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We study the thermodynamics of QCD in the limit of a large number of colors. It is argued that
in this limit there is an order parameter for confinement, which is the energy density itself. We
show that at a first-order confinement-deconfinement phase transition, the ratio of the latent heat of
the phase transition to the energy density of matter in the hadronic phase is infinite. We explicitly
study the 't Hooft model of two-dimensional QCD It. is shown that at any finite temperature the
thermodynamic potential is not computable in perturbation theory, and that the high-temperature
limit of the thermodynamic potential is infinite in the limit of zero interaction strength. We also
demonstrate how the Feynman graphs for the thermodynamic potential may be resummed to pro-
duce the same contribution as that from a resonance gas of hadrons, and show that the thermo-
dynamic potential which is nominally of order X is in fact of order 1. We argue that at an infinite
temperature, T-(,No )', where o. is the string tension, the system may become a deconfined gas of
quarks, but that there need be no phase transition at any finite temperature.

I. INTRODUCTION

The physics of finite-temperature and baryon-number-
density phase transitions has been the subject of much re-
cent numerical and analytical studies. ' Much qualitative
information has been abstracted from this analysis, but
many fundamental questions still lack a satisfactory
theoretical understanding. For example, it is not known
whether fermions destroy the confinement-deconfinement
phase transition of Yang-Mills theory in the absence of
fermions, although the mast recent Monte Carlo compu-
tations lend numerical support to the thesis that the phase

. transition is not destroyed. The relation between the
chiral-restoration phase transition and the confinement-
deconfinement phase transition is not understood, al-
though the most recent Monte Carlo data suggest that
these transitions are one and the same. 5 The latent heat of
the phase transition is measured and is large when ex-
pressed in terms of the energy density of the matter below
the phase transition. ' There is at least an order-of-
magnitude jump, and for practical purposes, the energy
density and pressure jump froin essentially zero to values
typical of an ideal quark-gluon gas at the phase transition.

Another problem which is poorly understood is the reli-
ability of perturbation theory far the computation of
physical quantities at finite temperature. Linde showed
that the thermodynamic potential may not be computed
in perturbation theory beyond a certain fixed order in a
weak-coupling expansion. In four dimensions, this order
is g for the thermodynamic potential. The breakdown of
a perturbation expansion is signaled by infrared singulari-
ties. It is widely believed that the thermodynamic poten-
tial is reliably estimated up to this order, and the uncer-
tainties in higher orders are small at high temperatures
where the coupling strength is weak. The nature of the
thermodynamic potential when these infrared singularities
are properly accounted far is not yet fully understood.

In an attempt to throw some light on these problems,

we have considered QCD in the large-N limit. In this
limit, some qualitative features of the numerical Monte
Carlo simulations are easily understood. As we shaH soon
see, bulk quantities such as the thermodynamic potential
itself provide an order parameter for the confinement-
deconfinement phase transition. In the deconfined and
confined phases of the system, the thermodynamic poten-
tial is of order N and of order one, respectively. If the
confinement-deconfinement phase transition is first order,
the latent heat of the phase transition is infinite, when ex-
pressed as a ratio to the energy density below the phase
transition, so that the transition is strongly first order. If
the transition is second order, in a finite-temperature in-
terval above the transition, the energy density changes by
an infinite amount compared to the energy density below
the transition, and so the transition is in this sense strong-
ly second order. At the phase transition, the large-N ex-
pansion breaks down.

In an attempt to glean more insight into the structure
of QCD in large N, we have studied QCD in large N in
two space-time dimensions, that is, the 't Hooft model. In
this model, we shall show that for any finite temperature,
quarks are always confined into bound hadronic states,
but at an infinite temperature, T-(No )', where o is the
string tension, the system may become deconfined. In the
high-temperature limit, (No )'~ && T &&o', the thermo-
dynamic potential may not be computed in perturbation
theory and is divergent in the limit o.~0. This
nonanalyticity of the weak-coupling expansion is a conse-
quence of infrared divergences, and violates the naive ex-
pectation of asymptotically free perturbation theory that
the thermodynarnical potential should be computable in a
systematic weak™coupling expansion.

We show in detail how, in the confining phase, the ther-
modynamic potential for the theory expressed in terms of
bound hadronic states arises from Feynman diagrams ex-
pressed in terms of quarks and gluons. We prove an in-
teresting theorem, which may be useful in other contexts,
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which shows that if the thermodynamic potential is pro-
jected into a color-singlet sector, the momentum integra-
tions corresponding to relative momenta of quarks in
bound-state wave functions may be directly converted
from summations over Matsubara frequencies to continu-
ous Euclidean integ rations. Under weak assumptions
about the nature of the bound-state wave functions, these
continuous integrations may be Vhck rotated into Min-
kowski space, and the Feynman diagrams may be ex-
pressed in terms of Minkowski-space wave functions.
This theorem makes possible the relation between quark-
gluon Feynman diagrams and a sum over hadronic reso-
nances for the thermodynamic potential.

In the summary, we finally discuss how corrections to
the large-N limit may affect our conclusions. We also at-
tempt to isolate the peculiarities of our conclusions which
arise from studying two dimensions rather than four.

II. GENERAL FEATURES GF
THERMGDYNAMICS IN LARGE N

The most obvious consequence of confinement is that
not all the degrees of freedom of Yang-Mills theory are
manifest in the set of physically accessible states. For ex-
ample, there are X —1 colored and one singlet state asso-
ciated with two fermions in the fundamental representa-
tion of SU(N). Only the singlet state is realized in nature,
as a consequence of confinement. In the large-N limit,
the number of inaccessible colored states approaches in-
finity relative to the number of singlet states.

In a finite-temperature and baryon-number-density sys-
tem, this simple observation has far-reaching and amusing
consequences. ' '" (Although many of the results that we
shall discuss in this section have already been discussed in
Ref. 10, we include them here for the sake of complete-
ness. ) At high temperatures, if there is a confinement-
deconfinement phase transition, the number of degrees of
freedom of the system must change by an infinite amount.
The entropy, pressure, and energy density at some finite
temperature above the confinement-deconfinement tem-
perature must be infinite compared to that below this
temperature. If the phase transition is first order, the la-
tent heat is in this sense infinite, and if the transition is
second order, the transition is in this sense infinitely
strong second order. These bulk quantities themselves
therefore play the role of order parameters, and the con-
cept of a confinement-deconfinement phase transition is
well defined.

The sense in which the latent heat of the confinement-
deconfinement phase transition becomes infinite may be
understood by considering the thermodynamic potential
in the deconfined phase at very high temperatures. At
such temperatures, asymptotically free perturbation
theory suggests that the thermodynamic potential is given
by the two diagrams shown in Fig. 1. These diagrams
give ideal gas contributions for X —1 gluons and NfN
quarks, where Ny is the number of quark flavors:

0 ~ [2&c(N' —1)+4x(—, ) xNfN)T'.

FIG. 1. The ideal-gas contribution to the thermodynamic po-
tential for (a) quarks and (1) gluons.

For any finite temperature T, the thermodynamic poten-
tial is infinite as X—+ oo. Below the phase transition, the
system is described by a color-singlet hadronic gas, and
the thermodynamic potential is therefore of order one as
N~ 00.

In 3+ 1 dimensions, it has been recently shown that
the confinement-deconfinement phase transition in the
limit of large Ã is first order. ' The number of degrees of
freedom of the system therefore jump by an infinite
amount at the phase-transition temperature. The order of
the phase transition, and even its existence, is not clear in
other space-time dimensions.

We therefore see that the confinement-deconflnement
phase transition might generate an infinite change in the
bulk properties of the system. In reaching this con-
clusion, we have implicitly assumed that this phase transi-
tion occurs at finite temperature even in the infinite-N
limit. If this is not the case, then the arguments presented
above clearly do not apply since at an infinite tempera-
ture, the bulk propeities may become infinite without a
singularity. Let us assume, for example, that in the
inflnite-N limit there is either no deconfining phase tran-
sition or that the transition occurs at a temperatureT-¹(p &0). Asymptotically free perturbation theory
may be a numerically accurate approximation at large
temperatures in these finite-X theories, but the tempera-
ture at which this approximation becomes good ap-
proaches infinity as N~ ao. As a result, when we consid-
er the N~ oo limit of these theories, asymptotically free
perturbation theory is never a valid approximation at any
finite temperature, and there need not be any infinite
change in the thermodynamic potential of the system at a
finite temperature.

