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Conjecture concerning the modes of excitation of the quark-gluon plasma
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It is a widely held belief that at temperatures much higher than the confinement scale of quantum
chromodynamics (QCD), quarks and gluons become free, giving rise to a new form of matter, called
the quark-gluon plasma. It is conjectured here that the characterization of the plasma as a free or
weakly interacting gas of quarks and gluons is valid only for short distances and short time scales of
the order 1/T, but that at scales larger than 1/g T (where g is the running QCD coupling) the
plasma exhibits confining features similar to that of the low-temperature hadronic phase. The con-
fining features are manifest in the long-range, i.e., long-wavelength, low-frequency, modes of the
plasma. To examine the long-range real-time response of the plasma goes beyond the capabilities of
current lattice-gauge-theory techniques. However, some properties of these modes can be deter-
mined indirectly. An attempt is made to characterize the long-range modes of excitation by examin-

ing the static high-temperature limit, focusing upon the static screening lengths of colored and neu-

tral local operators. Since g is not small at temperatures likely to be accessible in heavy-ion col-
lisions, the nonperturbative effects associated with vestiges of confinement are likely to be important
in the phenomenological analysis of measurements made at accelerators.

I. INTRODUCTION p»(&, co) =( I+e )S»(&,to) . (l. lb)

It is natural to assume that asymptotic freedom permits
us to use perturbation theory to describe the properties of
matter at temperatures well above the confinement scale
AQCD since the temperature T sets a scale for interac-
tions. However, it has been known for some time that
there are problems with infrared divergences in high-
temperature quantum-chromodynamic (QCD) perturba-
tion theory. A straightforward attempt to calculate the
"magnetic mass" of the gluon perturbatively encounters
infrared divergences that prevent an orderly summation of
diagrams. ' Furthermore, in the Yang-Mills theory of
purely gluonic matter, the Wilson-loop expectation value
has an "area-law" behavior for loops with a strictly spa-
tial orientation at low as well as high temperatures, a

—
behavior usually associated with nonperturbative confine-
ment.

To study the possible nonperturbative or confining
features of the plasma, it is necessary, of course, to avoid
using perturbation theory. The approach adopted here
draws upon what is known or can be known through
direct numerical studies of the Euclidean functional-
integral formulation of the theory, paying particular at-
tention to the stable or nearly stable modes of excitation
of the plasma. These excitations are associated with nar-
row peaks at low frequency co and low wave number k in
the spectral function pzz of pairs of local operators
and 8.
iS»(k, co) =I d x J dt e'"'"

&& [(A(x, t)B(0,0))

The operation ( ) denotes an average on the Gibbs en-
semble. The upper sign is for bosons, lower for fermions.
For the relativistic quantum-electrodynamic (QED) plas-
ma these excitations are the quasielectron, the plasmon,
the photon, and, at long wavelengths, the various hydro-
dynamic modes, namely, the photon and- viscous-damping
and thermal-conduction modes. The peaks in p are nar-
row typically at low k where dissipation is weak. These
are the modes of a nonconfining gauge theory. If QCD
were to be nonconfining at high temperature, then it
would be expected to have a similar assortment of excita-
tions. I suggest below, however, that this need not be the
case for QCD. Instead the long-wavelength excitations
could be color singlets and "hadronic" in character just as
they are at zero temperature.

As an electron moves through a QED plasma it polar-
izes the surrounding medium, with the result that on a
scale much longer than the Debye screening length no net
current flow is associated with its passage. It is important
to be able to distinguish this screening phenomenon from
a confining phenomenon in QCD, which would also lead
to a cancellation of the color current of a moving quark.
To this end one may compare the propagator of the quark
operator in a suitable gauge with the propagator of an
operator for a color-singlet meson containing that quark.
In the case of confinement both propagators have a large-
distance decay controlled by the same mass constant. In
the case of screening they do not. It is essential to choose
a suitable definition of the quark propagator for the pur-
poses of carrying out this test. The "confinement" test is
described in Sec. II. This test is nothing but a rephrasing
of the area-law test for spacelike Wilson loops, but it is
helpful to phrase it in terms of the quark propagator it-
self.
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The term "screening" has also been used to characterize
the response of the zero-temperature vacuum and high-
temperature plasma to the introduction of magnetic
strings. " This "magnetic screening" is compatible with
the term "confinement" as it is used here. See the Appen-
dix.

