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Langevin simulations of lattice field theories
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%'e present a new analysis of Langevin simulation techniques for lattice field theories, including a
general discussion of errors and algorithm speed. We introduce Fourier techniques that greatly ac-
celerate simulations on large lattices. We also introduce a new technique for including quark
vacuum-polarization corrections that adxnits any number of flavors, odd or even, without the need
for nested Monte Carlo calculations. Our analysis is supported by a variety of numerical experi-
ments.

I. INTRODUCTION

Considerable progress has been made over the past few
years in the numerical simulation of quantum chromo-
dynamics (QCD). With rapid developments in computing
technology we can expect major new advances in the near
future, leading to definitive tests of the full theory. To
realize this goal the next generation of QCD simulations
will have to address several critical issues:

the efficient inclusion of effects due to quark vacuum
polarization;

the critical slowing down of existing simulation algo-
rithms with larger lattices, resulting in computing needs
that can grow quadratically or worse with the lattice
volume;

the need for economical methods for high-statistics
measurements of such things as the spectrum of the light
hadrons, the glueball spectrum, or the heavy quark poten-
tial;

the need for a range of checks on the systematic errors
in such measurements.

In this paper we demonstrate how the first two
problems —those relating to the generation of field
configurations "an be tackled using stochastic quantiza-
tion via the Langevin equation. I.angevin updating
proves to be ideal here, largely because the entire lattice is
updated simultaneously, rather than link-by-link or site-
by-site. We will discuss strategies for high statistics mea-
surements on these configurations in future papers.

The first problem, that of including fermion deter-
minants, can be solved by adding a new nonlocal noise
term to the Langevin equation for gauge fields. As we
demonstrate in Sec. IV, the only price paid for the nonlo-
cality is that linear equations of the form

must be solved for each update, where M=y5(D y+m)
is the inverse fermion propagator. This is a reasonable
price if by "each update" one means an update of the en-
tire field configuration, as in Langevin updating. By con-
trast, a heat-bath or Metropolis algorithm demands that

similar equations be solved once for the update of each
separate link and site—an extremely costly venture. The
algorithm we describe in Sec. IV has several other attrac-
tive features; most notably, it allows the simulation of any
number of quark fiavors, even or odd, without the need
for a Monte Carlo calculation within a Monte Carlo cal-
culation.

Langevin updating also offers a new approach to the
problem of critical slowing-down. A crucial weakness in
most updating algorithms is that short-wavelength struc-
ture tends to evolve far more quickly than structure at
long wavelengths —typically faster by a factor of g,
where g' is the longest correlation length of the theory
(measured in units of the lattice spacing). Since one must
limit the size of a single update to maintain stability at
short distances, the evolution of large-scale features is
greatly slowed. Indeed the number of sweeps of the lattice
required for appreciable change at these wavelengths
grows as g, which tends to infinity in the continuum lim-
it. In Sec. III we show how this problem can be remedied
by updating field configurations in momentum space
rather than in coordinate space. Fast Fourier transforms
(FFT's} are used to relate the two descriptions, and again
the procedure is only feasible when the entire configura-
tion is updated simultaneously (two FFT's are required
per update}. Using momentum-space updating for several
two-dimensional spin models, we found that simulation
speed can be increased by factors of 20—50 on 16X 16 lat-
tices. Similar gains seem attainable with QCD.

Momentum-space updating of gauge fields is only use-
ful if calculations are done in a smooth gauge such as

=0 gauge; otherwise, the gauge freedom obscures the
relationship between momentum and wavelength. Vhth
Langevin updating the cost of such gauge fixing is almost
insignificant, once again because it is required only once
for each update of the entire field.

Using Fourier transforms one can also accelerate the
convergence of the iterative matrix methods needed to
solve Eq. (1.1) or to compute fermion propagators. The
problems here are very similar to those just discussed for
updating. For instance, large-scale structure develops
O(g') times more slowly than short-wavelength structure
when solving Eq. (1.1) with the conjugate gradient algo-
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rithm. The remedy is also very similar, as we illustrate in
Sec. IV. Fourier acceleration makes possible QCD algo-
rithms for which the amount of computation needed
grows only linearly (up to logarithms) with the number of
lattice points as the mesh is refined.

