Poincare group is easily checked, using the appropri-
ate inner product

(P,P')= f dx+P,'(X, t)P,'(X, t) . (2.4)

[P"P„f(P "I'„—)]1t(x) =0 . (2.5)

The operators I „are the generators S3& of a unitary rep-
resentation of SO(3,2), whereas g(x) takes its value in the
Hilbert space of that representation. This is discussed in
greater detail in the next section. The remaining six gen-
erators S&„, @=0,1,2, 3 of SO(3,2) appear (in analogy to
the —,

'
[y&,y„]) as the generators of the Poincare group act-

ing on g(x) of (2.5)

P P(x) = i —g(x),ax~
(2.6)

Mq Q(x) =(P„X P~q+Sp„—)Q(x) .

The operator P~ in (2.5) is the four-velocity operator, '

formally P"=P"/(P'P )'~, and the function f in (2.5) is
more or less arbitrary and determines the mass spectrum.

Just as for the Dirac equation, there exist coordinates
X,t for which the covariance is not manifest, but which
provide an equivalent representation. In this equivalent
representation the states are represented by a wave func-
tion P(x, t) with values for fixed X, t in the Hilbert space
of the unitary representation (unirep) of SO(3,2) men-
tioned in connection with (2.5). The inner product is
given by

In analogy to the Dirac equation the wave equations of
the general type with which we are concerned in this pa-
per may be given in a manifestly covariant form as a con-
straint

(2.2)
(P,P') =f dx(P(x, t),P'(X, t)), (2.7)

KP(x, t)=p3 g [Po X]+ P(x, t) .
2 Po+m

where the brackets on the right-hand side (RHS) refer to
the inner product in the Hilbert space of the SO(3,2)
unirep. The generators for the Poincare transformation in
this representation are

The nonrelativistic approximation to (2.2) is straight-
forward using P /m &(1, and leads to the familiar ex-
pressions. The nonrelativistic Hamiltonian is shifted by
the constant m and special attention must be paid to the
limit of the boosts K.

Actually, the form (2.2) of (2.1) is directly related to
Wigner s unitary irreps of the Poincare group correspond-
ing to massive particles. ' '" The doubling due to p3 in
(2.2) drops out and one has for any spin s

PP(X, t) = i g(x—,t),8

P y(X, t)=[P +f(l o)]' y(x, t),
JP(X, t) =(XXP+ S)P(x,t),
KP(X, t) = j —,

' (XP'+P'X)

+[p,+f(I,)'"]-'sxp) y(x, t) .

(2.8)
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Here (S);=cjkSJk, with Sjk from SO(3,2).
One may check in a straightforward way that (2.7) and

(2.8) give a unirep of the Poincare group with a mass
spectrum given by the operator

the indices p (@=0,1,2, 3) by adjoining 5 and denoting by
A the indices 0,1,2,3,5. In this notation these ten (Hermi-
tian) operators SzB ———SB~ obey the commutation rela-
tions

M =f (I o)'~ (2.9) [SgB,ScD]= —l ( ggcSBD+gBDSwc

Peahen doing this check one notices that all one really
needs is an internal Hilbert space with self-adjoint opera-
tors M and S defined on it which satisfy

gADSBC gBCSAD } ~

ggB ——diag(1, —I, —1, —1,1), A, B =01235 .

(3.1)

(3.2)

[M, S]=0, [S;,SJ ]=it,p, Sk . (2.10)

This then leads to the question: Why does one need the
other operators of the SO(3,2) structure? The answer to
this question appears to be that it is desirable for intro-
ducing interactions to have a simple manifestly covariant
form of the equations as in (2.5). The existence of such a
simple covariant form is guaranteed via the Foldy-
Wouthuysen transformation which connects $(X,t) of
(2.7) and (2.8) to g(x) of (2.5). This transformation in-
volves the So; and thus the entire SO(3,2) structure is in-
volved.

The nonrelativistic limit of (2.5) is obtained most easily
in the representations (2.7), (2.8), and (2.9). By neglecting
higher-order terms in P /M, where M is an operator
defined by (2.9), one obtains for the first four generators
of (2.8)

PP(X, t) = i g(—X,t),

p2
P'$(X, t)~ M+ P(X,t),

2M
(2.11)

III. BRIEF RESUME OF SO(3,2) IRREPS TO BE USED

We wish to collect here the relevant information' on
the particular class of SO(3,2) irreps to be used in the rela-
tivistic oscillator construction. The SO(3,2) group is gen-
erated by two types of operators: a four-vector, I

& (the
analog to the Dirac four-vector y„) and the "spin" opera-
tors, S&„———S„&, which generate a Lorentz group (these
operators are the analog to the Dirac spin operators
2 [yz, y~]). It is useful to denote I

& as S» and augment

JP(X, t) =(XXP+S)P(X,t),
where M =f(I'0)'~ . The limit for the boosts in (2.8) re-
quires more attention, but is not interesting for us, as we
are only interested in small velocities.