To study the modes of excitation of the plasma, it
would obviously be most desirable to carry out the diffi-
cult, full, nonperturbative analysis of the real-time
response and construct the spectral function (1.1) directly.
Such a goal lies beyond the capabilities of current lattice-
gauge-theory techniques. For the present, therefore, we
must content ourselves with studying the imaginary-time
response, for which a nonperturbative numerical analysis
in lattice-gauge theory is possible. In imaginary 'time,
correlation functions are measured over a time scale of
maximum interval 6 Imt=1./T. Fourier analysis yields
information about Green's functions at discrete imaginary
frequencies. In principle an analytic continuation would
result in a complete knowledge of the spectral function
for real ~. However, in practical calculations statistical
errors and a limited lattice size make the continuation im-
possible. Thus, studying only the imaginary-time
response imposes a severe limitation upon the available in-
formation.

At high temperatures it has been shown that at macro-
scopic scales the (3+1)-dimensional gauge theory reduces
to a three-dimensional Euclidean gauge theory. ' To
be more specific, the Green's functions for k and m much
less than T in the (3+1)-dimensional theory can be com-
puted as if the theory were a zero-temperature Euclidean
three-dimensional pure Yang-Mills theory, augmented by
a minimally coupled color-octet scalar field (the vestige of
Ao). The coupling constant of the three-dimensional
theory is g3 ——g T, which also sets the scale for confine-
ment. It has been shown by Nadkharni that the dimen-
sional reduction is valid to the one-loop level in perturba-
tion theory. This dimensional reduction is iHustrated in
strong-coupling lattice-gauge theory in Sec. III.

Because the three-dimensional Yang-Mills theory is
confining, its spectrum must consist of color-singlet ana-
logs of glueballs. These states of the three-dimensional
theory give some information about the modes of excita-
tion of the (3+1)-dimensional theory. In particular, if a
plasma mode has a dispersion relation given by

plasmon in QED is associated with Debye screening. It is
conjectured that this correspondence is also found in
QCD, but that only color-singlet modes occur there. If
so, then the long-range (distances of the order 1/g T)
modes of the plasma must be "confined" color-singlet
modes in order to coincide with the spectrum of the con-
fined static three-dimensional theory at co=0. This con-
jecture is offered as the simplest possibility that permits a
reconciliation of the long-range confining characteristics
of the three-dimensional theory and what is known about
the validity of perturbation theory in the (3+1)-
dimensional theory. There are other possibilities. A low-
lying color-nonsinglet mode of the plasma could have a
dispersion relation for which no root to (1.3) exists for
M3&O(T), the ultraviolet cutoff for the three-
dimensional theory. In that case the confined modes with
masses M3 could become unstable with respect to decay
into color-nonsinglet modes. The possibility of such an
instability was suggested by d'Hoker with reference to the
QCD plasmon. ' A further possibility is that a color-
nonsinglet mode could satisfy (1.3), but decouple from all
local operators at co =0. Indeed, this behavior is found for
the color-singlet hydrodynamic modes.

As a consequence of this conjecture, the following
characterization of the high-temperature plasma
(TO')AQCD) emerges, as illustrated in Fig. 1. At dis-
tances and times less than O(1/T), perturbation theory is
valid and a partonlike description of the plasma as a gas
of quarks and gluons is most economical. At distances
and times of the order 1/g T, perturbation theory with
screening may be used, and it is economical to treat the
plasma as a gas of quasiquarks, plasmons, and dressed
tranverse gluons. At distances and times of order 1/g T
nonperturbative confining effects become important. The
plasma is described as a fluid of color-singlet excitations.
Finally at distances much greater than 1/g T, hydro-
dynamic modes are important. Since at thermal equilibri-
um the temperature determines the dominant momentum
for an excitation, the high-temperature plasma is, to a
good approximation, a w'eakly interacting gas of quarks
and gluons. However, this description fails to the extent

f(k, co) =0, (1.2) Hydrodynamic regime: phonons, dissipative modes

f(+iM 0)3=0, (1 3)

then, as shown in Sec. IV, masses M3 of the glueballs in
the three-dimensional theory correspond to roots of the
equation Cl

E

O

l/g T -- Gonfining regime: color singlet excitations

if the roots exist.
In quantum electrodynamics the various nonhydro-

dynamic modes, namely, the quasielectron, plasmon, and
transverse electromagnetic waves, all have the property
that the roots (1.3) for imaginary wave number corre-
spond one-to-one with the roots of (1.2) for real wave
number and nearly real frequency —i e., the two-
dimensional surface in complex k and co defined by (1.2)
intersects the imaginary k axis at ~=0. For example the

O
CI

CA

Cl

i/(g T) -- Debye screening regime: plasrnon, quasiquark,
transverse gluons

I/T -- Perturbative regime: quarks, gluons

FIG. 1. Scales of the quark-gluon plasma for T && AQcD
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it relies on quasifree particle momenta of the order g T,
which are subject to confinement. For temperatures
T AQCD g is of order one and the corrections are ex-
pected to be considerable.

