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We exactly gauge fix the Hamiltonian for the SU(N) lattice gauge field and eliminate the redun-
dant gauge degrees of freedom. The gauge-fixed lattice Hamiltonian, in particular for the Coulomb

gauge, has many new terms in addition to the ones obtained in the continuum formulation.

I. INTRODUCTION

The Hamiltonian for QCD (quantum chromodynamics)
has been widely studied using the lattice and continuum
formulations. In a remarkable paper by Drell, ' a deriva-
tion was given of the running coupling constant of QCD
using the continuum Hamiltonian; this ca1culation used
weak-field perturbation theory and the Coulomb gauge.
The mathematical treatment of gauge fixing the Yang-
Mills Hamiltonian goes back to Schwinger; the more re-
cent paper by Christ and Lee gives a clear and complete
treatment of gauge fixing the continuum gauge-field
Hamiltonian.

The continuum Hamiltonian has unti1 now been given
no regulation which preserves gauge invariance; for the
one-loop calculation carried out by Drell' and Lee, a
momentum cutoff is sufficient to ensure renormalizabili-
ty. However, for two loops and higher it is known that a
momentum cutoff violates gauge invariance and renders
the theory nonrenormalizable; for the action formulation
it is known that dimensional regularization of the Feyn-
man diagrams is sufficient to renormalize the action.
For the Hamiltonian, there is no analog of dimensional
regularization and hence it is not clear how to regulate the
continuum QCD Hamiltonian to all orders.

The lattice Hamiltonian ' is regulated to all orders and
could be used for calculations involving two loops or
higher. If we want to analyze the lattice Hamiltonian us-

ing the weak-coupling approximation, it is necessary to
fix a gauge, for example, the Coulomb gauge. Gauge fix-
ing the action of the lattice gauge theory has been solved,
and in this paper we extend gauge fixing to the latter. ce
Hamiltonian. Gauge fixing essentially involves only the
lattice gauge field and the quarks enter only through the
quark-color-charge operator. So we will essentially study
only the gauge field and introduce the quark fields when
necessary.

Gauge fixing the lattice Hamiltonian is very similar in
spirit to gauge fixing the continuum Hamiltonian; this
similarity can be clearly seen in the action formulation. '

For the Hamiltonian we will. basically follow the treat-
ment given by Christ and Lee. There are, however, sig-
nificant differences between the lattice and continuum
Hamiltonians both for the kinetic operator and the poten-
tial term. The lattice gauge field is defined using finite-
group elements of SU(X) as the fundamental degrees of
freedoin whereas the continuum uses only the infini-

II. DEFINITIONS

Consider a d-dimensiona1 Euclidean spatial lattice with
spacing a; let U„;, i =1,2, . . . , d, be the SU(N) link de-

gree of freedom from lattice site n to n+i (i is the unit
lattice vector in the ith direction) and let P„,g„be the lat-
tice quark field. The Hamiltonian for SU(N) lattice
gauge field in the temporal axial gauge is given by '

H =~vM[U]+Hr[W 0 U]

where

2

HvM= — g V'(Uni)
2Q

(2.1a)

QTr(U„;U -. U -. U„~) (2.1b)
Pl, lJ

and HF is the quark-gauge-field part. Note V is the
SU(N) Laplace-Beltrami operator. The Hamiltonian acts
only on gauge-invariant wave functionals 4. Gauge
transformation is given by

Unt~ Unt(V'):tPn Unt% n+i (2.2)

and the wave functionals N are invariant under (2.2), that
1sT

C[U]=4[U(q)] . (2.3)

By performing an infinitesimal gauge transformation

tesimal elements of SU(N). This difference will introduce
a lot of extra complications. Given an appropriate gen-
eralized interpretation of the basic symbols, it will turn
out, however, that the form of the gauge-fixed continuum
and lattice Hamiltonians are very similar.

In Sec. II we discuss the Hamiltonian and give a con-
struction of the chromoelectric field operator. We then
discuss Gauss's law for the system. In Sec. III we per-
form a change of variable and eliminate the redundant
gauge degrees of freedom. In Sec. IV we evaluate Gauss's
law for the new variables and find that the constrained
variables decouple exactly from the Gauss's constraint. In
Sec. V we evaluate the gauge-fixed lattice Hamiltonian,
discuss operator ordering, and introduce the quark-charge
operator. In Sec. VI we discuss the main feature of our
results.
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(and introducing the quark field) we have from (2.3)
Gauss's law

g [E.'(U„, ) —E.'(U . . )]—p ~
e ) =0. (2.4)

The operators E,"and E, are first-order Hermitian dif-
ferential operators with the commutation equation

[Eo &Eh ]=iCabaE (2.5a)

and summing on repeated non-Abelian indices

EL(R)( U) L(R)( U)a =cab
grab

5

i5L(RP

Note

e,b(U)=eb (U) .