An analysis of algorithm speed requires an understand-
ing of the errors inherent in Langevin updating. Errors
arise because the differential Langevin equation must be
replaced by a finite-difference equation for the purposes
of a computer simulation. In scalar field theory, for ex-
ample, the differential Langevin equation is'

rithm speed (see Sec. III) depends somewhat upon the ac-
curacy desired, but most importantly, it is independent of
the correlation length g when ex ~ is well chosen. Further-
more, one can reduce such errors substantially by employ-
ing higher-order difference equations, like the Runge-
Kutta scheme of Sec. II C, in place of (1.3). None of these
conclusions is altered when fermion loops are included as
in Sec. IV.

This paper concludes, in Sec. V, with a brief summary
of our findings, particularly as they apply to simulations
of QCD.

(1.2) II. DISCRETE LANGEVIN PROCESSES

where

f„=F + &~Fi)(x,~„)
5S

5$(x,~„}

and where now g is normalized by

(1.3b)

Discrete equations of this type need not be regarded solely
as approximations to Eq. (1.2), valid only as F—+0. Rath-
er, they are in themselves viable stochastic equations for
any value of F. However, for r sufficiently large, the field
configurations generated by the discrete equation (1.3)
are distributed with a probability density e ~~, where
now the equilibrium action S differs from S in O{F) and
beyond:

where w is a fictitious time labeling successive field con-
figurations and i) is a Gaussian random noise normalized
by

(rl(x, ~) rj(x', ~') )„=2 5(x' —x) 5(r' —z).

Once ~ is sufficiently large, the field configurations
[P(x,w) I for different v's are distributed with probability
density e s(&), as desired for a simulation of the field
theory. A finite-difference form of this equation, suitable
for computer simulations, can be obtained by making ~
discrete with step size d~=e, e.g.,

(1.3a)

In this section, we analyze the errors associated with
the use of a discrete Langevin equation in place of the dif-
ferential equation. Although most of our results are quite
general, we focus here on theories for which the continu-
um action is local. Simulations involving the nonlocal ef-
fects of fermion loops are discussed in Sec. IV.

A. The effective equilibrium action —scalar fields

When the step size is replaced by a matrix Eq. (1.3) be-
comes

P(x,~„+i) = P(x, r„)—f„[P,g],
S

fx = g &x,y + +&x,y'9(3'~&n)
y 3'i&n

(2.1)

5$(x„)

where rl is Gaussian noise with (i1 ) =2. As n~ 00,
this equation generates an ensemble of field configura-
tions from the ensemble of random variables q(x, rn).
Here we wish to study the equilibrium distribution of
these asymptotic field configurations.

The Fokker-Planck equation determines the evolution
of the probability density, P ( [P I,~„),for obtaining a con-
figuration tPI after Langevin time ~„:

S[P] = S[P]+FSi[P]+ (1.4)

The question of errors centers upon the significance of
these new additions to the action.

In Sec. II we examine the leading correction, FSi, for
local field theories. We find that these corrections simply
renormalize existing couplings in S, either directly or
through quantum fluctuations. This pattern seems likely
to persist in O(e2) and beyond, indicating that S and S
represent the same continuum theory, at least if e is not
too large. There is no error associated with using (1.3) in
place of (1.2).

More generally, the step size F in Eq. (1.3b) can be re-
placed by a matrix e„„. In fact, the key to Fourier ac-
celeration is the proper choice of this matrix. The errors
in this case are not merely renormalization effects, as
above. Nevertheless, they are easily understood and
bounded, as we illustrate in Sec. II. We find that algo-

(2.2a)

where

(2.2b}

This equation is readily derived from the evolution equa-
tion

X Q 5(P(x, „,)
(2.3)

by Taylor expanding the 5 functions in powers of f and
averaging over the noise, g. Equation (2.2a) can be
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analyzed order-by-order in e since only 2n terms on the
right-hand side contribute through O(e"). The left-hand
side vanishes as ~ +o—o, leading to an equation for the
asymptotic distribution P( I P J ) =P( I PI,&~ oo ).
0 (e), at least, Eq. (2.2a) then becomes

5 5P SP 0
5 x) 5$(x)

where the effective Langevin force S can be written as a
gradient, 5S/5$(x). Consequently the asymptotic distri-
bution is

A, gP(x) e„»P(y) (2.7a)

iL+P(x) e„„. (2.7b)

or correct than S as a lattice approximation to the contin-
uum action.