II. AREA LA%S
AND QUARK AND GLUON PROPAGATORS:
A TEST FOR DYNAMICAL CONFINEMENT

OF THE PLASMA MODES

There is little doubt now that static charges are
screened at high temperature in a pure gluon plasma. "
When quarks are introduced into the statistical ensemble
static charges are screened at all temperatures, just as
charges are screened at nonzero temperature in QED. In
QED an electron passing through a plasma carries with it
a polarization cloud that screens it at long distances. In
QCD moving colored objects are undoubtedly screened as
well. However, the nature of the screening for dynamical
excitations may be qualitatively different. Therefore I
propose to distinguish between long-range confinement
and screening of dynamical charges, since this choice has
a bearing on an understanding of the macroscopic compo-
sition of the plasma. The question is whether it is possi-
ble to produce a long-wavelength quarklike or gluonlike
excitation that cannot also be generated by a color-singlet
source. In the corresponding case of QED there is a
quasielectron excitation that is certainly distinguished
from a neutral excitation, even though screening is
present. In QED the neutralizing polarization cloud that
moves with the electron is not required to involve the
transport of a positron, per se, but merely the shifting of
the vacuum polarization. In QCD it may happen, by con-
trast, that the neutralizing quanta are forced to move in
such a way that they render the would-be quarklike or
gluonlike disturbance indistinguishable from a disturbance
initiated by a suitable color-singlet source.

To consider the questions raised above it is necessary to
find a suitable definition of a quark or gluon
propagator —a definition that can be used as well for the
electron in QED. ' At zero temperature in QCD the con-
struction of a quark or gluon propagator is plagued by an
awkward interplay between the gauge dependence and
confinement. By contrast, because QED is not confining,
there is no confusion about the electron propagator. One
might hope that if QCD were not confining at high tem-
peratures, there would be a similar ease in defining propa-
gators for colored objects. In fact, we find that this hope
is not realized. Nonetheless, it is possible to choose a par-
ticular gauge in which the electron propagator in QED
exhibits long-range screening behavior at al1 temperatures
and the quark propagator exhibits long-range confining
behavior in the sense used here. Such a result should
render the long-range colored propagators thankfully ir-
relevant.

Let us attempt to construct the fermion propagator in
an axial gauge. The asymptotic behavior of the propaga-
tor or correlation function at large spatial distances can be
analyzed in a theory in which spacelike %'ilson loops have
an area law in the pure gauge theory, as they may in
QCD, and in a theory in which they do not, such as QED.

iS (x,y) = (g(x)g(y) ), (2.1)

where the average is over the Gibbs ensemble. Since the
operator P(x) is gauge dependent, it is necessary to render
the expression gauge invariant through the introduction of
a string operator that connects x and y. Let the gauge
fields be defined in a periodic spatial volume of large but
finite extent. Make the string run from x to y for the
most part along the 3 axis on a contour D by going to the
boundary of the lattice and reappearing at the opposite
boundary as shown in Fig. 2. Here we have assumed
x 3 (y 3 ~ The volume is to be taken to infinity at fixed
~y3 —x3

~

. There is a detour needed to align the positions
perpendicular to the 3 axis. It is taken to infinity with the
volume. Thus with the string operator

CD(y, x)=P exp i f A, 'A&(z)dz& (2.2)

w(d, c)

FIG. 2. Position of the string D connecting x and y in a
periodic volome and the Polyakov loop 8'(d, c}. The points x
and y are allowed to have an offset in the 2 and 4 directions as
well.

In the former case the asymptotic behavior is controlled
by a correlation length corresponding to a singlet "mass. "
In the latter it is not.

The analysis of the various correlation functions in-
volves, in effect, finding the eigenvalues and eigenstates of
the spacewise transfer matrix. This is the transfer matrix
that characterizes evolution along a particular spatial
direction, say the 3 axis. In the finite-temperature Eu-
clidean path-integral formulation, one may regard the 3
axis as the imaginary-time axis and the 4 axis as one of
the spatial axes. The path integral can then be regarded
as giving a zero 3-axis-temperature partition function for
a Hamiltonian defined on a three-dimensional space with
the original 1 and 2 directions intact but with the third
spatial dimension (the original 4 axis) reduced to a finite,
periodic interval of length I/T. The imaginary-time evo-
lution operator for this Hamiltonian for short times is the
original spacewise transfer matrix. This Hamiltonian at
high T and long-distance scales is approximately that of a
(2+ 1)-dimensional gauge theory with an additional scalar
field, as discussed in Sec. III below. To the extent that
this limiting theory is confining one expects large space-
like Wilson loops in the original (3+ 1)-dimensional
theory to obey an area law.