In the two-dimensional 't Hooft model which we shall
study either the system never becomes deconfined, or
deconfinement is realized only at infinite temperature.
The asymptotically free perturbation theory is never valid
at any finite temperature, at least in the large-N limit.
This is probably not the case for four-dimensional
theories. In four dimensions, asymptotically free pertur-
bation theory may be a valid approximation to bulk quan-
tities such as the thermodynamic potential at some finite
temperature. This should be true even in the large-E lim-
it for T ~~A where A is a scale factor which characterizes
confinement scales. Since at low temperatures the system
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0=—g T I lnI1 —exp[ —p(k +rn; )'~z]I .
2m

(2)

At high temperatures, the dominant contribution to the
sum over states in Eq. (2) is for large-mass mesons. Since
there are a large number of these mesons, and the thermal
factor does not greatly suppress the contribution of
mesons with mass m & T, the sum over these large-mass
mesons is expected to give extra factors of T in 0 relative
to the contribution of any single low-mass meson. To see
in detail how it works, we note that at large temperatures,
the meson masses are

is a confined hadron gas, there must be a phase transition
at some finite temperature.

The difference between two and four dimensions is that
the infrared behavior of phase space is much more singu-
lar in two dimensions. For example, the first-order
correction to the thermodynamic potential, shown in Fig.
2, is linearly divergent. To see this, observe that the in-
frared singular contribution to this graph occurs for zero
Matsubara frequency in the gluon line. The remaining
momentum integration diverges as dk/k, that is, linear-
ly. In four dimensions, the first noncontrollable infrared
divergences occur in order g .

The infrared limit may be a little more severe for QCD
at large N than for finite N. At finite N, the infrared
singularity in Fig. 2 at zero gluon momentum may be
tempered somewhat by the insertion of fermion bubbles,
as shown in Fig. 3, and a temperature-dependent gluon
mass might be generated. If this is the case, then infrared
singularities may not be a problem at least until some
higher order of perturbation expansion. The severe
infrared-singular structure of large-N QCD makes the
infrared-finite ideal-gas contribution, Fig. 1 and Eq. (1),
invalid at any finite temperature. This is a little surpris-
ing, since two-dimensional QCD is a theory with a dimen-
sional coupling constant, and conventional wisdom would

say that at high temperatures the contributions to the
thermodynamic potential arise from high-energy quarks
whose interactions are insignificant. The surprise is that
the infrared interactions are what are in fact dominating
the thermodynamic potential at any finite temperature.
The breakdown of perturbation theory may be seen by ex-
plicitly computing the thermodynamic potential. The
thermodynamic potential may be represented as a sum
over meson bound states of quark-antiquark pairs. To
leading order in large N, these mesons do not interact, so
the sum is over noninteracting mesons,

FIG. 3. Insertion of fermion bubbles in the first-order correc-
tion to the thermodynamic potential.

T4=a
us

(4)

where a is a constant of order one.
The expression for the thermodynam'ic potential given

in Eq. (4) is appropriate for the high-temperature limit of
an ideal gas in four dimensions, not two. The extra
powers of T may be understood to arise from the large
number of states which contribute to the thermodynamic
potential at large T. Also, for the contribution of a free-
quark gas, we expect a factor of N in the thermodynamic
potential, which is absent. Notice that the thermodynam-
ic potential is divergent in the limit a, ~O. This singular-
ity reflects the breakdown of perturbation theory in the
large-N limit. In general, the thermodynamic potential is
singular in the limit that a, —+O. .In this limit, the sum
over resonances is not damped by the thermal factor, and
the large i contributions to the sum lead to a divergence.

, Put another way, by scaling, large T corresponds to small
a„and we already have seen that the high-temperature
limit is singular.

This structure of the thermodynamic potential suggests
that an unconfined quark-gluon plasma might be pro-
duced at infinite temperature at infinite N, or at some
temperature T-QNa, for finite but large N. Recall
that the thermodynamic potential for an ideal gas of
quarks in two dimensions is

where a, =Ng /4n is the dimensional coefficient which
characterizes the string tension, and a is a constant of or-
der one. The quark masses do not enter this relation for
the large-mass states which we consider. Up to a numeri-
cal constant, a, is the string tension, a, -o..

At large masses, the sum over i in Eq. (2) may be re-
placed by an integral. We find

Q= —T I di lnI1 —exp[ P(k—+ma, i)' ]J
2m

FIG. 2. The first-order contribution to the thermodynamic
potential.

0-NT
Gluons do not contribute to the thermodynamic poten-

tial in two dimensions since there are no dynamical propa-
gating gluons. (One degree of freedom is gauge and the
other is constrained by Gauss's law. ) Equations (4) and
(5) for the thermodynamic potential agree when
T-+Na, . Also, at this large temperature, the effect of
interactions may become significant. %'e argued before
that in calculating the partition function, the effects of in-
teractions could be ignored, since they are suppressed by
one power of N in the large-N limit. As the temperature
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becomes large, the typical mass of a particle, which gives
contribution to the partition function becomes of order T.
Since the nuinber of particles with mass (T is of order
T /a„ the density of the particles grows with tempera-
ture T /a, times faster than that for a gas of free parti-
cles of a single type. Because of the rapid growth of num-
ber density, the effect of multimeson interactions becomes
significant at a temperature T-QNa„when the extra
power of T /a, compensates for the power of N ' in the
interaction strength.

We can now understand how a confinement-
deconfinement phase transition might be dynamically
realized at a finite temperature in four space-time dimen-
sions. In four dimensions, the number of states which
contribute to the partition function grows exponentially,
not quadratically, as the temperature increases. In some
circumstances, this exponential growth may result in an
accumulation of mesons contributing to the partition
function as T~T, from below. At T„ the number of
states which contributes to the partition function would
grow indefinitely, and viewed from a world of hadrons,
there would be a Hagedorn limiting temperature. ' As the
limiting temperature was approached for any finite N, the
effects of multimeson interactions would become impor-
tant, and the large-X expansion, applied to the hadronic
world, would break down. Above T„the thermodynamic
potential would become infinite when measured in terms
of the thermodynamic potential below T, . As T ap-
proached T, from above, at some temperature singular
long-distance interactions among quarks would become
sufficiently large, and the perturbation expansion might
break down. Another possibility is that the perturbation
expansion remains valid in the quark-gluon world, but
there is a first-order phase transition generated by the pos-
sibility that hadrons might exist as a resonance gas at
much lower free energy below T, .

It seems that as a necessary consequence of these argu-
ments, there are two different ways to implement the
large Nexpansio-n for the thermodynamic potential. In
one method of expansion, a hadronic gas results. In
another method of expansion, a quark-gluon plasma re-
sults. At some temperature T, a confinement-
deconfinement phase transition results, and this phase
transition is just the result of one of these two methods of
expansion either being appropriate or inappropriate to the
temperature range of interest; that is, it is a consequence
of the breakdown of one form of the large-N- expansion in
favor of the other The nex. t three sections will be devoted
to finding a relation between these two methods of expan-
sion, and determining when one or the other method fails
to give a correct answer for the thermodynamic potential.

III. THE THERMODYNAMIC POTENTIAL
IN LARGE N

In this section we shall derive a perturbation expansion
for the thermodynamic potential. This expansion yields
the ordinary Feynman graph expansion for the thermo-
dynamic potential. It would be appropriate if there exist-
ed some range of temperature for which the system was
an unconfined quark plasma. Although this result is the
standard starting point for many analyses of the proper-

ties of a quark-gluon plasma in four space-time dimen-
sions, it is never applicable in two space-time dimensions.
We shall then indicate how a formal resummation of the
Feynman graphs may generate the thermodynamic poten-
tial in the confining phase, although a detailed derivation
of this result is left for the next two sections. This result
reexpresses the thermodynamic potential as a sum over
bound quarks in mesons. We also indicate how the con-
fining and the deconfining phase of any system may be
understood as the result of the breakdown of one form or
the other of the series expansion for the thermodynamic
potential.