The nonrelativistic limit (2.11) shows a Schrodinger
theory with mass given by the operator f(I o)'~, and with
a shift of the Hamiltonian by the operator f(I o)'~ . In
other words, the mass in the nonrelativistic theory is
represented by an operator which is identical to the rest
mass operator of the relativistic theory (2.5). To some
this might be obvious by using the rest frame of the rela-
tivistic particle. The internal motion, which produces the
mass spectrum has been left alone and is still relativistic.
This is entirely analogous to what one does when discuss-
ing the nonrelativistic limit of the Dirac electron. The
next sections are concerned with the nonrelativistic limit
of the internal motion of the object.

The SO(3,2) group has two invariant operators con-
structed from the generators:

(a) the quadratic ("Casimir" ) operator

C2 —= —,SggS AB (3.3)

(b) the fourth-order invariant operator

C4= —8' 8'g,
where

(3.4)

8' = —,e SggSg)E (3.5)

SO(3,2) Z SO(3, 1)&SO(3),

while the other uses the maximal compact subgroup

SO(3,2}D SO(3) )& SO(2},

(3.6)

(3.7)

the latter two groups being generated by SJ (i,j=1,2, 3)
and by Fo.

The Majorana representations of SO(3,2)—termed the
"remarkable" representations by Dirac' —obey, in addi-
tion, the special relation

II'„,I"~}+IS„,S& I
= —5~, (3.8)

which has the consequence that the invariant operators
have the value

C2(Majorana) = ——,
'

C4(Majorana) =0 .

(3.9a)

(3.9b)

Moreover, Eq. (3.8) also implies that the eigenvalue of I o
and the spin [S —+j(j+1)]are related by

~O~J+ 2 . (3.10)

The spinorial relativistic rotator' is an algebraic reali-
zation of the generators of SO(3,2) using two pairs of bo-
son operators; the special relation, Eq. (3.8), is automati-
cally realized as well. The spinorial relativistic rotator

For compact groups the eigenvalues of the invariant
operators ( n in number, where n is the rank of the group)
uniquely specify the irreps, but for noncompact groups
the invariant operators may not be sufficient to distin-
guish the irreps. In particular, for SO(3,2) one needs, in
general, a third (invariant) label: the minimum (or rnax-
imum) eigenvalue of I 0 depending on whether I o is
bounded from below (or from above). We are interested
only in the multiplicity-free irreps of SO(3,2)—the so-
called "singleton" irreps.

There are two subgroup chains which are convenient
for discussing the irreps of SO(3,2). One chain uses the
Loreritz subgroup
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thus necessarily realizes the Majorana representations,
and, in fact, contains both the half-integer —spin represen-
tation j = —,, —,', —,, . . . , and the integer-spin representa-
tion j=0, 1,2, . . . , each with positive eigenvalues for I"0
(and hence positive values for the mass). There are four
Majorana irreps, the two mentioned above and a similar
pair having negative eigenvalues for I'0. [The special con-
dition, Eq. (3.8), has the effect of forcing the length of d&
to be constant in time, that is, (did~)(d&d")=0. (The
four-vector dz is the difference vector d&

——Y'& —Q&,
where F& is the center-of-mass position and Q& the
"charge" position. '

) This result shows that there is no Ui

bration, only rotation, in the spinorial relatiuistic rotator. ]
Since we are interested in the models for which vibra-

tion is possible —that is, the quantum relativistic
oscillator —we must go beyond the Majorana irreps. A
criterion for these more general SO(3,2) irreps is that they
permit contraction toith respect to the SO(3) subgroup
The contraction of some SO(3,2) representations with
respect to SO(3) has been discussed in Ref. 14 and the
contraction of compact orthogonal groups onto harmonic
oscillator symmetry has been studied in Ref. 18. For the
relativistic oscillator we are using yet another subclass of
SO(3,2) representations.

