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%'e discuss the phase structure of the lattice-gauge —Higgs model for the gauge group SU(2) and
Higgs fields in the fundamental representation with a dynamica1 radial mode. We find that the
confinement-Higgs phase transition is of first order for small P coupling A, but weakens with in-

creasing A, . Correlations of bound-state operators on the phase-transition point at A, =0.5, P=2.25
on a 8 &16 lattice show a scalar state with the mass of 0.2 inverse lattice spacings and a four-
times-heavier vector isotriplet.

I. INTRODUCTION

The Monte Carlo (MC) simulation of the strongly in-
teracting gauge theories formulated on a lattice' has been
developed in recent years from the exploratory investiga-
tion of various properties to a powerful computational
method in QCD. On the other hand, the study of elec-
troweak interactions as a lattice gauge theory is still in the
exploratory phase. The symmetry-breaking part of the
standard model consists of Higgs fields in the fundamen-
tal representation of SU(2); the fermions ride along
without obvious influence on the breaking mechanism.
The inherent left-right symmetry of lattice fermions gives
rise to problems with the lattice formulation of the com-
plete model. However, a gauge theory with only bosons
may be formulated and investigated on the lattice more or
less straightforwardly. This essentially nonperturbative
approach migh reveal restrictions on the mechanism of
spontaneous generation of gauge-boson masses.

That the usual continuum formulation of this mecha-
nism does not translate to the gauge-invariant formalism
of the lattice gauge theory identically is obvious. The ex-
pectation values of gauge-noninvariant objects such as,
e.g., (P) have to vanish (known as Elitzur's theorem in
this context). Furthermore, we expect from cluster expan-
sions (cf. Ref. 5) and MC results (cf. the reviews of Ref. 6)
that non-Abelian gauge groups such as SU(2) lead to con-
finement of fundamental charges even in the so-called
Higgs region. The Higgs fields themselves are not
asymptotic states of the theory. However, the usual pic-
ture of symmetry breaking is not completely obsolete: the
spectrum of the standard model [neglecting the U(l)
group for this discussion] is reproduced by the bound
states of the original Higgs fields. One finds scalars (iso-
spin 0) and vectors (isospin-1 triplet) bound because of the

confinement mechanism. MC simulations might provide
information about possible mass ratios and excited states.

These and related questions may be studied in the
framework of lattice theories coupling gauge fields with
scalar matter fields. However, at present even our
knowledge of the properties of the phase transitions of
such models in the multidimensional space of coupling
parameters is far from satisfactory. Our knowledge about
the critical points and their structure as well as about suit-
able procedures to approach the continuum limit is still
poor.

Here we present the results of a detailed MC study of
the phase structure of the SU(2) lattice gauge field cou-
pled to a scalar (Higgs) field in the fundamental represen-
tation of the gauge group. A suitable form of the action
of this model with minimal number of parameters is

S=——g Tr(U~+ U~) xg(P—„U. „„P„+„+Hc. )
p&A x E-A

p }) ~ ~ ~ f 4

The radial degree of freedom
~ P ~

is controlled by the
quartic coupling A, . In the limit A, —+ac the length of the
Higgs field freezes to

~ P ~
=1; this model has been stud-

ied by several authors. ' The model (1.1) for finite A, was
investigated earlier too, ' ' but we extend these results in
several ways.

(i) We include the region of negative P in our study and
determine the phase diagram in the whole range of P for a
specific value of A, =0.01. Although the interest in this
region is marginal [e.g., presumably Osterwalder-Seiler
(OS) positivity does not hold there; the continuum limit
has to be taken for positive P] it may prove helpful for a
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complete understanding of the lattice-system phase dia-
gram. At negative P we find a frustration phase transi-
tion (PT) and a Higgs-type PT. For sufficiently low A, the
confinement-Higgs PT extends from positive P to nega-
tive P and joins these two transitions. This feature has es-
caped an earlier investigation for larger I, (Ref. 10) and is
analogous to the recently determined phase structure for
the Z(2) (Ref. 13) and U(1) (Refs. 14 and 15) lattice
Higgs models for finite A, and negative P.