The thermodynamic potential is

Q= —— ln Tre1

V

ln f [dA dgdP)e

where A is the gluon field, f and P are the quark fields,
and S is the Euclidean action confined in a semi-infinite
four volume PV,

PS= f dt f d x —4g Fg F~~

—y.B—y A +m P, (8)

with periodic (antiperiodic) boundary conditions on the
gluon (fermion) fields in the time direction. The gluon
chromoelectromagnetic field strength tensor is

The path-integral representation of Eq. (7) is not a con-
venient form for our purposes. A direct expansion in
terms of vacuum graphs leads to graphs with complicated
combinatoric factors. A more useful form is found by
differentiating the thermodynamic potential with respect
tom, :

For simplicity we have ignored the contribution from the
ghost loops, whose sole effect in the light-cone gauge is to
cancel the lowest-order diagram involving a single gluon
loop. The notation (0 ) for any operator 0 is

(0)= f [dAdgdg]0e' f [dAdgdg]e . (11)

The choice of integration constant is a little tricky since
in two dimensions, the limit o.,~0 is singular. We shall
take the integration constant for a, ~ao. In this limit,
the masses of all bound states diverge, unless the quarks
have precisely a zero mass which is a case we do not con-
sider. The integration constant is fixed by requiring that
the thermodynamic potential at infinite coupling vanishes.

In two space-time dimensions, it is always possible to
chose an axial gauge for which the gluon interactions van-
ish. In an axial gauge, there is only one field A and
f,b, Ab A, is zero. We shall always work in such a gauge.
The derivative of the thermodynamic potential may there-
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fore be expressed in terms of only the full gluon propaga-
tor.

This expression for the derivative of the thermodynam-
ic potential is best expressed in momentum space. %'ith

the free inverse gluon propagator as

D ~~I""(q)=i (q g"" q—"q",)

and the full propagator as

(12)

D""(q)= ig—f d x e''i "[&2"(x)A "(0)&—&3"(x)&&2 "(0)&],
the thermodynamic potential is given as

dq~ 28. 2II=- -,' e-' g f , D-...""(q) D.„(q)+ . g 'n&"-(q)&~„& &~.&~&s
0

(13)

(14)

This contribution is a vacuum Feynman graph and is
shown in Fig. 4.

The leading-order contribution to the 1/N expansion
for 0 is given by the graphs shown in Fig. 5. These pla-
nar diagrams give a contribution of order N in the decon-
fined phase. A heuristic way to avoid this problem in
two-dimensional QCD is to resum the gluon insertions,
and express this contribution in terms of the fermion
propagator computed to leading order in the large-N lim-
it. The quark propagator is shown in Fig. 6 in terms of
the irreducible quark self-energy kernel. The contribu-
tions of leading order in N to the self-energy kernel X,
which we shall call X~~~ and which yield the propagator
S~~~ are shown in Fig. 7. The contribution to the thermo-
dynamic potential is expressed in terms of S~i~ as shown
in Fig. 8. This graph may be thought of as vanishing
since the two fermion lines which appear correspond to
the dressed propagation of quarks. If the self-energy in-
sertion is computed with an infrared regulator, the self-
energy insertion leads to infinite-mass quarks, and there
would be no contribution to the diagram of Fig. 8. The
problem with this heuristic argument is that it is not
gauge invariant. In suitable gauges, the self-energy inser-
tion is perfectly finite. Also, a direct evaluation in light-
cone gauge shows that although there may be an infinite
self-energy insertion with some choices of infrared regula-
tion, the singularity may be removed by a shift of the fer-
mion momentum. Hence the high-momentum contribu-
tion of the loop integrals for Fig. 8 cancels this mass
singularity.

In Sec. IV we shall show that this contribution truly
vanishes in the confined phase, by considering the parti-
tion function properly evaluated as a sum, over gauge-
invariant states. At this point in our classification of dia-
grams, we shall assume that this is in fact the case, and
consider the next leading contributions in the large-S lim-

it. It is these contributions which are of zero order in N
as N approaches infinity, and should therefore give the
resonance sum in the confined phase. As we shall see
later, these graphs sum up to give the contributions shown
in Fig. 9. In this figure, T is the connected scattering ma-
trix element for quark-antiquark scattering. In Sec. IV we
shall explicitly see how in this diagram, scattering of
quarks and antiquarks sum up to give a sum over finite-
energy color-singlet meson states, as shown in Fig. 10. It
is plausible that this might occur given the structure of
Fig. 9. The scatterings generate bound-state poles, with
residues which are the bound-state wave functions.
Again, there are several problems with this heuristic argu-
ment. . One problem is that these wave functions are
evaluated with Euclidean momentum, and it is not obvi-
ous how to analytically continue this momentum to Min-
kowski space. It is also not clear at this stage how the
sum over frequencies gets converted to continuous in-
tegrations over momenta of the bound-state wave func-
tions. Finally, note that although the graphs of Fig. 9(b)
and 9(c) have the same structure as those of Fig. 9(a), we
are forced to write these as separate contributions because
of the coinbinatoric factors. It will also be shown in Sec.
IV that this mysterious combination is precisely what is
required to yield the derivative of 0, with the mysterious
factors arising from differentiating the meson mass with
respect to a, .

It is not yet clear how there might be two different
methods of summing the thermodynamic potential in four
dimensions, both of which are valid in large N, for the
confined and unconfined phases of the theory. We shall
show in Secs. IV and V that the thermodynamic potential
expressed as a sum over bound states, or as a sum over the
constituent quark and gluon states may be realized as two

d Q, t

dQ,
1+
2

FIG. 4. The thermodynamic potential in terms of the full
gluon propagator.

FICr. 5. The leading contribution to the thermodynamic po-
tential in the large-% limit.
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s (p) = -i()t) — ~Z)
FIG. 6. The quark propagator in terms of the fermion self-

energy kernel.

different limits of the same formal Feynman diagram ex-
pansion. We derive the Feynman rules of the system with
quarks and gluons as internal lines, taking into account
the fact that in calculating Tre ~, we sum over only
those states of the bulk matter which are color singlets. '~

In the thermodynamic limit, this constraint becomes ir-
relevant and we recover the usual Feynman rules. ' This
limit reproduces the correct partition function of the sys-
tem in the deconfined phase. This calculation is no longer
valid in the confined phase, and we believe that this is sig-
naled by incurable infrared divergences of the individual
Feynman graphs. Instead, we compute the amplitude by
taking the %~ 00 limit before taking the thermodynamic
limit. This limit is expected to produce the correct result
in the confined phase, since the spectrum of bound states
is independent of N in the large-N limit, and all the in-
teraction terms vanish in the same limit. We shall show
in Secs. IV and V that in this same limit, the Feynman
graphs expressed in terms of the quark and gluon lines
may be rearranged to reproduce the thermodynamic po-
tential as a sum over bound states. This calculation is no
longer valid in the deconfined phase, and we expect the
breakdown to be signaled by a divergence in the sum over
bound states, as implied by a Hagedorn spectrum of
bound states.

We now explain in some detail how these two limits
differ in the actual computation of the thermodynamic
potential. In order to impose the color-sing1et constraint
on the bulk system, we must first expand the partition
function in terms of the usual connected and disconnected
Feynman diagrams, use the rules of Sec. IV to project out
the color-singlet part of each diagram, and then try to ex-
ponentiate the answer. Let us analyze the contribution
represented in Fig. 11(a). Although the contribution
shown in Fig. 11(a) may be shown to vanish due to the
color-singlet constraint, the contribution from disconnect-
ed diagrams shown in Fig. 11(b) do not vanish if the num-
ber of such diagrams are of the order of X or larger than

In fact, the color-singlet constraint becomes irrelevant
when the number of such diagrams is large compared to
N. Since the contribution shown in Fig. 11(a) is propor-
tional to its volume, and the major contribution in the ex-
pansion e"= gx"/n! comes from n-x for large x, we
may conclude that the contribution to the exponential as-
sociated with the contribution shown in Fig. 11(a) will
come from diagrams of the form shown in Fig. 11(b) with
the total number of disconnected diagrams of order PVA,
A being the typical mass scale of the theory. As a result,
in the thermodynamic limit for a fixed N, we may ignore

FIG. 8. The leading-order contribution to Q expressed in
terms of S~.

the color-singlet constraint, and the leading contribution
to the partition function is given by the exponential of
Fig. 11(a).