For the particular class of SO(3,2) singleton irreps
which we shall study, the Casimir invariant has the eigen-
value Ci ~—R, where R can take a continuous set of real
values and the invariant C4 has the value

g; =eS;0, %; =eI;, and u =e2I o, (4.1)

where e is the contraction parameter, a numerical parame-
ter. The contraction is to be carried out by letting e—+0
and S~o, I;, and I o become large, but keeping the opera-
tors g;, %.;, and u finite, i.e., we shall contract through a
series of representations.

In the limit we obtain the operators

g';=lim g;, m;—= lim%. ;, and u —= lim u .
@~0 e~o e~o

(4.2)

We introduce these definitions into the commutation
relations (3.1).

The indices AB divide into four groups, (5i), (50), (i 0),
and ( ij), and accordingly the commutation relations
separate into the following nine cases:

(5i, Sj):

IV. THE HARMONIC OSCILLATOR ALGEBRA
AS A CONTRACTION OF SO(3,2)

For the quantum relativistic oscillator we use the
SQ(3,2) irreps given in Sec. III. Its reduction with respect
to the SO(3) X SO(2) subgroup generated by S;J and I 0 has
been given in Fig. 1. The spectrum of S and I 0—yo is
identical with the spectrum of angular momentum and
principal quantum number of the three dimensional oscil-
lator.

I.et us now consider the contraction. For this, we intro-
duce new variables

—C„j;„(j;„+1)[R+(j;„—1)(j;„+2)], (3.11) [%.;,KJ]= ie S;J —-
[m;, vr)]=0 . . (4.3a)

where j;„is the minimum spin contained in the irrep.
A special case of this class occurs for j;„=0. From

Eq. (3.11) one sees that Cq vanishes. Moreover, the
minimum eigenva1ue for I o in the irrep is related to the
Casimir invariant R. Let us denote by yo the minimum
eigenvalue of I o. Then we have

(5i, 50):

[8;,u ]= i e g; —= —[m;, u] =0 .

(5i,Oj):

[%;,$J]= i5;Ju [—~;,g~]= i5,Ju . —

(4.3b)

(4.3c)

1
'Vo& 2

and one finds the relation

Ci~R = —,—(yo ——, )
9 3 2

(3.12a)

(3.12b)

(5i,jk):
[9;,Sjk ]= i (5IJ.Pk——5,k j)7r

~[m;,SJ]=iet~km. k . (4.3d)

We shall be concerned in the following with the special
irreps for which jm;„=0. It is helpful to give explicitly
the (j,y) content of such an irrep. Figure 1 displays this
information. '

O, YO+4

(SO, i 0):

[u,g;]= ie'5; - —[u,g';]=0

(SO, ij ):

[u,Sq]=0~ [u,SJ]=0 .

(iO,jO):

(4.3e)

(4.3f)

[i,~, +i
[ /

i,y, +3/

[2,&.+2
[

)
3,~,+3

2,Y +4
[g;,gj]= ie S;J [g;,—g~]=0 .

(iOj k):

(4.3g)

4, Y 0+4

(ij,kl):

(4.3h)

FICJ. 1. Reduction of the SO(3,2) irrep labeled by the invari-
ants C2 ——

4
—(yo —

2 ) and C4 ——0, with respect to the

SO(3)XSO(2) subgroup, labeled by (j,y). Here j;„=0 and
7mtn:—PO& 2 ~

[S;,SJ]=ie;JkSk . (4.3i)

The content of these contracted relations is easily seen to
be the following:
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The operator u functions as a multiple of the unit
operator commuting with everything;

The operators g and n each have commuting com-
ponents and obey the Heisenberg commutation relation
(with u as the unit operator);

Under the angular momentum operators S, the opera-
tors g and m. transform as three-vectors.

Before we can interpret these results more fully, howev-
er, we must study the behavior of the invariant operators
under this contraction. For the Casimir operator C2 we
have the result

C, =——,'S»S"=r„r~+-,'S„.S&,
which, using the substitution Eq. (3.8) becomes

(4.4)

u

e' e'
—&&+S S.

p2
(4.5)

—C4—= W" W~ ——W" Wq+( ,
' E„„p+—~"S~) (4.7)

where W&= —,d'"~ S &r . Using the substitutions, Eq.

(4.1), we find

I
(a) Wp —— S.P, — (4.8)

(b) W= —(uS —gXF),I
e2

(c) , e&„q+""S~—=f S .