Consider the fermion correlation function in QCD or
QED,
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the expression

iSD(x,y) = ( CD(y, x)f(x)g(y) ) (2.3)

have

( W(c, d) W(b, a) ) -exp[ —2mH(T)L3] . (2.9)

iSD(x,y) = ( W(d, c)CD(y, x)g(x)g(y) ) . (2.5)

Next it is useful to remove the "disconnected" part of the
correlation function by subtracting its asymptotic value

SD„nn(x, y) =SD(x,y) — llm SD(x,y) .
~y, -x,

~

(2.6)

The proper order for the limits is first to take the trans-
verse dimensions of the volume (1 and 2 directions) to in-
finity along with the transverse separation between D and
W(d, c), then to take the limit

~ y3 —x3
~

—+op in the
second term above, keeping

~
x3 —a3

~

and
~

b3 —y3
~

fixed. Finally, after taking the difference, it is useful to
normalize the result before taking the third dimension to
infinity:

is gauge invariant. Of course a suitable ultraviolet regu-
larization, e.g., a lattice, must be introduced to avoid an
ultraviolet divergent self-energy due to the infinitesimal
size of the string. To allow for return electric flux in non-
confining theories it is useful to introduce a Polyakov
loop operator W(d, c) also shown in Fig. 2 at a large dis-
tance from the other points,

d
W(d, c)=Tr Pexp i A,'A&(z)dz", (2.4)

C

so that we have

In Hamiltonian language mH(T) is the mass of the
lowest-lying color-singlet meson containing a fixed-triplet
source for QCD defined on a periodic space-time volu'me
with one of the dimensions reduced to 1/T and the other
two dimensions large.

Next, consider the correlation product SD(x,y). A fer-
mion is created at y and moves to x. The world lines it
may generate are disconnected, if it is possible to divide
the volume into a left and right part without cutting a
dynamical world line. Otherwise they are connected. The
simplest connected world line goes directly from x to y.
The simplest disconnected world line runs back along the
string from x to y. The operation (2.6) removes the
disconnected contributions. Now the simplest surviving
connected contribution resembles closely the Polyakov
loop except that for a portion of the loop there is a
dynamical quark rather than a fixed one, and there is a
small detour. Again other dynamical fermion lines must
appear so as to suppress the infinite area loops both at low
and high temperatures. For large

~
y3 —x3

~

the combina-
tions of fermion world lines appearing between x and y
are those of propagating color-singlet mesons with no
fixed sources involved. They must contain the propaga-
ting quark, however. Let the mass of the lightest such
color-singlet meson be m (T). Then the normalized corre-
lation product has the behavior (up to powers of

SD„„„(x,y) =SD„„„(x,y)/( W(d, c)W(b, a) ) . (2.7)

What does this axial-gauge fermion-correlation product
measure? Consider first the Polyakov loops at zero tem-
perature in QCD. For large

~
b3 03

~

—
~
d3 c3

~

—L3,

( W(d, c)W(b, a)) —exp( —2mHL3),
where mH is the lightest mass of an unphysical color-
singlet meson containing one fixed-triplet source. It is
easy to understand why this state appears. Close to zero
temperature the Euclidean space-time volume can be
made symmetric under the interchange of the time and 3
axes. Thus the Polyakov loops give a measure of the free
energy of a state containing a pair of fixed-triplet sources
at large separation. As L, 3~~ the temperature vanishes,
and the only surviving states of finite mass are color sing-
lets containing antiquarks or quarks that combine with
the fixed sources to form color singlets. The world lines
of these additional dynamical quarks lie close to the Po-
lyakov loops, thereby assuring that after dynamical fer-
mion degrees of freedom have been considered, no Wilson
loops of large area have been formed. In the language of
functional integration, the fermion determinant may be
expanded as a series of Wilson and Polyakov loops. The
gauge action suppresses loop combinations that result in a
large-area spacelike loop.