(2.12a)

(2.12b)

(2.13)

Eb] i—C b E (2.5b) Explicit expressions for e,b
"' are given in (3.8).

E, (U)=R,»(U}E»(U), R,b(U)=Tr(X, UX»U ), (2.5c)

[E, ,E» ]=0, (2.5d)

[Pna ~Pm» ] iCabcPna5nm

From (2.4) and (2.5c) we have

(2.5e)

where R,b is the adjoint representation, X, the generators
and C,b, the structure constants of SU(X).

The operator p~(Q, Q, U) is the lattice quark-color-
charge operator and satisfies

III. GAUGE FIXING

We can see from Gauss's law that all the U„,'s are not
required to describe the gauge-invariant wave functional

We gauge transform U« to a new set of variables V«
which are constrained; the constrainted variables V» wil1
decouple from Gauss's law.

Consider the change of variables from I U„; I to
Iyn, V«I, with [ V„;J having one constraint for each n.
That is,

0= g [Rab(Unt)E» (U») Ea (U;,.)—] Pna I

—~')
Wn =0'nan~ 4n =conf'n

Un. =V.~.iV
7l +1

(3.1a)

(3.1b)

(2 6a) and choosing the Coulomb gauge for the lattice gives
I

g DnmiEb ( Um() p~-
Nf, l

(2.6b)
X'n( V) =Im g TrX, ( V„;—V -. . ) =0 .

7

In canonical coordinates we have

(3.1c)

where D„; is the lattice covariant backward derivative.
Let

~
n, a) be a ket vector of lattice site n and non-

Abelian index a; then, from (2.6) we have the real matrix
D; given by

V„;=exp(iA„';X, ), (P„=exp(ip„'X, ) .

For smal1 variation A'+dA', we have

(3.2)

D„';=(n, a
~
D;

~
m, b)

=R,b( U„; )5„m —5,»5

(2.7a)

(2.7b)

V(A+dA)=V(A) 1+Vt(A) dA' (3.3)

We see from above that D; performs a finite rotation R,b

on the ket vector and then displaces it in the backward
direction.

We write the Hamiltonian as sum of the kinetic and po-
tential energy, that is

= V(A)[1+iX,fab(A)dA b],

where

f b i Tr V ———Xb —f», . —
gC

(3.4)

(3.5)

H =K(U)+P(f, P, U),

where

K= —g gv'(U„, )
2Q

and P is the rest of (2.1a). It is known that

—V'(U) = g E.'(U)E.'(U) .

(2.8)

(2.10)

Define
I

5L(R)A =jab (A)dA"

then

V(A +dA) = V(A)(1+iX,SRA')

(1+iX,5LA')V(A) .

(3.6)

(3.7a)

(3.7b)

U„;=exp(iB Xn).a (2.11)

Then we have, suppressing the lattice and vector indices

In light of Gauss's law and (2.10) we identify E, ( U» )

as the chromoelectric operator of the gauge field corre-
sponding to the link variable U». Choose canonical coor-
dinates 8„'; such that

It can be shown that
L(R) L(R)

eaa fab =5ab (3.8)

and hence matrix e can be determined from (3.5). Under
the change of variables (3.1) from U„; to V„;, the potential
energy P in (2.8) can be expressed as a function of only
V„;. For the kinetic energy K we need the expression for
EL( U). Note, using the chain rule and formula (3.8),
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a aA„', a aP'„a
aB«J n, i aBmj aAni n aBmj ann

a aARI I, a= gfaa(Ani) b eaP(Ani ) p + ' ' '

n, i ~&mj BAn;

Therefore, from (2.12) and (3.10)

(3.9)
ward derivative operator &; given by

&'„;=(n a iW; im b)
=5,b5 -. —R,b( V„;)5„n+i, m

Prom (3.14) and (3.19), we have
(3.10)

2 &n, a
I
r,~, I

m, b)44'
m, i, b

(3.20)

(3.21)

4A.'; 5
&b(Umj)= . b =g b

i 5LBmj n, i 5l.Bmj i 5L, Ani

+ b a
5I.Bmj i 51.itin ( n, a i R; i

m, b ) =5nmAab(y -. ) . (3.23)

+ y &...ir, ~,'i, b)5.B.', =0, (3.22)
m, i, b

where T stands for transpose and
(3.11)

We now evaluate the coefficient functions of the above
equation. The constraint [Eq. (3.1c)] is valid under varia-
tions of A„'; to A„';+dA„';, i.e.,

Hence, from (3.22) we have

5RN:
n, a I'JRJ . mb), , (3.24)j j

where (I .W) ' is the inverse of operator g,. r;&;. We
also have from (3.19) and (3.24)

0=X'„(A) (3.12)

=X'„(A +dA) . (3.13)