(4.9)

(4.10)

Thus C4 is dominated by the term W W and we obtain
in the contraction limit (replacing u by the unit operator)

e C4 i, p
—(S—g'Xm. ) (4.11)

Hence in the contraction limit e C2 will become

e C2
~
q~p=u (4.6)

with u functioning as a multiple of the unit element.
Thus we see that C2 must increase in such a way that the
eigenvalue R multiplied by e stays finite in the limit.
The SO(3,2) representations given by Eqs. (3.11) and (3.12)
do indeed have the property that this limit can be realized:
one takes yp —+ no with E (yp)~const. If we fix the scale
so that e yo —+I, then we achieve the result that in the
limit e I 0~I, that is, we obtain u =I.

Consider next the invariant C4. This, from Eq. (3.4),
has the form

obtained the result

S=j;„,+I (4.14)

where we have defined the orbital angular momentum of
the oscillator to be I, with

(4.15)

and the "intrinsic" spin j;„,having the eigenvalue

lint 3int~J min(J min + 1 ) (4.16)

C, =r,' —I I-+~o,S"+S
and the eigenvalue for C2 is given by

(4.17)

The interpretation of the limit for the invariant C4 is
then clear: S is the total angular momentum (in the rest
frame) of the extended object. In the contraction limit,
this operator is seen to consist of two parts, an intrinsic
spin j;„, [whose value is the minimum value of total angu-
lar momentum belonging to the multiplicity-free SO(3,2)
irrep] and an orbital angular momentum I (whose value is
determined by the orbital angular momentum state of the
three-dimensional oscillator). For the special case
j;„=0,we see that, in accord with the earlier result, the
angular momentum is entirely orbital. Let us remark that
this situation also agrees with the results for the relativis-
tic string if we hmit the oscillators to only the lowest os-
cillator mode. Then the spin is once again generated by
the orbital motion of the oscillator. SO(3,2) representa-
tions with j;„&0correspond to the lowest mode of the
"spinning string. "

We see that for the contracted group, I o appears no-
where on the right-hand side of a commutator relation.
Hence we are free to modify I"p into I p subtracting from
it a term = I je in order to obtain an operator which we
can use in the limit as giving the mass in the rest frame.
To do this we need to calculate I o to second order.

For the evaluation of 1 p to second order, we note that
the contraction limit, as determined by the commutation
relations, makes no statement as to higher orders: the
only possible relation must accordingly be representation
dependent. (This is true also for the nonrelativistic limit. )

Thus we see that we must use the invariant operators to
obtain the required relations, and the Casimir invariant
C2 must suffice, since we have already used C4 ——0.

From Eq. (4.4), we see that C2 and I p are related by

For the SO(3,2) irreps in which we are interested, the
minimum spin is zero and, in consequence [see Eq. (3.11)],
C4 is also zero. It follows that we must have

S=gX~. (4.12)

For this special class of representations (j;„=0), we
see that the orbital angular momentum of the oscillator
motion becomes the "spin angular momentum" of the
states in the irrep.

More generally, for the SO(3,2) irreps that have j;„&0,
we find [from Eqs. (3.11) and (4.6)] that

C2= ——.+(1'p—2) .9 3 2 (4.18)

We have already determined that e yo~ I.
Introducing the variables of Eq. (4.1), we see that

2 —2 -2 1/2
9 1 3——+ ——— + +
4 ~2 2 ~2 ~2

=—+ —,'(m. +g —3)+O(e ) .
+2

(4.19)

E C4 ~Jmin (J min + 1 ) (4.13)
We shall be interested in models where

Using the limit found in Eq. (4.11), we see that we have (4.20)
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and in the rest frame

POP =—ro ——Mo roo & 2

CX

(4.21)

rest frame, " leaving the internal motion relativistic. Next,
one may take the nonrelativistic limit to the internal
motion using the contraction described in Sec. IV.

where M0 ——I /a. We see that the expansion of
PQP /M0 must be the same as the expansion of I 0 given
in (4.19). The effective Hamiltonian II is defined by the
second-order term in the expansion of Pa

Mo 3PD~ +@II+0 (e ) .
E

(4.22)

By identification of the second-order terms in (4.21) we fi-
nally obtain

H = —,
'

MQ [ ,' (m +—g 3)]—
which is the Hamiltonian for the internal motion.