Now consider the spatial Polyakov loops at high tern
peratures. Assume that the spatially oriented Wilson
loops still have an area-law behavior. Then to prevent
large-area Wilson loops, it is again necessary for the fer-
mion world lines to lie close to the loop contours. We

Saconn(xry)

constexpI —y3 x3
~

[m(T) —~H(T)]I .
~y, —x, ~

(2.10)

(It is understood that the limit L3~ no is taken before the
limit

~ y3 —x3 ~oo.) The key observation here is that
the asymptotic behavior at large spatial separations is con-
trolled by "masses" of color-singlet states. Notice that in
QCD the extra Polyakov loop W(d, c) is not needed be-
cause confinement forces the generation of a color-singlet
state localized around each loop.

In continuum quantum electrodynamics the result is
different. Because Wilson loops do not have an area-law
behavior, there is no need to include additional neutraliz-
ing fermion world lines in the Polyakov-loop product (2.8)
or in the correlation product (2.5). The asymptotic
behavior of the normalized axial-gauge correlation prod-
uct at large spatial separation is still of the form (2.9), but
the "masses" have a different interpretation. The quanti-
ty IH(T) is the energy of a point source in a periodic
space with one small dimension 1/T. The quantity m (T)
is the mass of an electron in such a space. In neither case
is an electrically neutral object required because the theory
is not confining.

To summarize, we have proposed a procedure for defin-
ing a fermion correlation product that has the property
that at large spatial separation its asymptotic form is con-
trolled by neutral states in a "confining" theory, but
charged states in a nonconfining theory. A similar pro-
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cedure can be used to construct correlation products for
the gauge field E& itself. Again in a confining theory
such as QCD, color-neutral states control the asymptotic
behavior. However, the photon is, of course, neutral and
so provides no contrasting result for QED.

Finally, to complete the test for dynamical confinement
it is necessary to measure the corresponding masses for all
the neutral objects in the plasma. If m (T) happens to be
the same as one of these, then the theory is dynamically
confining.

This test is so far restricted to the static correlation
lengths that control the large-distance behavior of the
correlation product. It is important to extend the test to
real time. A dramatic test of the absence of long-range
quark and gluon propagation would be to define a propa-
gator for charged sources such that for a confining theory
the singularities in k and real ~ always coincided with the
singularities of the propagator of some color-singlet
operator up to shifts coming from m~(T), whereas in a
nonconfining theory they did not. The real-time test is
beyond the scope of the present work.

(A,'P')
U„q = 1+i A'P„',

2f
(3.6)

where the [A,'] are the usual eight generators of SU(3) ro-
tations and P'„ is a color-octet scalar field defined on the
three-dimensional lattice. The space-time plaquette then
satisfies

Re TrU„4;=3—[P'„D,b(U—„;)P„+,] (3.7)

where D,b(U) is the adjoint representation of the SU(3)
matrix U.

Ignoring irrelevant constants and rescaling both P'„and
g„gives a revised action

The third term in (3.5) coming from timeward hopping
gives rise to a mass term when X = 1 by virtue of the fer-
mion antiperiodic boundary condition. For free fermions
the mass is O(T) relative to the three-dimensional hop-
ping term.

At high temperatures it is well known that the timelike
links Ux4 cluster around the unit matrix. " Thus we may
expand

III. DIMENSIONAL REDUCTION AT HIGH
TEMPERATURE ON THE LATTICE

Here we illustrate dimensional reduction at high tem-
perature for strong-coupling SU(3) lattice-gauge theory
with the fermion scheme of Wilson. ' In this approxima-
tion the partition function is

Z= f [dUdgdg]exp[SG(U)+S, (g, g, U)], (3.1)

SG+SF~SG(p, U)+SF(ri, rt, U, $),
where

S (y, U)= ——,
' y [y„'—D, (U„;)y -. ]'

+ g Q Re TrU„;J,
X l (J

(3.8)

(3.8a)

where the integration is (as usual) over the Haar measure
for SU(3) link matrices U ( x labels the Euclidean

P
space-time lattice point on an X )&X, lattice and
p=1,2, 3,4 is the direction from that site) and over the
Berezin measure for the fermion Grassmann variables g»
and g„. In the strong-coupling high-temperature limit'
we take a lattice with % =1, i.e., only one step in the
time direction, and let r=P, =1/T, the lattice constant in
the time direction, be smaller than a, the lattice constant
in the space direction. For this anisotropic lattice

SG(U)= z g —g Re Tr(U„q;)+ —g Re TrU„,
&

g x l (J
(3.2)

2

SF=(ma+2a/r+3) +7)„g„— g g„(A,'P') g„2~ .
X ri»'1'~~ 4' 'Qx

——,
' g [g;(1+@;)U„;ri„+ri„U„;(I—y;)g -] .