In computing the thermodynamic potential in the con-
fining phase, however, we take the N ~ oo limit before the
thermodynamic limit. Then using the color-singlet con-
straint, we may show that the contribution to the partition
function from any diagram of the form of Fig. 11(b) is at
most of order unity, and not of order X. As a result, the
thermodynamic potential is of order unity. As we shall
show in Sec. IV, the thermodynamic potential calculated
in this way may also be identified with that calculated
form the sum over the mesonic bound states of the large-
1V limit.

Physically, these results may be understood as follows.
Figure 10 gives the dominant contribution to the thermo-
dynamic potential if the thermal media provides enough
shielding to produce quarks which propagate freely for
times large compared to the typical particle interaction
times. This happens in the deconfined phase. In the con-
fined phase, a quark cannot propagate freely unless it is
paired with an antiquark of opposite charge. Hence only
that part of Fig. 11(b) which corresponds to the propaga-
tion of a color-singlet bound state of a quark-antiquark
pair contributes to the partition function.

(b) (c)

-i ~z„

FIG. 7. The. leading-order contributions to X.

FIG. 9. The contribution to 0 of order one in the large-S ex-
pansion. T is the quark-antiquark scattering matrix in this ex-
pression.
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(o) (b)

I

FIG. 10. A sum over meson states for the thermodynamic
potential.

FIG. 11. Unclustered vacuum graphs which have singlet pro-
jections and may contribute to Q.

IV. COLOR-SINGLET PROJECTION

In this section we shall continue the discussion of the
thermodynamic potential. We shall carefully implement
the color-singlet constraint on the states in the partition
function, by expressing the thermodynamic potential as a
sum over color-singlet multiquark states. We then derive
the Feynman rules for evaluating the thermodynamic po-
tential. In Sec. V we shall show how these Feynman rules
give an expression for the thermodynamic potential in
terms of the bound states.

If we allow the states
~

n & appearing in

e —pv"=g(n (e p )n&, (15)

to be arbitrary multiquark states, then the Feynman rules
for evaluating 0 are the standard ones. The Feynman
graphs are evaluated with Euclidean metric, and energies
are replaced by Matsubara frequencies with the discrete
values (2p+1)n./P for fermions and 2pn. /13 for bosons.

We shall, however, restrict the sum in Eq. (15) to
color-singlet states. As we shall soon see, the Feynman
rules for evaluating quantities with this constraint are
somewhat different than those without the constraint. We
accomplish the color-singlet constraint by making use of
the color-singlet projection operator. ' Let U represent a
color rotation generated by the group element g. The
color-singlet partition function is

PvQ g p e PHU g (16)
P

[dg] is the properly normalized Weyl measure which pro-
jects out color-singlet states.

For any element of a group g it is always possible to
find another element g' such that

U(g') U(g) U(g' ') = Ug(g) (17)

is diagonal. Since H commutes with all the color genera-
tors, we have

P

= y (p
~

U '(g')e P Ud(g) U(g')
~ p &

P

=g (p ~

P U (g) ~p& . (18)

If Q; denote the diagonal generators of the U(&) gauge
group, then we have

Tre P U~(g)=Tre P e (19)

where a; are the parameters characterizing the invariance
class of the group element g. Equation (16) may therefore
be written as

—Pvn [d ]Tre —PHe i iia Q.
(20)

Since all the diagonal generators commute with H and
with themselves, the integrand of Eq. (20) may be evaluat-
ed by replacing K with an effective Hamiltonian

K'=K ia;Q; .— (21)

Let us choose for convenience the generator Q; in such
a way that all its diagonal entries except the ith one is
zero. The ith fermion state is defined as the column vec-
tor whose only nonvanishing entry is the ith row. The ith
antifermion is the conjugate of the ith fermion. The [i,j]
gluon state is the state with the same quantum numbers as
the combination of the ith fermion and jth antifermion.
The operator g ai QJ gives a; /P, —aj /P, and
(a; —ai)/p acting on the ith fermion, jth antifermion,
and (i —j)th gluons states, respectively. The Feynman
rules for the color-singlet partition function of Eq. (20)
are now easy to derive. Note first that the extra term
i g. aj QJ /P is quadratic in the fields, and therefore con-
tributes only to the propagators of the various fields and
not their vertices. The propagators differ from the usual
propagators in Euclidean momentum space in the follow-
ing way. For the ith fermion propagator carrying
momentum k, the discrete variable k, which takes the
values (2n +1)n./P, is replaced by k —a;/P everywhere
in the propagator. Similarly, the [i —j]th gluon carrying
momentum k is modified by making the substitution
k ~k —(a; —aj )/P everywhere in the propagator.

%'ith these Feynman rules, we now analyze the thermo-
dynamic potential given by Eq. (20). We first analyze the
diagrams of order N shown in Fig. 5. Consider the
lowest-order contribution represented in Fig. 2. This con-,
tribution may be written as

Qg ——(2n /P)
&

~ 2 =(2n
&

2+1)w/p
f dk, dk, [(k', —a,. /P) +k, 2+~ ]-

&[(k2 aj/P) +k2 +ni ] f(k$ —a;/p, kp —a./p), (22)
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where f denotes the contribution from the fermion numerators and the gluon propagators. This equation may be rewrit-
ten as

p—cot
2 2 2 2

Qg ——f dt(dt's[(t( —a;/p)'+k('+m'] '[(t2 a,—/p)'+kg'+m']
r

p pt (
)&f(t( a—;/p, t2 aj—lp) co—t (23)

where the contour in the complex t plane is taken for each t integration as is shown in Fig. 12. Defining new integration
variables as

( fl al /p ~ (24)

t2 ——t2 —aj/p ~ (25)

Eq. (23) becomes

1 l p pt(
Qg —— dt(dt2 f(t(, t2) cot

g 2+k 2+m2 ] 2+k 2+m2 2 2

r

ai p pt2——+ —cot
2 2 2 2

——+ '
2 2

(26)

where we have dropped the primes from the new variables t( and t2. For the part of the contour integration in the, t(
plane where Imt& ~ 0, we expand

pt( —m+a(
cot

i (pt& +a; ). 1 —e ' . (1 i(P~, +&;)) g ( 1)~ i~(P&(+&;i
i (pt&+a;)1+e m=0

(27)

The sum is convergent for Imt( & 0. For Imt ( & 0, we expand as
—i(pt&+a;)

cot =i,(p, ,
i(1—e —— ' ') g ( —1) e

~+ai . 1 —e ' . —t'(pt&+ai) m
—&~(pt~+I )

(P l+ m=0
(28)

The cotangent term involving t2 may be expanded in en-
tirely the same manner. The part of the integrand which
depends upon P and a;, i =1, . . . , N is therefore a sum of
terms of the form

da e

( I &,,—,+N'5, ,0s, ,o .

fm$pt) i~2pt2 i~)g i~2~J.
e e e 'e (29)

where —m &m~ ~ oo and —ao &m2& ~. The traces
over the fermion loops require that we must sum over the
i and j independently from 1 N. (This is most e—asily
seen using the double line representation for the gluon
propagator. ) The result of this summation is to sum over
i and j on the terms shown in Eq. (29). Since all of the a
dependence is in this term, the rest of the integrand may
be taken outside the a integral, and we have to evaluate
the expression

For m( and mz not both zero, this diagram is of 1/N and
is nonleading compared to the magnitude of the color-
singlet meson contributions. On the other hand, the con-
tribution for m( —m2 —0 has no dependence on P. This
contribution affects only the vacuum energy and may be
ignored for our purposes.