(ii) For positive P we perform an extensive study of the
confinement-Higgs PT lines at several values of A, from
0.003 up to 1. Precise positions of the PT lines are given.
For small A, (e.g., at 0.01) the transition is clearly of first
order, weakening with increasing P. This is in agreement
with the Coleman-Weinberg mechanism. '

(iii) The PT signal weakens also for given P but increas-
ing A, and it becomes difficult to determine for A,=1.
Therefore we investigate in detail and with high statistics
the Higgs PT at one point in the (P, A, ) plane, at A, =0.5,
p=2.25. Varying K and the lattice size we find signifi-
cant finite-size effects and a very sharp peak in the specif-
ic heat in the interval 0.270~sc~0.271 on a 16X8 lat-
tice. We study the correlation properties of some bound-
state operators (cf. also Ref. 12) and find a correlation
length up to 5 lattice spacings within the peak region.
This indicates that the system is close to criticality at this
point.

In Sec. II the model (1.1) and some limiting cases are
briefly discussed. Section III contains positions and prop-

erties of the PT lines, and in Sec. IV we concentrate on
the PT between the confinement and the Higgs regime at
one particular point. %'e pay due attention to the validity
of our approximation of the SU(2) gauge group by its
120-element icosahedral subgroup F. For very small A,

this approximation distorts the system in the Higgs phase
already at values of P far below the freezing PT of the
pure I' gauge-field system. This is discussed in Sec. V.
The Appendix contains some technical remarks.

II. THE MODEL

dPtdP=p dpdo, (2.1)

where der is the SU(2)-invariant Haar measure. In these
variables the Higgs part of the action reads

~a = —K g p~px+I T«ax U,pa'x+1 )
x&A

P ly ~ ~ ~ y4

+A, g(p„—1) + gp„ (2.2)
x&A xEA

Another familiar form is the straightforward discretiza-
tion of the usual continuum action for the Higgs part,

The parametrization of the action is given in (1.1). We
represent the complex Higgs doublet by a pair of variables
(p, a) where p is real and non-negative and o. is a SU(2)
matrix in the fundamental representation. The measure
becomes

r

4X D c fD c +~ 2 cf c+ cf c2

xGA @=1,. . . , 4
(p„' „U„„—g )(U„„p„' „p„')/a +m,—p„' p„'+A,,(gtp„')z (2.3)

The parameters are related to our notation

ap'=/V K,

A,, =A, /a

(am, ) =(1—2A, —8K)/K .

(2.4)

In our parametrization there is an obvious symmetry
K~—K, ' therefore it suffices to discuss only K )0.

I.et us discuss some aspects of the phase structure (cf.
also Ref. 10 for further details). For K=0 the scalar fields
decouple from the gauge system. For A,+0 and K~ oo the
Higgs fields will be parallel in group space and one ex-
pects

or (2.5)

In the linut P—+ oo one is left with the P spin system with
a second-order PT and presumably mean-field critical ex-
ponents. If the results for one-component P theory ex-

tend to many-component theories we expect that the con-
tinuum limit is given by the long-distance behavior of a
Gaussian fixed point, independent of the P coupling. '"
This describes a free theory; allowing for the gauge-field
interactions (i.e., P & oo) adds one relevant direction to the
fixed point. One may expect that it is possible to define a
sensible continuum theory of Higgs-gauge bound states.
One construction of this limit would be to hold fixed cer-
tain dimensionless ratios of physical numbers obtained on
the lattice. If this proves to be consistently possible the
procedure defines trajectories approaching the relevant
fixed point, presumably that at p= oo and K=K oi.

For i".~ oo the radial degree of freedom freezes and one
is left with a fixed-length gauge-Higgs system often dis-
cussed in the literature. ' For that model it is well
known that the Higgs region is analytically connected
with the confinement region. This theory is not renor-
malizable.