(3.8b)

In this form the theory is a three-dimensional Euclide-
an version of QCD augmented by a color-octet scalar field
coupled covariantly to the Yang-Mills field. The square
of the Yang-Mills coupling constant is obtained from the
inverse of the coefficient of the second term of (3.8a), i.e.,

where, because X = 1, the space-time plaquette is
2 2 (3 9)

Ux 4; ——Ux4Ux; U -. Ux;x+i,4

and the space-space plaquette is, as usual,

x+i,J x+), l

The fermion action at zero chemical potential is

SF (m r+ 1+3r/a)g ri„——ri„

(3.3)

(3.4)

+ —, g [g„(1+@4,) U„4'„+q„U„4(1 y4)ri„] . (3.5)—

This three-dimensional lattice theory corresponds to what
has been proposed for the continuum theory. The choice
%,=1 is thought to give a good approximation to the
partition function of the Hamiltonian lattice theory only
when 1/T=~&&a. ' Thus the temperature gives the
scale of the ultraviolet (UV) cutoff of the three-
dimensional theory. With this approximation we are lim-
ited to studying correlations at distances much larger than
T '. In attempting to do perturbation theory with the
three-dimensional theory one discovers that the self-
energy of the scalar field is potentially UV divergent, but
is regulated by the lattice. In this way the scalar field ac-
quires a mass of order eT in quantum electrodynamics
and gives rise to Debye screening and the plasmon.
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As a consequence of this dimensional reduction, the
spacewise transfer matrix of the (3+ 1)-dimensional
theory at high temperatures becomes the usual
imaginary-time transfer matrix of the Euclidean three-
dimensional theory. The static correlation lengths of the
(3+1)-dimensional theory at high temperature are then
inverses of the discrete masses of the dimensionally re-
duced theory. Therefore the spectrum of the three-
dimensional theory is of interest. We close this section by
speculating about the spectrum of the theory consisting of
QCD3 coupled to an adjoint scalar field. For the purposes
of this discussion let us use A„' for p = 1,2, 3 to denote the
three-dimensional vector field and P' to denote the scalar
field. The three-dimensional SU(2) Yang-Mills theory
was studied numerically by d'Hoker, who presented evi-
dence for confinement. ' His numerical evidence for the
existence of a mass gap was not decisive, however. Let us
suppose, nonetheless, that his conclusions are correct and
that a mass gap occurs, as it does in QCD3+~. It would
correspond to the lightest glueball of the theory, presum-
ably with valence composition AA. Since the coupling
constant of the theory (3.9) has a dimension, the glueball
mass would necessarily conform to this scale, giving

dc' PAB(k~~ )
I R(k, co)=lim

6—+0 oo 2'1T CO —6) +l 6
(4 2)

and p&R is related in turn to S&R of (l.la) through (l.lb).
Finally, the imaginary-time propagator is given by

P
S„qR(k)= f dr fd x e'"" e

)& [(A (x, ir)—B(0,0))

transfer matrix at high temperature, we turn now to a
brief discussion of the connection between the discrete
spectrum of the transfer matrix and the dynamical modes
of the plasma. We first summarize some notation and
formulas of finite-temperature linear-response theory.
The retarded momentum-space propagator for a pair of
local operators A and 8 is given conventionally by

il R(k, co)= f d x f dte' '

&& ([A (x, t),B(0,0)]—), (4.1)

where the sign denotes a commutator for bosons or an-
ticommutator for fermions. The propagator is in turn re-
lated to its spectral function through

M3wa=O(g T) . (3.10) —(~ (o,o)) (B(0,0) )] (4.3)

With the scalar field included one could entertain the
possibility that a Higgs phenomenon destroys confine-
ment. As a consequence large spatially oriented Wilson
loops would follow a perimeter law. This possibility can
also be checked numerically. For what follows we assume
that no such breakdown of confinement occurs. In this
case we expect the scalar fields to bind with the vector
fields to form further glueballs of valence composition PP
and PA, etc. Since the UV mass renormalization dis-
cussed above gives the scalar field an effective mass of
O(gT), for g &&1 the scalar particles would have masses
larger than the confinement scale and would bind as
color-octet analogs of charmonium and states of bare
charm. Then we would have

M3yg M3yy —0 (gT) (3.11)

IV. ANALYTICAL CONNECTION BET%'EEN
STATIC CORRELATION LENGTHS

AND DYNAMICAL MODES

Thus at distances of order 1/g T the color plasmon P
would be color neutral, carrying at least one vector field 2
with it. At moderate temperatures it may mix strongly
with the AA glueballs.