The contribution from higher-order diagrams with one
fermion loop as given by Fig. 8, may be similarly shown
to be nonleading except for the vacuum contribution.
This is done by using the result, discussed in Appendix A,

(mt

inc(pi( im&pt& im(a; im2aj
~ ~ ~

~daje e e ' e (30)

If we had not imposed the color-singlet constraint,
there would not have been an a integral in Eq. (29)„and
all of the a's would be set to zero. The summations in
Eq. (30) would then yield N . Combining one factor of N
into the factor of g which multiplies Fig. 2, this diagram
would be of order N. We shall show that

Ret

FKJ. 12. The contour integration for Eq. (23).
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im&a; im2a; im a;
a e ' e . e '=0, r odd

i1 l2 ir
(32)

perm utations

(33)

if none of the mk's vanishes. If some of the mk are zero, then the sum over each of the corresponding a's gives a factor
of N. The contribution of the remaining terms may be carried out using Eqs. (32) and (33). The summation is over all
pairings from the set of m~, . . . , m„. Since only the term with all of the m s set to zero, which is a vacuum contribu-
tion, is nonvanishing in the large-X limit, we conclude that the graphs of Fig. 8 are nonleading relative to the meson con-
tribution.

We now discuss the contribution associated with two fermion loops as shown in Fig. 9. The contribution from these
graphs is at most of order unity. A typical graph with two fermion lines contributing is shown in Fig. 13. The contribu-
tion may be written as

N N

g f dp f [da]g . g g . . g f(k&+a&/P, . . . , k +a /P, k&, . . . , k p p), (34)
p0 k0i1 ——1 i =1

1 r r

where k denotes the spatial component of the loop momentum.
Note that some of the color indices in Fig. 13 are constrained to be equal due to group-theory factors. Also in the fer-

mion propagators, a;t/P is added to the momenta kt but is subtracted from the momenta p —kt. This is because the
momentum p —kt flows along the arrow while the momenta kt fiows against the arrow. As a result, a;t and kt always
appear in the combination kt +a;~/P. We may now express Eq. (34) as

r N 13tt a+a;t-f [d ]Xf dp f, ff« f(t, . . . , t„k, . . . , k„p',p)Q g ot
0 /=1 l =1 il =I

(35)

We may expand the cotangent as we did in the previous
analysis. Since to start with, the contribution was of or-
der unity, the only way we may get a contribution of or-
der unity after the a integrals is to set m; =0 in each ex-
pansion. This is equivalent to setting the cotangent to
unity in Eq. (35), or in other words, replacing the summa-
tion over the Matsubara frequencies kt by continuous in-
tegration over Euclidean momenta. Only for the momen-
ta po must a discrete frequency sum remain.

We have to this point concentrated only on connected
diagrams. We must also treat disconnected diagrams
since it is the expression for Z, which contains connected
as well as disconnected diagrams, and not lnZ( = —P VQ),
which contains only connected diagrams, over which the
a integrations are directly performed. We shall now dis-

cuss how the disconnected diagrams sum up when a glo-
bal color-singlet constraint is included. To study this, we
must first expand Z in terms of connected and discon-
nected diagrams, do the a integrals, and then sum up the
result We sh. all show that the total contribution from the
connected and the disconnected diagrams which survive
the a integrations may be written as e, where S is the
sum of the connected diagrams integrated over a and a
new class of diagrams which we shall discuss below.

First consider disconnected diagrams of the type shown
in Fig. 14. Contributions from these diagrams may be
analyzed in the same way as the contributions from Fig.
8. We may bring the contribution from the disconnected
diagrams into the form

f Qt dttdkt f [da]Q(t)

p-k&

Ptt —m +a;t
l ii=1

(36)

p-k

The cotangent functions may be expanded as in Eqs. (27)
and (28). The integrand is given by a sum of terms of the
form

FIG. 13. A typical graph involving two fermion loops which
contribute to the thermodynamic potential.

r Nf [da]exp i g mttt g[ g e
/=1 /=1 i/=1

(37)
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FICs. 14. One type of disconnected diagram which contri-
butes to the color-singlet partition function.

This contribution may be analyzed using Eqs. (32) and
(33). The largest contribution to Eq. (37) comes when all
the m's are zero. Combined with the explicit powers of
1/N in the coupling constant, this gives a contribution of
order N2. This is simply the square of the 0(N) vacuum
energy term, since this contribution is obtained simply by
replacing all the internal energy sums in Fig. 14 by con-
tinuous integrals. The next order contribution is of order
unity, and is found by replacing all of the m's except two
by zero. Let m; and m~ be the only two nonzero com-
ponents. This contribution may be evaluated using Eq.
(31). There are two cases. If both m; and mj come froin
the same bubble in Fig. 14, then the contribution factor-
izes into a product of 0(N) vacuum energy diagram and
an 0(1/N) contribution to the partition function from
the connected diagram represented in Fig. 8. This is
therefore not a new contribution to lnZ, and is already in-
cluded in the disconnected diagrams which sum up to
yield the clustered expression for Z. On the other hand if
m; and mj come from the different bubbles in Fig. 14, the
contribution may no longer be interpreted as a higher-
order term in the expansion of ei~, and must be included
in lnZ as a new contribution. Diagrammatically, we shall
represent these contributions as disconnected bubbles with
one loop from each bubble connected by a dashed line to
represent which of the m's are taken to be nonzero. A
typical example is shown in Fig. 15.

When we consider higher-order diagrams containing
more disconnected bubbles, we may expect to get more
new terms in the expression for lnZ. We shall now show
that this does not happen. Let us consider a set of discon-
nected diagrams. The contribution from these diagrams
may be expressed as in Eq. (36). The leading contribution
is of order N+ which comes from setting all the m's to

zero in Eq. (37). This term may be trivially identified
with the pth power of the 0(N) contribution to the vac-
uum energy in the pth order of expansion of e' . The
next order contribution is of order N~, which is ob-
tained from setting two of the m's to be nonzero. If these
two m's come from the same bubble, the contribution
may be identified with the product of the 0(¹') con-
tribution from the (p —1)th power of the vacuum contri-
bution and the 0(1/N) contribution to lnZ from Fig. 8.
If the two m's come from different bubbles, the contribu-
tion is identified with the product of the 0 (Ni' ) contri-
bution from the (p —2)th power of the vacuum energy
and the 0(1) contribution from the graphs of Fig. 15.

The only potentially new contnbuti. on to lnz may come
from graphs with four or more m's nonzero. The only
nonfactorizing contribution (which may not be expressed
as products of terms already in lnZ) come from terms of
the form shown in. Fig. 16, where the dotted lines connect
the loops for which the m's are nonzero. The m's at the
two ends of a dotted line are paired according to Eq. (33).
We lose four powers of N from each of these graphs since
four of the m's are nonvanishing. As a result, the contri-
bution from Fig. 6(a) is of order 1/N and that of Fig.
6(b) is of order 1/N. These graphs do not therefore con-
tribute to lnZ to order unity.

Finally, we want to deinonstrate that the combinatoric
factors associated with each graph works out to correctly
exponentiate the graphs. We shall see that this works in
an example, and not construct a full proof. This example
consists of graphs with 2p disconnected bubbles, and we
want to pick up the terms where each of the disconnected
bubbles is paired with another bubble, thus giving the pth
power of the graphs shown in Fig. 15. The combinatoric
factor desired of this graph is 1/p. , whereas the original
graph has a factor of 1/2p!. There are however
(2p!)/(p!2~) ways of pairing 2p objects; hence, the net
combinatoric factor is 1/Ip!2I'I. Absorbing the factor of
—, in the definition of the graphs shown in Fig. 15, we see
that we indeed get the correct coinbinatorial factor needed
for exponentiation. Also, by using the structure of Eq.
(33), we see that the contribution from the term with 2p
disconnected bubbles may indeed be identified with the
pth power of the contribution with two disconnected bub-
bles, because of the factorized form of the right-hand side
of Eq. (33).