For vanishing A, the model describes scalar QCD [for
the SU(2) gauge group]. For P= oo the gauge field may
be transformed to unity and one is left with the lattice
theory of free bosons which may be solved explicitly. The
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critical point corresponding to the massless theory is at
a.= —,

' . Already for a finite lattice volume there are singu-
larities for a& —, with their positions depending on the
type of boundary conditions and the lattice size. It has
been pointed out' that even for P=O such singularities
should occur for any finite volume. This can be under-
stood from the fact that the sum over all gauge-field con-
figurations includes the configuration where all U= 1.
Performing the p integration for this gauge-field configu-
ration produces the singularity at x= —,

' even at P& oo,
e.g., at P=O. The same should happen for a set of config-
urations in the vicinity of U =1 which is of nonzero mea-
sure on a finite lattice.

In practice the Monte Carlo sampling of configurations
provides an intrinsic regularization. The probability to
produce such a dangerous U configuration is small and
for any U configuration one does not really completely in-
tegrate the p field variables. Instead one samples one or a
few p configurations before one changes again the U
fields. So in the actual calculation there is a competition
between the entropy due to the volume and the
singularity-producing configurations. Because of the fi-
nite and actually relatively small number of MC iterations

&h~s(several 1000 to be compared with e.g., 120 " ' possible U
configurations for a discrete subgroup Y) the results are
more like those for small but finite A, , at least as far as it
concerns the discussed singularity. (A similar situation
occurs in the MC realization of spontaneous breakdown
of a global symmetry. In the simulation of the Ising sys-
tem on a finite lattice one observes spontaneous magneti-
zation even for vanishing external field although the
rigorous expectation value is zero. )

In the numerical results one finds for A, =O and small P
no hint of a singularity at a = —,

' but at a higher value of
~=«,„,(P) depending on P (see, e.g., Ref. 10 and Sec. III).
This behavior is essentially alike for fermions and is con-
tinuously approached from the results for a,„,(P) from
larger A, . We have performed MC simulations on lattices
with 4, 6, 8 and 8 &16 sites. The updating is done
with the usual Metropolis algorithm, ' separately updat-
ing the gauge group and the radial degrees of freedom.
Most of the information comes from thermal cycles at
fixed P and I,, with 200—300 MC iterations at each step
before increasing or decreasing the coupling a throwing
away the first 400 sweeps before we start to measure. We
measure (P P), (P UP) and the plaquette observable. At
some selected values of the couplings we performed long
runs (several 10000 sweeps) starting from hot and cold
configurations in order to study the relaxation behavior
and metastability. We also collected some data for the
unnormalized specific-heat contribution B„(ptUQ) and
determined correlations of bound-state observables.

III. PHASE-TRANSITION LINES

We have performed extensive thermal cycles on a 6 lat-
tice and determined the phase structure and the positions
of the PT line for A, =O.Ol in the whole (P,a) plane. In
Fig. 1 the positions of the hystereses are indicated. For
that value of A, the Higgs PT line extends from P= ao
down to negative P. For a values above this line the ex-
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FIG. 1. The phase diagram for A, =0.01; for that value of A,

the Higgs PT Iine extends from P=oo to —00. For P& —2. 5
there is also a plaquette frustration PT. The dashed line indi-
cates the onset of freezing effects due to the icosahedral approx-
imation of SU(2).

pectation values of the length squared of the Higgs field

(0'0 & (p'& =(X=—p. ') (3.1)

( &p» &= (g ,'T»U~)—(3.3)

changes its signature. With decreasing P the line runs to-
wards ~—+ 00.

We did not investigate these two PT lines for negative P
for other values of A, since we expect a behavior similar to
the U(1) Higgs model. ' '5 There the Higgs PT line from
positive P extends for decreasing A, more and more to-
wards negative P and it joins the other PT lines at suffi-
ciently small A,.