The correction terms in S are more complicated when
ez» is nonlocal. In A,p theory, for example, one obtains
new interaction terms like

p( Iy I ) e —s'M)

where the equilibrium action is
T

5'S[4]S[~] = S[~]+
x,y

5S[4'] 5S[4]
5$(x) 5$(y)

(2.5a)

E'~y = 6 6~y (2.8)

These are terms of the kind one would obtain in S if there
were another scalar "particle" g, with propagator e»,
coupled to the P field via interactions like A,P(x) g(x) and
AP(x) g(x) . In this picture, the local e'„» considered
above [Eq. (2.6)] is just the infinite-mass limit for the g,
and so it is not surprising that the g corrections in effect
simply renormalize the bare couplings of S. As we shall
see in Sec. III, a better choice for e„» is

(2.5b)

It is S rather than S that determines the physics of the
discrete-time simulation.

The impact of the O(e) terms in S is most transparent
when e„y is completely local:

&z,»
= &5z,» . (2.6)

Then the correction terms in S are local—in a A,P theory,
for example, the 0(e) corrections include terms like
PAP, F(B P), and PAP S,ince. the new interactions gen-
erally respect the internal symmetries of the original ac-
tion, they either renormalize existing couplings in S, or
introduce nonrenormaHzable interactions. In either case
the continuum limit of the theory is completely unaffect-
ed. One need only shift the bare coupHngs in S, by
amounts of relative order F, to compensate for all effects
due to the new terms in S. Of course, if F is too large (i.e.,—1), such shifts might drastically alter the nature of S
(e.g., A, ~ A, & 0), thereby destabilizing the simulation. As-
suming that this is not the case, S is no less fundamental

P(x) = P(x) ——,
' g e» (2.9)

Then the action can be reexpressed in terms of P,
5S 5SS[4]= S[ol+ 4 y 5y( )

~z,» 5y( )
+

X,y

while the measure becomes

where G„» is the propagator for a free scalar particle. In
this case, the fictitious g particle behaves very much like
the P particle, and its contribution to physical measur-
ables typically will be F times that from the P field.
Therefore to simulate S accurately to 10%%uo, for example,
one requires F-0.1.

Curiously, if one works only to O(e), all of the new
nonrenormalizable and nonlocal interactions in S can be
removed, leaving behind terms that can be completely ab-
sorbed into S simply by shifting the coupling constants by
calculable amounts. This is accomplished by changing
field variables to

QdP(x) = ffdP(x) 1+ —,
' ge„

5$(x)5$(y)

5Sff dP(x) exp (2.11)

With these changes the equilibrium action is

5S2+ 4 'g z~» 5y( )5y( )
+ (2.12)

In A,p" theory with ez =F5z», for example, the only
modification is m ~m +FA, /4. Moreover, when e is lo-
cal like this the change of variables has no effect on the
matrix elements of any operator linear in the P(x)'s, i.e.,

which, for most theories, differs from S[P] only by cal-
culable shifts of the bare couplings already present in S.

(f[P]) = &f[P] & + &(e'), (2.13)

where f[P] is any multihnear functional. This result fol-
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lows directly from the equation of motion

~
—stol 0 (2.14)

5$(x) 5$(x)
This technique for removing O(e) corrections is an ef-

fective way of speeding up simulations with a nonlocal
e„~, as in Eq. (2.8), since larger e s can be employed with
no loss of accuracy. The added cost of shifting couplings
and fields is generally negligible.

We have not yet investigated the O(e ) corrections that
arise in the discrete formulation of the Langevin equation.
The significance of these corrections can be assessed by
analyzing their effect on ordinary perturbation theory. A
preliminary study of this sort indicates that corrections in
higher order are similar in nature to those in 0 (e).