This indicates the proof that the total contribution to

I
I

I

I
I

I

I

I
I

I

I

II

II
I

II
Ii

II

(a3 (b3

FIR. 15. A typical diagram which is a residue of a discon-
nected diagram after a color-singlet projection is taken.

FIG. 16. New, nonfactorizing contributions to the color-
singlet partition function arising from disconnected .vacuum
graphs.
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lnZ exponentiates, with the terms in the exponential con-
taining the vacuum energy terms, contributions of the
form shown in Fig. 13 with all the k 's being integrated
over a continuous range from —ao to ao, while the p is

I

summed over the discrete Matsubara frequencies 2nn/. P
and contributions of the form shown in Fig. 15. In actual
practice, we shall however evaluate a,d/da, Q instead of
Q. This differential may be written as

., ' I-l= —'y)da)y(n ~,
-' " '(4g )- Tr~.~-~n&.

daq Z pv

In other words, it is the trace of the gluon propagator
plus an additional contribution of the form shown in Fig
17(d) coming from the one-point gluon function. The
numerator of Eq. (38) may be analyzed exactly in the
same way as that of Z. It may be expressed as a product
of Z and terms of the form shown in Fig. 17. In these
graphs, the gluon line with a cross represents the propaga-
tor whose trace is being computed. Although in evaluat-
ing the Feynman diagrams, the crossed gluon propagator
may be treated as an ordinary gluon propagator, distin-
guishing this gluon from the others helps us keep track of
combinatoric factors. The graphs of Fig. 17(a) have the
same topology as those of Fig. 8 and do not contribute to
order unity in the large-X limit, except for trivial vacuum
energy terms. Graphs in Figs. 17(b)—17(d) have the same
topological structure as those of Fig. 9, and may be
analyzed in a similar way. As a result of the color-singlet
projection, all of the internal frequency sums are replaced
by continuous integrals, while the overall energy carried
by the quark-antiquark pair in the color-singlet channel is
still summed over discrete frequencies. The graph of Fig.
17(e) comes from the nonfactorizability of the color-
singlet projected disconnected vacuum diagrams, and
must be included in our analysis.

V. THE DIAGRAM SUM

In this section, we shall analyze the sum of the dia-
grams shown in Figs. 17(b)—17(e). To do this, we express

the contribution from Figs. 17(c) and 17(d) as in Fig. 18(a)
while half of the contribution from Fig. 17(b), together
with another graph where the direction of the arrow in
the lower fermion loop is reversed, may be identified to
Figs. 18(b) and 18(c) with the addition of some discon-
nected diagrams. Here, G is the full four-fermion Green's
function, including the self-energy insertions on the exter-
nal legs. Trace over all the color indices are performed
directly in Fig. 17, and the factors of N obtained from
these traces are combined with the factors of X in the
coupling constants to give terms of order unity. Hence 6
does not carry any color indices, and is independent of X
when expressed as a function of a, . X denotes the one-
particle irreducible (1PI) self-energy insertion in the fer-
mion line, and S ' is the full fermion propagator. We
shall discuss the disconnected diagrams at the end of this
section.

The 1PI fermion self-energy part involving the crossed
gluon in Figs. 18(b) and 18(c) may be identified with
—a, (BS '/Ba, ). Thus we may write the contribution to
a, (d/da, ) lnZ from Figs. 18(a) and 18(b) as

cfp EG kE $8 gE
& Gz(p qz kz)as2~ (2m. )' (2m)'

)& [1(p qz kz) &(p qz kz) ) —(39)

where the subscript E refers to the Euclidean momentum
and L is the length of the box. The factors of i multiply-
ing d2kz and d2qz, and the factor of i ' multiplying
5(qz —kz) is due to Euclidean nature of these momenta,
and will disappear once we Wick rotate the integrals to
the Minkowski space. Here

(b)

(p-q)

+ —'j(&~J
2

(c)

(c)

(e)

FICx. 17. Some disconnected vacuum graphs.
FIG. 18. The leading-order graphs which in the large-X limit

yield a resonance sum.
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and

K = 6(qE —kz )S (p —qs )S (qE )
(2~)~ —1 (40)

D&„'(k) is the free propagator for a gluon of momentum

The Green's function 6 (p, q, k) may be expressed as

I= 4m—a, y"Xy tD~'„(q —k) (41)

is the kernel of the Bethe-Salpeter equation. The first y
matrix in this expression operates on the fermion line, and
the second y matrix operates on the antifermion line.

6(p, q, k)=i g4„(p,q) %„*(p,k),
p —M„+i@

(42)

where M„ is the mass of the nth bound state, 4„ is the
corresponding wave function,

4„(p,q)= f d xd ye ' (n,p ~
T(+t(x)%(y)) ~0}, (43)

and 0'„ is the complex conjugate of a similar expression with the time ordering replaced by antitime ordering. The wave
functions %„satisfy the normalization condition'

i f —
z %„*(p,q)a, [K(p,q, k) I(p, q, —k) J+„(p,k)=a, M„ (44)

(2n-) (2m)~
" ' 'da, ' ' ' ' " ' 'da,

(45)

In Eq. (39), the integrals over q and k as well as over the internal momenta in 6 are in Euclidean space.
however Wick rotate the integration contour to convert them into Minkowski space integrals. We may then drop the
subscripts E from Eq. (39). Substituting for 6 from Eq. (42) and using Eq. (44), we may write Eq. (39) as

L, dP i d~ 1 L d dpi z 2Z&f 2. &" d. , M„+;,--2d., &&f 2. '"-'+ ~ -"
Since Eq. (39) is the expression for a, (d/da, ) lnZ, we see that lnZ may be identified as

——g g f ln( p+—M„ie)—
2 ~ p

2
Pg

(46)

which is exactly the result we expect for a gas of free particles of masses M„(n = 1, . . . , oo ).
Let us now consider the contribution from the disconnected diagrams. In the original set of graphs, there were a set of

disconnected diagrams of the form shown in Fig. 17(e). While identifying the set of graphs shown in Fig. 17(b) to those
of Figs. 18(b) and 18(c), we get another set of disconnected diagrams. These two sets do not cancel. However, there may
be other contributions to the disconnected diagrams which are potentially ambiguous. This is due to the fact that in
deriving Eq. (45) from Eq. (39), we had to interchange the summation over an infinite number of bound states with in-
tegration over the relative momenta q and k. Let us, for example, note that G satisfies the integral equation

d l, d~l2
6(p, q, k)= f K(p, q, li)I(p, l, , /2)6(p, lz, k)+K(p, q, li)

(2n. ) (2m. )

while each of the Ws satisfies the homogeneous equation

(47)

dh dhp
'P„(p,q, k)= f 2 2 K(p, q, li,I(p, li, l2)%'„(p, l2, k) . (48)

(2~) (2~)

As a result, if in Eq. (47) we substitute for 6 using Eq. (42), interchange the limits g„and f d lz, the left- and right-
hand sides are equal only up to the addition of the disconnected piece K.

Since, at present, we do not have an unambiguous method to extract the disconnected piece that emerges while inter-
changing the two limits, we are unable to show that the total contribution from disconnected diagrams vanishes. Since
the contributions to lnZ from disconnected diagrams are, however, proportional to L, instead of L, as is the case for the
connected diagrams, we believe that the contribution is unphysical and must cancel in the end.

Before concluding this section, we shall give another derivation of the equivalence of Eq. (39) and Eq. (45) for two-
dimensional QCD. Let I, and I2 denote the contributions from Figs. 18(a) and 18(b), respectively, before performing the
dp i integration and the frequency sum. Ignoring the contribution from the disconnected pieces, we may write

d qIi =-, f 2 G(p, q, q)S '(p —q)S '(q),
(2m. )

d q dS '(q), dS '( —)I2 ————,
'

2G pqqa, S 'p —q+a,
(2m)

' ' da, ' da, (50)

We shall carry out the rest of our discussion in the light-cone gauge. We first summarize the main results of two-
dimensional QCD in the light-cone gauge. In this gauge the Green s function 6 satisfies the integral equatjon
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2
G(p, q, k)=(2m. ) S(p —q)S(q)&' '(q k)—4g—' S(q)S(P —q) f D(q —l )G(p, l„k)

=(2~)'S(p q)—S(q+'"(k q)—S(—q)S(p q)4—g' D(q —k)S(k)S(p —k)

d21) d212
+16g' S(q)S(p —q) f z zD(q —l~)G(p, /~, l2)D(k, l2)S(k)S(p —k) .