We now turn to the confinement-Higgs PT at positive
P. This transition is the lattice counterpart of the PT as-
sociated with the Higgs mechanism where the gauge bo-

and the link product

X p*p*+» ~ T'~»* U* »»*+»&).&»~S
P 1) ~ ~ ~ p4

(3.2)

grow proportional to a/A, . We shall discuss this PT later.
To our knowledge the SU(2) Higgs model has not yet

box:n studied for negative P; for this reason we descr'ibe the
PT's found there in some detail. Close to P= —2.5 two
first-order PT lines start and extend towards lower P in
the (P,a) plane. Figure 2 presents the thermal cycle of a
run diagonal in the (P,a) plane cutting both PT lines. The
PT at lower a. is essentially the continuation of the Higgs
PT at positive P values with similar behavior of Higgs
field observables. Because of the P~—P symmetry for
a.=O it is possible to construct a completely frustrated
gauge-field configuration' at P= —co. There the Higgs
PT is observed at ~=0.27—0.34. The other PT at higher
a and P& —2.5 is the plaquette frustration transition
where the plaquette mean value
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FIG. 3. Confinement-Higgs PT lines in the (P,a) plane for
various values of A, . The bars indicate the positions of hys-
tereses found in thermal cycles on 6 and 8 lattices. Some
points indicated by diamonds are from Ref. 12. Dashed lines
indicate the approximate position of the PT line end points and
the crossover behavior.
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FIG. 2. Thermal cycles on a 6 lattice Q.=0.01) diagonal in
the (P, ir) plane from (—7,0.26) to ( —2,0.36) cutting both the
Higgs PT and the plaquette frustration PT.

son acquires its mass due to the Higgs phenomenon. Any
future investigation of the nonperturbative realization of
the Higgs mechanism will concentrate on the vicinity of
this PT; thus its position and properties should be known
as precisely as possible. The critical value Ir,„,(P, A, ) plays
a role similar to the corresponding quantity in lattice
QCD.

In Fig. 3 one finds the positions of the confinement-
Higgs PT lines in the (P, ir) plane for various values of A, .
They have been determined by hystereses found in
thermal cycles for fixed A, and P on 6 and 8 lattices. We
include also 4 points recently determined by Montvay. '
Results for larger A, may be found in Ref. 10.

The PT lines start at P= ao at the PT's of the SU(2) lat-
tice P model. For A, )0. 1 they have an end point at low
positive Ig. This agrees with the prediction of a strip of
analyticity connecting the confinement and the Higgs re-
gions. ' For P below this end point the PT transmutes
into a crossover which rapidly disappears. However, as
may be seen, e.g., in Fig. 1 for A, =0.01, for small enough

A, the confinement —Higgs PT line extends far into the
negative P region where it joins other PT's.

Starting at A, =ac the overall position of the PT line
shifts monotonically with decreasing A, towards lower ~.
Figure 4 demonstrates this behavior for P=2.25. A simi-
lar curve for the U(1) Higgs model is not monotonic. '

Figure 5 illustrates the behavior of the mean link ob-
servable (3.2) at several values of P. For A, =0.01 an enor-
mous hysteresis is found at P= —2 which weakens with
growing P [Fig. 5(a)]. For somewhat larger A, =0.03 [Fig.
5(b)] almost no hysteresis signal is seen at P=O. This in-
dicates the vicinity of an end point. With growing )r3 the
transition becomes stronger before it weakens again above
P) 1.5.

It is quite easy to convince oneself that the PT is of
first order for A, =0.01 in the interval of finite P investi-
gated. On the weakest of the hystereses shown in Fig. 5(a)
at the point indicated by an arrow one clearly finds two
coexisting phases (Fig. 6). Such a first order of the SU(2)

SU(2 }, P =2.25

0.4—

0.2—

I

0.01 0.03 0.1
I

0.3 1.0
I l

3.0 10.0

FIG. 4. Dependence of the confinement-Higgs PT in the
(A.,a) plane for P=2.25. The dashed line indicates the onset of
the freezing effects due to the icosahedral approximation.
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FICi. 5. Development of the hystereses at the confinement-
Higgs PT with P for (a) A, =0.01 and (b) A, =0.03. At the point
indicated by the arrow (A. =0.01, P=2.25) one still finds a clear
signal for a two-phase structure (Fig. 6).

confinement-Higgs PT at small A, , observed also in Ref.
11, is in agreement with the Coleman-Weinberg conjec-
ture.

Comparison of data at various values of A, shows, how-
ever, that the transition weakens with increasing A, . In
Ref. 10 higher values of I, were investigated and, e.g., for
A, =0.5 no first-order signal on an 8" lattice was found. It
is a challenge to find out whether and at which value of A,

the transition becomes critical. This requires a careful
high-statistics study which we have performed as yet only
at one point.