B. Non-Abelian fields

f«"'U) = f(U)+ 5'd~f + O(5'). (2.15)

This choice allows integration by parts —the critical
operation in passing from Eq. (2.3) to Eq.(2.2)—under the
invariant Haar measure of the group. Given this defini-
tion, the most convenient discrete Langevin equation is

U(r„+i) = e 'f U(v„), (2.16)

The analysis for scalar fields can be generalized readily
to include non-Abelian variables such as the link field in
QCD or the meson field in a chiral model. All that one
needs is to define differentiation with respect to the non-
Abelian variable, or, more precisely, differentiation within
its group manifold. Assuming that the non-Abelian vari-
able, U, is an element of a Lie group in some representa-
tion with generators T; (where [T', Tj]=icijkT and
tr(T'Tj) = 5j/2}, a standard definition for this derivative
is obtainai from

here is much the same as for the scalar field theories dis-
cussed above. If e „ is local, the main effect of these
terms is to renormalize the bare couplings in the original
theory. Corrections involving a nonlocal e„~ resemble
terms one might obtain from a new particle with propaga-
tor e„~ and with the quantum numbers of the non-
Abelian field.

The use of a nonlocal e„~ in simulations of gauge
theories (such as QCD) is complicated by the need to
preserve local gauge invariance. Any breaking of this in-
variance tends to generate a large mass for the gauge bo-
sons, either directly or through quadratic (in four dimen-
sions) ultraviolet divergences in the quantum fluctuations.
In QCD, this problem can be avoided by introducing
gauge-invariant field variables. This is easily done
through a gauge transformation. After each update of a
configuration one applies the gauge transformation

U&(n) —+ G(n) U&(n) Gt(n+p, ), (2.20)

where G(n) is a product of links along some path con-
necting site n to the origin. Such a transformation com-
pletely fixes the gauge, leaving only a global symmetry
which is preserved for any choice of e„~. The axial gauge
A =0 is an example of such a gauge. (Note that if
e„„=e5 „, the gauge fixing has no effect whatsoever on
the evolution, in Langevin time, of gauge invariant quan-
tities. ) An alternative to the use of such gauges is to make
e very small —O(l/g ) in four diinensions —so that the
boson mass and other symmetry-breaking effects are
negligible. Another possibility, rather similar to gauge
fixing, is to reformulate the theory directly in terms of
gauge-invariant fields =.g., the corner variables of Ref. 6.

To gain experience with Langevin algorithms we ap-
phed them to SU(3) gauge theory in four dimensions, us-
ing the standard plaquette action

where fj = fi(U(w„), g} is the driving function. The sim-
plest choice for the driving function is to take e„„local,

S[U] = — g tr( U~ + U~ ),
271

(2.21)

f (U( „),g} = .eBjS[U] + V eg (2.17)

leading to results very similar to those obtained from Eqs.
(1.3) for scalar fields. In manipulating these equations
one must be careful because the derivatives no longer
commute. Rather, they obey the algebra of the Lie group:

U„(~„~i) = e " U„(~„),

where

(2.22a)

where U& is the plaquette operator. For this theory, the
discrete Langevin equations (2.16) and (2.17) take the
form

[~i ~ i}j] = cijki}k

Consequently, the equilibrium action is

S[U] = 1+ Cg S[U]
12

(2.18)
S(~„) = ' g (U, —U,')

4n U~UP

tr( Uq —
Upt}4n

P

+ —g [25,'S[U] —(ajs[U])'] + ~ ~ ~

J
+ iv eH(~„), (2.22b)

(2.19) and H(r„) is a traceless Hermitian noise matrix obeying

which differs from that for a scalar theory in the term in-
volving C~, the Casimir invariant of the Lie group s ad-
joint representation [Cz ——n for SU(n)].

These equations generalize in the obvious way when
e„z is nonlocal, and the significance of the O(e) terms

&H;k(x, ~)Hi (x', ~'))~ = 5,,5„—5;,5i 5—„„5,~.
J

(2.22c)
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significantly closer to the Monte Carlo result, suggesting
that 0 (e) terms have indeed been removed. In computing
the plaquette expectation values, we used the original U's,
rather than the shifted U's, since in general

(f(U)) = (1+eCJ/4)~" (f(U)) + 0(e- )

(2.26)
.34—
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I

.IO

Flax. l. Plot of the average plaquette vs E at P=4.9 for the
simple Euler algorithm. The horizontal lines near (p ) =0.39 in-

dicate the Monte Carlo values. 1200 sweeps at a=0.1.