Hence, from (3.12) and (3.13)

Q r'„ i(A)5jiA; =0,
m, l

where for constraint (3.1b) we have

I"„;=(n,a
i I; i m, b)

=5X„'/5L A;

(3.14)

(3.25)
Hence, from (3.11), (3.24), and (3.25)3.15a

5 1 5
n, a 5ij —&; I j Rj m, b

~L~mj n i 51 A„';
(3.15b)

(3.15c)ab ab=ioni 5nm
n —i i n —i, m —g (n, a I'IR~ mb,1 T 5

(3.26)
where from (3.1c)

5g An'; r z.= —n, a aI; I;R, —R, b;, mbj. ,
5IB j

con; =Tr(X, V„;Xb +Xb V„;Xa ) . (3.16)

The constraint (3.14) on 5A„'; determines 5Iip/5B. Con-
sider from (3.1b), the following variation:

V„;(A +dA) =P„(itb+ditb) U„;(B+dB)y -(iti+dP), .

Equation (3.26) provides the solution for expressing the
unconstrained chromoelectric operator 5/51 B in terms of
the new constrained operator 5/5L A and the gauge
transformation 5/5L $. In essence, this solves the problem
of gauge fixing the lattice Hamiltonian. Note that from
(3.25) we have the identity

which yields from (3.7a)

4Ani=40' - &ab(~fr. )—44'+&ab(e

40' +&.b(m„;.)4B' .

(3.17)

(3.19)

6g A„';g(l, cir;in, a) "' =0
5 8

as expected. We have from (3.14)

g(n, a
i I; im, b) „=0.6

n, Ab,

(3.27)

(3.28)

From (3.18) and (3.19), we have the lattice covariant for- Hence, from (2.12) and (3.28)

b T 1 I,
a &A«J 5m« 5ij5aa n a ri T rj m c cab (Amj )

5L An, I".I
(3.29)

IV. GAUSS'S I.AW

We check that constrained variables V«decouple from Gauss's law. Recall from (2.7) and (3.26), we have

g&l, c iD, im, b), =g n, a 5,,—u, r, z,'D,' l, c na IJRjDj lc

(4.1)
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From the definitions of D; and &; given in (2.7) and
(3.21), respectively, we have the crucial operator identity

Solving (4.6), we have from (3.1) (Ref. 6)

RJ~DJ &——/R
where

(4.2)

(4 3)

@(Q,Q, U) =exp i—g p P'„4(g,g, V),

since, using (2.Se)

(4.7)

Hence, from (4.2) we see that the first term in (4.1) is zero
and we have

exp(iP p )=p, exp(iP p ) .
i 5„$'

5 5
b

= &.b(m—I)

5

5RNi

(4.4)

r '[V]= g yd%. /5P':(f" V. 9„;)]
n, a

(4.9)

The change of variables from I U„; I to I V„;,y„I has a
Jacobian given by the Faddeev-Popov determinant, and
can be shown to be equal to

We see that V„; has decoupled from Gauss's constraint,
and we have from (2.6) and (4.S)

(4.6)

For weak coupling, g [V] has been evaluated to 0 (A2)
in Ref. 7. Hence we have (suppressing the fermion vari-
ables) for some gauge-invariant operator G and gauge-
invariant state

l
@), from (3.1) and (4.7)

(4
l
G

l 4) = / y d U„;e'[U]G [U,5/5U]@[ U]
n, i

P

= [J I dV„. +5[X'„(V)] 4*[V]g '~~[V]exp i gP„'p
n, g n, a n

(4.10)

X(g ' [V]G[V,5/5V]g '~ [V]) exp i gP„'p«—g '~ [V]@[V]
n

(4.1 1)

(4.12)

and the effective operator is

G =g ' [ V]exp i g qI''„p«
n

Hence, the effective wave functional with no Jacobian
1S3'10,11

@[V] =X'"[V]@[V] 5 5
5L, B~ 5L, Cq

(S.2)

Then from (S.1) and (5.2)

(5.3)

Let us symbolically write the transformation (3.26) as

XGexp —i g4np«X '"[V]
n

such that

(4.13)

I.I I. (S.4)

(4 14) where

V. GAUGE-FIXED LATTICE HAMILTONIAN

L =detllLabll

For the transformation given by (3.26) we have

(S.S}

5 5
i5zB„'; i51B„';

(S.l)

We need to evaluate the kinetic operator given from
(2.9), (2.10}, and (2.12b) as (summing on all repeated in-
dices)

(S.6)

and the Jacobian g is given by (4;9). The choice of
operator ordering given by (S.4) allows for further simpli-
fications. Recall that from (3.28) that 5/5L A„'; is "trans-
verse;" using this equation and Eq. (S.4), we have
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IE= i' A„'; i5L A„';

1 5 5 1 T 1 5 Tbb'
n, a I'Jl J T T m, b . b +&~mk . bi5r p'„ i 51 A„'; I' & I i5L $ i61 A

(5.7)

The effective Hamiltonian, using (4.13), is given by

v r ~1/2 ~nanna r r ~nanna ~—1/2

Note that

i b„p~ 5 i P„p—~
b e = —Pmb.