IV. HIGGS PHASE TRANSITION
AT A, =0.5 and P=2.25

r( ~) —= (go(x, o)yo(q, ~)l —(go(x, a)l*,
X X

(4.2)

This point was chosen because thermal cycles in ~ on 6
and 8 lattices indicated critical behavior. However, in
long runs at fixed Ir on a 6 lattice we also found a weak
signal of two coexistent phases. A detailed investigation
of the PT at this point could provide a hint about a possi-
ble change of the order of PT with A, . For this reason we
performed a massive calculation of correlation functions
on an 8 &&16 lattice. During this calculation and in the
course of the search for the PT point we have also collect-
ed some data on fluctuations of the link observable on 44,

6, and 8 /16 lattices.
In Fig. 7 we show the values of the link observable in a

small interval in lr in the vicinity of the PT. Figure 8 ex-
hibits the specific-heat contribution of this observable:

a„&y'Uy) =X„,(([y'Uy]') (y'Vy—&') . (4.1)

These data have been obtained in runs of about 100000
sweeps for size 4", 10000—30 000 for 6, '

and
15000—30000 for 83)& 16. Insufficient data on 6 and the
asymmetry of the largest lattice do not allow us to per-
form a finite-size scaling analysis. Nevertheless, both fig-
ures reveal strong finite-size dependence varying from the
very broad structure on 4 to an extremely narrow peak in
the interval 0.270 ~ ~ & 0.271 on 8 && 16, in contrast with
Ref. 20. This sharpening specific-heat peak indicates a
substantial contribution of long-distance correlations.

Correlations over long distances contain information on
the spectrum of asymptotic states of the theory (cf. also
the recent results in Ref. 12). A measurement of several
correlation functions was our reason to choose the asym-
metric lattice size 8 &16. Treating the long direction as
time direction allows the determination of bound-state
propagators over somewhat larger distances than on a
symmetric lattice. We are still collecting data for correla-
tiqn functions at various points in the coupling-constant
space and these results will be published in due time.
Here we show two correlation functions determined at
A, =0.5, P=2.25, and lr=0. 2703, right inside the narrow
specific-heat peak. The correlation functions are defined

&4 U4&

SU(2)
) =0.01, (3=2.25, x=0.')53

8 lattice 0.5 '-

&4 U4)

SU (2)
X= 0.5
P= 2.25

~ ~ ~ ~ y ~ ~ ~~ ~ ~ ~ ~ ~ 0 4 lattice

6 0 ~

8 16---

1000 Sweeps 5000

FICs. 6. Long runs at A, =0.01, P=2.25, jr=0. 153 on an 8

lattice with cold and hot starts demonstrating the coexistence of
two phases.

0.266 0.268
I

0.270
I

0.272
I

0.274 0.276

FIG. 7. Values of (P UP) in the vicinity of the Higgs PT at
A, =0.5 and P=2.25.
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U4&Q +

SU I2)
X = 0.5
P =2.25

20—

where o. denotes the Pauli matrices.
These operators contribute to the bound-state objects

with quantum numbers 0++ (isoscalar) and 1 (isovec-
tor), respectively. The masses obtained in a fit to the ex-
ponential decay

Lattice I ( t) =A I exp( —Mt)+exp[ —M(16—t)] I (4.5)
50—

0.2+6

I

0.28 0.30

correspond therefore to the Higgs boson and the gauge
vector-boson particles realized as bound states of the sys-
tern. Both correlation functions and the fits (to the points
t=2, . . . , 8) are shown in Fig. 9. In the Higgs-boson
channel we find a very slow decay and are able to identify
the signal up to the symmetry point (t =8). The dimen-
sionless mass values are

for the operators
3

p„and g p„p„+„Tr(o„U„„o„+„)singlet 0++
p, =1

pxpx+pTr(o'o'x Ux,pox+@) triplet, 1

(4.3)

— (4.4)