(4.23)

V. NONRELATIVISTIC LIMIT OF THE INTERNAL
MOTION OF THE QUANTUM
RELATIVISTIC OSCILLATOR

In the models of the general class described by (2.5)
there are two choices involved. The first choice is that of
a unitary representation, SO(3,2), which gives the I z and

Sz . The second choice is that of the function f. De-
pending on these choices one obtains the quantum relativ-
istic oscillator, ' the quantum relativistic rotator, or pos-
sibly other structures. '

For the quantum relativistic oscillator we use the irreps
given in Sec. III. For the function f in (2.5) we pick
(1/a')P "Iz, where a' is the slope parameter 1/a',

P"Pp —,P "I
q P(x) =0 . (5.1)

The nonrelativistic limit, the contraction of the group
SO(3,2) of Sec. IV could be carried out straightforwardly
in the form (2.8), which is entirely equivalent to (2.5). In
(2.8) the only operators of SO(3,2) which enter are the
mass operator [(1/a')I 0]'i and the spin operators
(S);=ejkSJk. In the form (2.8) the contraction is thus ob-
vious when one obtains an internal group spanned by the
S;1 and the "nonrelativistic Hamiltonian" of (4.21). The
model obtained in this way is fully relativistic; it reduces
to a family of unitary irreps of the Poincare group. Some
might claim this model to be the "relativistic harmonic
oscillator. " However, this model has a serious disadvan-
tage. The contraction makes the transformation between
the two equivalent forms (2.5) and (2.8), which contain the
S0; of SO(3,2), singular and hence these (2.8) after the
contraction no longer have the explicitly covariant form
(2.5). Thus it is not clear how to introduce interaction.

To summarize, two nonrelativistic limits exist. One
may take, in a relativistically invariant way, the nonrela-
tivistic limit of the internal motion. The model thus ob-
tained is described by a version of (2.8), but does not pos-
sess a manifestly covariant form (2.5). What makes much
more sense is first to take the nonrelativistic limit of the
overall motion. This leads to a model of a Schrodinger
particle, still with the mass spectrum of the original rela-
tivistic theory. This is just looking at the particle "in its

VI. CONCLUDINCi REMARKS

d„=S„P'(P„P"—) (6.1)

which, in the contraction limit, using Eqs. (4.1) and (4.21),
becomes'

0, p=0
d

gi r p —ir2r3
0

(6.2)

The coordinate d„ is a "relative coordinate, " the differ-
ence between the "charge position" X& and the "center-
of-mass position" Y&. (The designations in quotes are
taken from analogous quantities for the Dirac electron. )

It is somewhat more difficult to find the relativistic
analog to the observable ~, but it can be verified that the
corresponding four-vector is the operator

d„=M [I"„P„(P„I"/P P )](—P P ) (6.3)

In the contraction limit, using Eqs. (4.1) and (4.21) again,
we find that

d —+
0, p=0

P
7T—,p= 1,2, 3

0

(6.4)

We have shown in the preceding section that the quan-
tum relativistic oscillator, as defined by a special class of
representations of the SO(3,2) spectrum generator, under
contraction goes into the nonrelativistic three-dimensional
harmonic oscillator, kinematically and dynamically. Al-
ternatively one may regard this as defining a consistent
relativistic generalization of the nonrelativistic (NR) har-
monic oscillator. From this point of view, the result is of
interest in the extension of the nuclear shell model (based
on harmonic oscillators in large part) to the relativistic
domain. It is well known that the (NR) three-dimensional
oscillator has the symmetry group SU(3), and the con-
struction for the relativistic extension does, in fact,
preserve this symmetry: for the Hamiltonian, Eq. (5.1),
the rest frame (mass) is a linear function of the eigen-
value I o—+y. Each such eigenvalue is degenerate in spin,
and it is readily seen that this degeneracy —given by the
columns of boxes of Fig. 1—accords with that of the
SU(3) irreps [p00], where P =y —ya, using the nuclear
physics group chain SU(3) D SO(3).

Let us remark that the results of the contraction limit
are of interest in understanding the kinematics of "relativ-
istic relative coordinates. " We found that in the contrac-
tion limit, the internal motion of the oscillator is in the
observables g' and m. What are the relativistic observables
corresponding to these operators~

It is not hard to see that the corresponding relativistic
four-vector
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Thus in the rest frame we recover the momentum opera-
tor m. .

The operators d& and d& have recently been proposed
as a new relativistic generalization of the Heisenberg com-
mutation relations. The point we wish to make here is
that the contraction limit indicates that these observables
are in fact the proper relativistic generalization of the
internal coordinates of the oscillator. Because the com-

ponents of the operators d& (and similarly for dz ) do not
commute among themselves, unlike the g' (and m) there
may be difficulties in interpreting these observables as rel-

ativistic coordinates, but nonetheless the contraction limit
definitely shows them to be the proper relativistic general-
ization for the oscillator. After submission of the present
paper, other recent approaches to the relativistic oscillator
were brought to our attention.
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