&5L, P

We hence have the final expression for the gauge-fixed lattice Hamiltonian given by

(5.8)

(5.9)

2

g —I/2 g g —i/2

i51 A„'; i5r A„';

5 .. 1 T 1 Tbb —1/2~n ni p'na X n~a I ~ ~ T z ~~b ~mm k. 'b' pmbi5,A„'., i5L A

+P(g, g, V) . (5.10)

The wave functionals depend on only the constrained variables V„;, i.e.,

4=4(g, g, V) . (5.11)

Recall we have from (3.29) the commutation equation

5 b T 1 I.
,A = 5„5;.5„—n, a

i
I'; r,

~

m, .) e„(~,) . (5.12)

Equations (5.10)—(5.12) completely define the gauge-
fixed Hamiltonian for the SU(X) lattice gauge field. The
redundant gauge degrees of freedom I q&„j have complete-
ly decoupled from the system, as expected. The expres-
sion for H in (5.10) is exact, and is equally valid for
strong and weak couplings. Comparing (5.1) and (5.7), we
see that the coordinates I U„; j are analogous to Cartesian
coordinates for the gauge field whereas coordinates I V„;j
are analogous to curvilinear coordinates.

The quark-color charge p~ has the instantaneous non-
local non-Abelian lattice Coulomb potential
(I &) 'I I (& I ) '. As pointed out by Gri-
bov, ' ' in the continuum theory the operator I
develops a zero eigenvalue for strong gauge-field configu-
rations A„'; ~~0, and which is due to the existence of mul-
tiple gauge-equivalent transverse-gauge-field configura-
tions. For the lattice, presumably the same phenomena
exists, and hence the gauge-fixed lattice Hamiltonian is at
least valid for weak-gauge-field configurations.

One can also choose the spatial axial gauge for the lat-
tice, but this still leaves a residual gauge invariance which
is difficult to impose. '

VI. SUMMARY

We exactly gauge fixed the non-Abelian lattice Hamil-
tonian, and obtained a theory which is regularized to all
orders and hence the eigenenergies and eigenfunctionals
can be renormalized order by order using weak-coupling
perturbation theory. ' The gauge-fixed form is particular-
ly suited for weak-coupling perturbation theory. We can
also study the Gribov problem on the lattice using the
gauge-fixed lattice Hamiltonian.

The gauge-fixed (Coulomb) lattice Hamiltonian can be
used to study nonperturbatlvel' prope~ies of the gauge
field. In particular we have obtained the non-Abelian
Coulomb potential regularized to all orders, and it should
contain information as to how the theory confines
quarks. '

ACKNOWLEDCiMENTS

I thank M. Ali Namazie, A. Kamal, and B. F. I . Ward
for useful discussions. I also thank Professor S. D. Drell
and the Theory Group at SLAC for their warm hospitali-
ty. This work was supported by the Department of Ener-
gy, under Contract No. DE-AC03-76SF00515.



32 GAUGE FIXING THE SU(%) LATTICE-GAUGE-FIELD HAMILTONIAN 2779

*Permanent address: Department of Physics, National Univer-

sity of Singapore, Kent Ridge, Singapore 0511.
S. D. Drell, Trans. N;Y. Acad. Sci. 40, 76 (1980).
J. Schwinger, Phys. Rev. 127, 324 (1962}.

3N. Christ and T. D. Lee, Phys. Rev. D 22, 939 (1980); T. D.
Lee, Particle Physics and Introduction to Field Theory (Har-
wood, New York, 198)).

~G. 't Hooft, Nucl. Phys. 833, 173 (1971).
5J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).
B.E. Baaquie, Report No. NUS-HEP-011, 1985 (unpublished).

78. E. Baaquie, Phys. Rev. D 16, 2612 (1977).
E. S. Abers and B.W. Lee, Phys. Rep. 9C, 1 (1973).

9Y. C. Bruhat et al. , Analysis, Manifolds, and Physics (North-
Holland, Amsterdam, 1982).

OM. Lusher, Nucl. Phys. B219, 233 (1983).
D. Schutte, Phys. Rev. D 31, 810 (1985).
V. N. Gribov, Nucl. Phys. B139, 1 (1978).
R. Jackiw and C. Rebbi, Phys. Rev. D 17, 1576 (1978).
J. Goldstone and R. Jackiw, Phys. Lett. 74B, 81 (1978}.
K. Symanzik, Nucl. Phys. 8190, 1 (1981).