~ r I 1 I I I

0.266 0.268 0.270 0.272 0.274 0.276

FIG. 8. The contribution of the link observables to the specif-
ic heat with respect to a (4.1) in the vicinity of the Higgs PT at
A, =0.5 and P=2.25. The range of a covered in the main plot is

indicated in the insert for the data on a 4 lattice. The curves
are drawn to guide the eye and represent fits by a five-parameter
function as in Ref. 15.

a mH ——0.20+0.03,

am~ ——0.85+0.08 .
(4.6)

The magnitude of the correlation length in the Higgs
channel 1/mt' ——5a indicates that the system is almost
critical. (What more can we expect on a finite lattice of
the size 8 )&16?) We conclude that the confinement-
Higgs transition at A, =0.5 and P=2.25 is either already
of second order or still of first order, although very weak.
A resolution of the remaining ambiguity and the localiza-
tion of a tricritical point (where the order of the PT
changes) will be a very difficult task [cf. the experience
with tricritical points in pure U(1) lattice gauge theory '].

SU {2 }, X=05, P= 2.25, x = 0.2703 V. ICOSAHEDRAL APPROXIMATION
OF THE SU(2) GROUP

(n I

012345678 t
I I I I I I f

r„{t}

FIG. 9. Correlation functions in the Higgs-boson and the
gauge-boson channels for A, =0.5, P=2.25, and pc=0.2703. The
curves represent fits according to (4.5).

Since the early times of MC studies the approximation
of the SU(2) group by its icosahedral subgroup I' has
been considered excellent. ' The motivation for its use is
the substantial saving in storage and computer processing
(CP) time. For the pure gauge system the freezing transi-
tion related to the discreteness of the group occurs at
P=6, sufficiently above the P values of interest, where
MC calculations are being performed. Inclusion of matter
fields changes the situation. The hopping term [propor-
tional to a in (1.1)] increases the action gap of Y' in the
Higgs phase. Therefore at v~0 a deviation of the results
from the full SU(2) group may arise already at smaller p.

Such a behavior was observed already in Ref. 8 for
A, = oo. We have followed the freezing PT line, where the
results for I' start to deviate from those for SU(2), for
A, =0.01 and 0.03. The lines for a =0 start at p=6 and
remain at this value until the Higgs PT line is crossed.
Then they bend sharply towards lower values of p. The
freezing line for A, =0.01 is indicated by a dashed curve in
Fig. i.

Whereas the freezing transition is clearly identified near
p=6, it becomes obscured towards smaller p. In Fig. 10
it is still clearly seen in both observables, the plaquette
and the link, at P=4 but only crossoverlike at P=2.25.
Experience with similar structures for the Z(X) sub-
groups of U(1) in lattice Higgs models' suggests a sub-
stantial difference of results from a discrete subgroup and
a full group: it starts unconspicuously at the freezing
transition but grows with sc.
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FICr. 10. Thermal cycles at p=2. 25 and p=4. 0 crossing both the Higgs PT and the icosahedron freezing line.
4

For this reason one has to use the Y approximation in
the Higgs phase with caution, especially for small A, . For-
tunately, we learn from Fig. 4 that there remains a reason-
ably broad strip between the Higgs PT and the freezing
(dashed line), where the approxitnation by F is justified.
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APPENDIX: TECHNICAL DETAILS

Our calculations have been done mostly on a CYBER
205 utilizing about 50 CP hours. Some results have been
obtained on other machines (CYBER 175, UNIVAC
1100/81). The vector algorithms suitable for the CYBER
205 are quite involved, therefore we have tested our pro-
grarns by comparison of the results with those obtained by
independently written programs for scalar computers.

During these tests we have observed a remarkable sensi-
tivity of the SU(2) Higgs program (actually, Y) on the
random-number generator used. The Control Data Cor-
poration generator RANF (based on the congruence
method) causes on the 8 X16 lattice a shift of the
specific-heat peak by b,tc=0.003 towards smaller tc that is
three times its width. Similar disturbing effects of RANF
have been observed by other authors in an Ising model
simulation. A possible curve is additional shuffling of the
pseudo-random-numbers generated. We followed the pro-
posal of Ref. 23 in our calculations.
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