With quarks also included other hadronic analog states
such as mesons and baryons could be constructed. How-
ever, they are not as reliably studied in this approxima-
tion, since their bare masses in the reduced theory are in-
trinsically of the same size as the UV cutoff. The binding
of quarks to form color singlets is nonetheless to be ex-
pected as a consequence of the analysis of the quark prop-
agator in Sec. II above. They should mix with the glue-
ball states.

for discrete frequency co„=2vrn /T for bosons and
(2n+1)~/T for fermions. For n )0 the imaginary-time
propagator is just the analytic continuation of I R,(k, co):

S„,R(k) I'R=(k, ice„) . (4.4)

f (k, co) =0, (4.5)

where k =
~

k
~

. It follows that So&R(k) has a pole in k at
k =+iM such that

f (+iM, O) =0 . (4.6)

Such a pole implies that the time-averaged correlation be-
tween boson operators 2 and B, defined by

S„,(x) = (2(x)B(0)) —(2(0) ) (B(0)),
where, for a general local operator 0,

P
O(x) =—f dr O(x, —ir),

11 0

has an asymptotic contribution

S„R(x) — const exp( —M
~

x
~

) .
/Xj ~oo

(4.7)

(4.8)

(4.9)

The lowest such M dominates the asymptotic behavior
and determines the inverse static correlation length

'(T)=M(T) . (4.10)

Let us suppose that for boson operators 3 and 8,
p&R(k, co) has a narrow peak at a low-frequency co and
wave-number k, such that I R (k, co) has a pole in k and co

corresponding to a dynamical mode of excitation of the
plasma. Because of rotational symmetry and parity, the
location of the pole is given by

Having discussed a possible spectrum for the three-
dimensional theory and therefore for the spacewise

It also determines the gap in the spectrum of the space-
wise transfer matrix.
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As an illustration, let us suppose that to a good approx-
imation

f(k, co)=co sk— b, =—0 (4. 1 1)

is the dispersion relation for a dynamical mode. The gap
for real-time excitations is A. The static correlation
length is then

'=M=6/s . (4.12)

Thus the static correlation lengths are determined from
the dispersion'function for the dynamical modes by an an-
alytic continuation to zero frequency.

Hydrodynamic modes such as phonons have the typical
property that co~0 as k~O. Thus one might expect the
static correlation length to be infinite for any fluid with a
phonon. However, they decouple from local operators at
zero frequency and so are not found in (4.9). For exam-
ple, for nearly all fluids, the photon contribution to the
spectral function of the energy density is given at low k

p„(k,co)=aC~Tk [6(co—c,k) —6(co+c,k)], (4.13)

where Cz is the specific heat and c, is the speed of
sound. ' The decoupling at k =0 is evident.

V. CONCLUSIONS AND DISCUSSION

Based on the likelihood that the spacewise transfer ma-
trix for QCD at high temperature has a color-singlet spec-
trum, it has been conjectured that all the low-lying
dynamical modes of the quark-gluon plasma consist of
color-singlet excitations. They would be dynamically con-
fined in the sense that excitations generated by local
colored sources would be indistinguishable from excita-
tions generated by local color-singlet sources. The con-
finement scale is expected to be of order 1/g T, where g
is the running QCD coupling. Other plasma scales are in-
dicated in Fig. j. . Since g is small at very high tempera-
ture, the confinement scale is much larger than the typical
wavelength of particles at high temperatures. Thus the
high-temperature plasma is, to a good approximation, a
gas of quasifree quarks and gluons. However, quanta
with momenta of the order g T are subject to nonpertur-
bative confining effects. They contribute to the thermo-
dynamic potential 0 roughly in proportion to their share
of the phase-space volume, inside a sphere in momentum
space of radius g T, i.e., a correction

bQ=O(g )T

area-law behavior. The situation in QCD is more compli-
cated. What is offered here is the next simplest possibili-
ty, namely, that the low- and high-temperature phases
both have confining characteristics, but at sufficiently
high temperatures confinement has an insignificant effect
upon the thermodynamic properties. The question then
becomes, what is the nature of the phase transition, if
any? Although the pure Yang-Mills plasma exhibits
deconfinement of static color-triplet charges, dynamical
charges may well have a different behavior. With light
quarks present there is also the possiblity of a phase tran-
sition that leads to the restoration of manifest chiral sym-
metry. Indeed, if there is a phase transition in light-quark
QCD, it may well have more of a chiral character than a
deconfinement character. Thus it may be possible that all
zero temperature hadrons have analog modes in the high-
temperature phase. One should measure the behavior of
the gap functions b, ( T), particularly near the phase transi-
tion for all hadronic modes. One would expect that if the
phase transition were deconfining, the hadronic modes
would be abruptly reduced in number above the critical
temperature leaving only a few modes available for flavor
and baryon transport and a few hydrodynamic modes.
However, if the phase transition were chiral in character,
it may happen that most low- and high-temperature
modes would be in obvious one-to-one correspondence,
but modes sensitive to the pattern of realization of chiral
symmetry, such as the pionic mode, would exhibit a signi-
ficant discontinuity in the gap function b(T) or its deriva-
tive at the phase transition.