(2n. ) (2m. )
(51)

These equations may be diagrammatically represented
as shown in Fig. 19. Here D(k) denotes the gluon propa-
gator carrying momentum k, and g'=gv N. Also, in this
gauge we may treat the fermion and the gluon fields as
one-component objects, with the following Feynman rules.

Cxluon propagator:

The Bethe-Salpeter wave function satisfies an integral
equation

%„(p,q) = 4g' i—S(p —q)S(q)

)& f P %„(p,k) . (57)
d k 1

(2n) (k —q )

D"'(q) =iP
(q )'

where P denotes the principal value prescription.

Fermion propagator:

(52) We define

4„(p,q )= f dq+%'„(p, q) .

Integrating both sides of Eq. (57) with respect to q we
get

s"'(p) =
(2p+p —m +ie)

Gluon-fermion vertex:

—2sgX' = —2'' .

(53) 2M c', (p, q )

t'

f dk P 4(pk ),
(k q )2

(59)

The superscript (0) in Eqs. (52) and (53) refers to the fact
that the propagators S' ' and D' ' are the tree-level fer-
mion and gluon propagators. The full fermion propagator
may be written as

where

S(p) =
2p+p —m —p X(p)+i@

(55)
M =m-

7T
(60)

&(p) =—g/2

where to leading order in the large-X limit

(56)

Since @„is the wave function of the bound state n with
mass M„, it must be an eigenstate of the P+ operator
with eigenvalue M„ /2P . Equation (59) may then be
written as

M M+
P

&2 I4„(p,q )— f dk P N„(p, q )=M„4„(p,q ) .
(P

(61)

The integral operator on the left-hand side of Eq. (61) may be identified with the mass operator M for the bound state.
We shall now evaluate the integrals I& and Iz given by Eqs. (49) and (50). We express I~ as

~'

d2It= 2~ g f 2 S (p q)S (q)Pn(p q—) q 2+m(p q)

=-,'y f q, —'g, fdk P-
(2m. ) 2 C&„(p,k ) N„'(p, k )

(q —k ) p —M„

upon using Eq. (57). This result is however ambiguous up to the addition of disconnected diagrams. For example, if we
had used Eq. (51) for G first, and then used Eq. (42) to express G as a sum over bound-state wave functions, we would
have been left with a disconnected diagram. This is the same ambiguity that was mentioned before.

We analyze I2 by using Eq. (51) and ignoring the disconnected piece. This gives
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Iz = ——,a, f S(q) +S(p —q) S(q)S(p q—)
d q dS '(p —q) dS '(q}

(2n )z da, da,

d I) d2l2
X —4g' D(0)+16g' f z z D(q —/i)G(p, /i, /z)D(q —lz)

(2m. ) (2n-)z
(63)

Note that the quantity D(0) entering this equation is f0~ally infinite, but as we shall show, this te~ drops out of our
final expression for the thermodynamic potential. Using the explicit fo~s for S and X and pe~o~lng the q+ integral
in Eq. (63), we get

I2= 2
dq . + M2

( —im. ) 2p
(2n.} q— p —q

—2
1

q p —q

glg
X ( )+f,&(q —/i )G (p, /i y/z )E (q —lz)

(2~) (2m. )z

where

I'(q) = —4g'D(q) .
On the other hand, integrating both sides of Eq. (51) over k+ and q+ and setting q =k, we obtain

Mf dq+dk+G(p, q, k)
~

p —q

dzl idzl
X I'(0)+f,'I'(q l, )G(p l, l, )I(q l, )

(2n. )

where disconnected contribution have again been ignored. Using Eqs. (64) and (66), Iz may be expressed as

df z + f dq+dk+G(p, q, k)
i „(2zr)z q

—
p

—
q

— ' ' k =q-
r

(65)

(66)

We therefore find that

n lf

(67)

Ii+Iz= g f dq
1 g2

7r
l

2

@.(p, q }+ f dk e„(p,k-)
7j p —M„

Xfdq +:(pq },1

2& ~ p —M dg2 p

M @.(p, q

1 X f "q C'. (p q ) g, »( pz+M'+ —jE) @„(p,q
—

) .2K ~ p dg
(68)

Using the completeness of the functions @„
normalization condition derived from Eq. (3.8) of Ref. 16,

f dq @„"(p,q )&„(p,q )= 5„p n- —(69)

we get

Ii+Iz ———a, g ln( P+M +i@) . —2 2 ~

'da,
The net contribution to a, (d /da, ) lnZ is given by

X g f ln( p+Mz+ie—) . (71)
0 2&

P

We finally find therefore

(72)lnZ = ——g f gin( P+M„+is)—

dpi'

o 2'
P
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FIG. 19. The Bethe-Salpeter equation for G.

which is precisely the expected result for a set of nonin-
teracting scalar mesons.

In the integration with respect to g which gives Eq.
(64), there is a g-independent integration constant which
has been implicitly chosen to be zero. This constant is
specified by properly reproducing the strong-coupling re-
sult which must consist of the contribution of the lowest-
mass bound state of the theory. This contribution is prop-
erly included in the result of Eq. (72}.

VI. SUMMARY AND CONCLUSION

In this paper we have analyzed the thermodynamics of
QCD in the large-N limit. In this limit, the contribution
to the thermodynamic potential in the confining and the
deconfining phase are of order unity and N, respectively.
%'e show how these two results may be realized as two
different limits of the same formal Feynman diagram ex-
pansion, which is obtained by restricting the sum over
states in the partition function to be over gauge-invariant
states only. The result for the thermodynamic potential
in the deconfining phase, which we expect to be given by
the asymptotically free perturbation theory, is obtained if
we take the thermodynamic limit before taking the large-
N limit. On the other hand, the result for the thermo-
dynamic potential in the confining phase is obtained if in
the same perturbation expansion, we take the large-N lim-
it before taking the thermodynamic limit, and formally
resum the perturbation expansion. We believe that the
confining-deconfining phase transition corresponds to the
breakdown of one or the other limit, as we approach the
phase-transition temperature from different directions.

Although we have focused our attention on the two-
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APPENDIX A

We want to calculate the quantity

Q ' J [dg)Trfg Tifg Tifg (Al)

in an SU(N) gauge group. Here g denotes an element of
SU(N}, and mi, m2, . . . , m, are integers satisfying

im;=0 and g,' i Im; I
&N. Trf denotes the trace

in the fundamental representation, [dg] is the Weyl mea-
sure for SU(N) and 0 is the volume of SU(N). The
operation Q ' dg counts the number o singlet repre-
sentations contained in the integrand.

Our conjecture is that the result of Eq. (Al) when none
of the m's are zero is given as

dimensional 't Hooft model, we believe that the general
results mentioned above are valid even for four-
dimensional QCD in the large-N limit. The two-
dimensional QCD, however, has some special features
which we do not expect to generalize to four dimensions.
In the two-dimensional theory, asymptotically free pertur-
bation theory is never a valid expansion. This is signaled
by severe infrared divergences which occur in the pertur-
bation expansion if we take the thermodynamic limit be-
fore taking the large-N limit. On the other hand, if we
take the large-N limit before taking the thermodynamic
limit, we get the thermodynamic potential as a sum over
meson bound states. The sum is finite all finite values of
temperature, and hence is expected to give the correct
answer for the thermodynamic potential at all tempera-
tures. This is presumably not the case for four-
dimensional QCD in the large-N limit. The asymptotical-
ly free perturbation expansion suffers from infrared diver-
gences only at some high order in perturbation theory,
and is expected to give the correct answer for the thermo-
dynamic potential at sufficiently high temperature. Also,
the thermodynamic potential in the confining phase, ex-
pressed as a sum over meson bound states, may not be
well defined for all values of temperature, due to the ex-
istence of a Hagedorn limiting temperature. As a result,
different methods of expansion, as mentioned before,
must be used to calculate the thermodynamic potential in
different ranges of temperature.

0 ifrisodd,

all pairings
I mr i I

&m +,,o~~3+m„—,o
' ' & „,+m„,o

(A2)

If some of the m s are zero, the corresponding trace gives a factor of N, and the remaining contribution may be
evaluated using Eq. (A2).

The verification of this conjecture is begun by parametrizing g by its N eigenvalues ti, . . . , t~ satisfying g,.
i t; = 1.

t s are related to the parameters a s introduced in the text through the relation t; =e '. Equation (Al) may therefore
be written as
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P

0 'J[dt] gt, ,
'

i2 ——1

2

=Q-' J [dt]
a r N m

exp ga, gt; '
Ba s=1 i =1 a, =O2= . =g =0

(A3)

The exponential in Eq. (A3) may be written as

N
'

rII" 2 (A4)

In our case

m
G(t)=exp g a, t

s=1
(A8)

We now evaluate Eq. (A3) using a result derived in Ref.
17. For our purposes, the result may be stated as follows.
If G (t) is a function of t with the expansion

The nonzero entries in D are for k, 1 satisfying

k —I= pm, ,
sC8

(A9)

G(t)= g A t"

then
N

Q ' dt 6 t; =detD,

(A5)

(A6)

where 8 is any subset of the set I l, . . . , r I. The corre-
sponding value of DI,i is II,~sa, . D also has nonzero en-

tries at k —I = g, ~sn, m, where n, are positive integers

larger than unity. These terms will contain more than one

power of some of the a's and will not contribute to Eq.
(A3) after setting all the a's to zero.

Now define the matrix 8 as

where D=I+B . (Alo)

Dk~=~k I . (A7)
B has the same structure as D with the diagonal identity
elements removed. We may therefore write

ao
( 1)n+i

DetD =exp Tr ln(I +8)=exp g TrB"
n=1 n

( —1)"+'

n=1 Pf

TrB"
P.

(A11)

According to Eq. (A3), the coefficient of the II,', a„
term in Eq. (All) gives the result for Eq. (Al). In
evaluating Eq. (All), we must find the diagonal element
of 8". A typical diagonal element of 8"has the form

II II a.
1=1 sCHI

Eq. (A13) yields

(A14)

12 23 n 1

The nonzero values in Eq. (A12) are obtained if

(A12) g m, =O.
1 =1 sCei

(A15}

l1 —l2 = ~s
s C81

l2 —l3 = ~s
sC82

~ ~ ~

ms ~

sCH„

(A13) g m, =O for all I =l, . . . , k .
sCPI

Then,

(A16)

The diagonal elements of 8" are therefore sums of prod-
ucts of a, 's. A particular product in the sum contains
those a, 's whose corresponding m, 's add up to zero.

Let P„.. . , Pk be all possible subsets (not necessarily
mutually exclusive) of the set (1, . . . , r) such that

where Hi, . . . , H„are subsets of the set t I, . . . , r }. We
also want them to be mutually exclusive in order to avoid
two or more powers of a single a, . The corresponding
contribution to Eq. (A12} is given by

( —I)"+'
T 8„

n=1

= g G (Ri I m. '~ &Pi I ) II a, ,
sCPI

(A17)
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where Ri is the number of elements in the set PI.
6(Ri, jm, ;sC:Pi j), by definition, is the coefficient of
Q,~&a, in the expansion of the left-hand side of Eq.s&Pg s

(A17). It is evaluated by setting all the a, 's outside the set
Pi to zero, and counting the coefficient of +,~r,a, on

the left-hand side of Eq. (A17). Our conjecture is that

6 =0 for all Ri & 2,

6= ~m, (5, , f«Rr=2.
(A18)

We shall soon describe how to verify this conjecture.
But first we shaH show that Eq. (A18) leads to Eq. (A2).
To see this, note that due to Eq. (A18), the only way a
particular a, may appear in Eq. (A17) is that its corre-
sponding n, has a negative counterpart. In other words,
the set I m 1, . . . , m„j must be of the form
Imi, —m i, m3, —m3, . . . , m„ 1, —m, 1 j. We find upon
using Eqs. (A17) and (A18) that

( —1)"+'
T ~„

n=1 n

=I Ii 1 lui~z+1~31u3&4+ Im. -i l~.—lu

(A19)

The coefficients of a 1 a„on the right-hand side of Eq.
(Al 1) are therefore given by

(A20)

which proves Eq. (A2).
We shall now illustrate how we verify the conjecture of

Eq. (A18). I.et us denote the elements of the set
I m„s C Pi j by M 1, . . . , Mz and the corresponding a' s

by 3&, . . . , AR. The quantity G is evaluated by deter-s ~ ~ y ~

R1
mining the coefficient of g, '

1 A, on the left-hand side
of Eq. (A17). Since this may be done by setting all the
elements of the set Iai, . . . , a„j to zero, except the ones
belonging to the set I'I, we see that G depends only
on Ri and the set IMi, .1 . . , MR, j, but not on r or the
other members of the set mi, . . . , m„. As a result,
wc iriay cvalllatc 6 (r, I vl 1, . . . , lr1„j ) by sctt111g
Pr ——

I m 1, . . . , m„j, and then computing
6 (RI, {Mi, . . . , Mx, j ) for arbitrary Ri and Mi, . . . ,Mz,
by setting r =Rr and the set t rn 1, . . . , m„j to be
IMi, . . . , Mrl j.

In order to calculate G(r, Imi, . . . , m„j), we need to
evaluate the coefficient of g", la; in Eq. (A12) and then
add them up with a weight factor of ( —I)"/n. The sets
81 in Eq. (A13) must then satisfy

U ei ——Imi, . . . , m, j . (A21)
I=I

Each term in Eq. (A12) is therefore associated with a
particular division of a set of r objects into n boxes, with

each box containing at least one object. The permutations
of the objects inside a box Hg are irrelevant, whereas the
permutations of the boxes 81 are relevant. In other words,
the contributions to Eq. (A12) is different if instead of Eq.
(A13), we have

l) —L2

sC82

2 ~3= ~s ~

s &8)

(A22)

lp —l i = Plg
sC8

n —1 n
I„(r)=n' g i I—„ i(r),

/=1

I) ——1.

(A24)

(A25)

Equation (A24) reflects the fact that the total number of
ways to put r objects in n ordered boxes with each box
containing at least one object is the difference between the
total number of ways to put r objects in n boxes and the
total number of ways to put r objects in n boxes with at
least one box containing no object.

We have evaluated I„using Eqs. (A24) and (A25) and
verified that Eq (A23) v. anishes for r (20. The evalua-
tion of the N-independent part is more difficult. At
present we know of no other way to calculate it other than
to explicitly generate all perroutations, calculate
max(ir, ir) for al—l of them, and add the permutations up
with the proper coefficients. We have done this for r (8,
with randomly generated m l, . . . , m„satisfying
g m, =0. The answer is zero in all cases except for r =2,
in which case it is

~
m 1 ~

. Our conjecture is therefore ver-
ified for r (8.

For a particular choice of the sets 81, . . . , O„and a
fixed ordering of the sets, all the differences
i 1 i2,—. . . ,i, il —are fixed, but ii is still arbitrary. I.et
the matrix 8 be of dimension N &CA where X is a number
much larger than

~
mi (, . . . ,

~
m„~. Then the number

of possible values of i 1 is given by %—max(ii —ik), where
max(ii —ik) denote the maximum difference between any
two i; s in the set (i l, . . . ,i„)determined by Eq. (A22).

The coefficient of X in 6 is therefore determined from
the number of ways r objects may be divided into n dis-
tinguishable boxes, each box containing at least one object.
If I„(r) denotes this number, then the coefficient of N in
6 is given by

1 Ii+1
(A23)

n=1 n

I„may be evaluated by using the following recursion rela-
tion:
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