Although numerical simulations of real-time response
in the QCD plasma require as yet undeveloped techniques,
measurements of static correlations A, (T) are easily possi-
ble with current numerical lattice-gauge-theory tech-
niques. Perhaps the behavior of k(T) will give us a hint
as to how A(T) behaves. Questions of interest are these:

(1) Is there evidence for a gap'? i.e., is A,(T) ~ oo for all
modes?

(2) Can one produce a quarklike or gluonlike mode that
is distinguishable from a color-singlet mode?

(3) What are the relative sizes of the correlation lengths
for mesonic and baryonic modes in light-quark QCD and
glueball modes in pure Yang-Mills QCD? What are the
lowest lying nonhydrodynamic excitations in the QCD
plasma likely to be? Presumably they would have the
largest A, ( T).

(4) If chiral symmetry becomes manifest, is there evi-
dence in the spectrum, i.e., does A,(T) for the pionic mode
show a significant change and is there evidence for parity
doubling?

At high temperatures AA is rather small. However, at the
deconfinement temperature, g is close to one and the
corrections are probably considerable.

This characterization of the long-range composition of
the plasma is contrary to the naive picture that the decon-
finement of static charges entails the deconfinement of
dynamical charges as well. However, as argued in Sec. II
a simple deconfinement of dynamical charges giving a
QED-like plasma is incompatible with the expectation
that spatially oriented Wilson loops in QCD have an
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APPENDIX untwisted case:

S,„=PQ U, —PQU, ,
PgT PGT

(A2)

where each of the string plaquettes is multiplied by a non-
trivial element of the center of the gauge group, in this
case —1 (Ref. 16). The twisted action is interpreted as
representing the effect of introducing a static line of mag-
netic flux passing through the lattice along the 3 direc-
tion. The response of the vacuum to the introduction of
such a structure is measured by

e '" = f [dUp]expS, „ f [dUp]expS . (A3)

Another measure of the effect of the twist is the differ-
ence between the average plaquettes in the twisted and

A strong-coupling analysis shows that the screening of
a magnetic string can occur at the same time that space-
like Wilson loops show an area-law behavior. This result
is not surprising in the least, but may help to clarify the
terminology. Thus what I call confinement of the long-
range high-temperature plasma modes, a phenomenon as-
sociated with the area law, and leading to the exclusion of
colored excitations, is compatible with what others call
screening of magnetic strings. '

Consider a pure SU(2) Yang-Mills lattice action in the
Wilson form on a periodic Euclidean space-time. Consid-
er the set of string plaquettes

T= t U„„I
I, =a„x,=a, I

for constant a &, a2. These are a string of plaquettes per-
pendicular to the 3 axis at fixed x~ ——a~, xq ——az for all
possible x3 and x4. The magnetic string is introduced by
replacing the usual action by the twisted action

t)p
(F, F—) =N ( ( Up ), —( Up )), (A4)

where N is the total number of plaquettes, ( Up) is the
usual plaquette average, and ( Up ), is the plaquette aver-
age weighted with minus signs for the string plaquettes
and calculated with the twisted action. The twist effect is
easily calculated to leading order in the strong-coupling
approximation at low as well as high temperatures' and
is given by

1

2N)Xp 2
(A5)

where X~ and X2 are the number of sites in the 1 and 2
directions. This dependence on the area X&X2 is termed
the screening of the static magnetic string. It occurs both
at low and high temperatures. ' In the same leading-
order strong-coupling approximation, the spatially orient-
ed Wilson loops have the behavior

nm
18 nm (A6)

at both low and high temperature. This area-law behavior
is associated with the confinement of the plasma modes.
Thus it is possible for both phenomena to occur in the
same theory. Indeed the screening length for the non-
Abelian magnetic strings appears to have more in com-
mon with the string tension of the spacelike Wilson loops
than with the masses M(T) of Eq. (4.10) that are associat-
ed with the color-singlet excitations. The scale for all
three is expected to be 0 (g T) at high temperature, how-
ever.
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