We iterated these equations with p= 4.9 on a 2X5 lat-
tice. The data for the average plaquette are plotted versus
E in Fig. l. (Note that the plaquette is dominated by ul-
traviolet contributions, and thus is quite sensitive to the
differences between S and S.) As e increases, the links
tend to become more random, giving a smaller value for
the average plaquette. At V=0. 1 our result differs from
the Monte Carlo value by about 11%, as might have been
expected from our error analysis.

One can remove 0(e) terms in S for non-Abelian vari-
ables, as for scalar variables, by a change of variables,

when f is any linear functional of the U's. Consequently
the additional effort required to remove all 0 (F) effects
was negligible.

+ 'J/ e rj( r„), (2.27)

C. Runge-Kutta algorithms

Equation (1.3) represents the simplest of an infinite
number of discrete Langevin equations. In particular,
there is a group of "Runge-Kutta" algorithms that model
the differential Langevin equation (1.2) more closely. For
example, one can model the action S[Ii)] correctly up to
0 (e ) by using the first-order Runge-Kutta equation

P(r + I ) = P(r, )

5S [P(r„)] 5S[P (r„+I)]+
2 5$(r„)

-l(re)aJS TJ
U —+ U=e

leaving an equilibrium action

s[U] = 1+ ' c„s[U]+—'pa's[U]+l2" 4 J

(2.23)

(2.24)

where P is a tentative update using the lowest-order algo-
rithm,

5S[P(r„)]
(P (r„+I) = P(r„) —e — rri(r„).

The analogous equation for non-Abelian variables is ob-
tained by replacing fz in Eq. (2.17) with

(This works for a nonlocal e„~, as well. ) For the plaquette
action Eq. (2.21), S is then identical to S, but with p re-
placed by

P = P[1 —e(CJ —C~/12)], (2.25)

where CI is the Casimir invariant for the representation in
which the U matrices are taken [e.g., CF ——(n 1)/2n-
for the fundamental representation in SU(n)]. We redid
the simulations described above, but now adjusting p so
that P=4.9 for all e. The results, plotted in Fig. 2, are

fj = — 1+ I5JS[«rn)l+ 5JS[U(r.+I)]I

+ ~rrjj(r„), (2.28)

where, as in the scalar case, U(r„+I) is obtained from
U(r„) using the leading order equations (2.16) and (2.17)
with the same random noise variable rii (r„). Such
higher-order algorithms allow a much larger step size e
before the equilibrium action S deviates much from the
original action S. (They also generalize for nonlocal e„~.)
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35—

Flo. 2. Plot of the average plaquette vs E at p=4. 9 for the

simple Euler algorithm with shifted coupling. 3200 sweeps at
@=0.1.

.34—
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.OI .02 .05 .IO

FIG. 3. Plot of the average plaquette vs e at p=4. 9 for the
Runge-Kutta method. 1000 sweeps at @=0.1.
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which is true if

(3.4)
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v
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FIG. 4. Plot of the average plaquette vs e at P=5.S for the
Runge-Kutta method. 1000 sweeps at a=0.1.

A. Free field theory

A critical figure of merit related to the speed of simula-
tion algorithms is the correlation "time" N„which is the
number of updates of the (whole) field configuration re-
quired to obtain a new, statistically uncorrelated configu-
ration. Making the step size e„y [Eq. (2.1)] larger reduces

and is desirable. However, one is limited to
~ e„y

~

& 1 if the simulation is to remain stable (Sec. II
A). If e-„y is local [Eq. (2.6)], this usually means that the
correlation time grows quadratically,

2 (3.1)

as g, the longest correlation length of the theory (in lattice
units), increases (see below). With such behavior, the
amount of computation required to achieve a given sta-
tistical accuracy grows as V ~ when the number of lattice
points V is increased. (This assumes that the physical
volume of space-time covered by the lattice remains con-
stant, as will usually be the case. )

This behavior is evident in free field theory, with the
quadratic action S = —,

'
PM/ where M = —8 + m .

The discrete Langevin equation is

p(x, ~„+,) = (1 —eM)p(x, ~„)+ Wrawl(z„),

and it leads to an equilibrium action

(3.2)

On the other hand, there is a penalty of roughly a factor
of 2 in both computation and data storage for these par-
ticular Runge-Kutta algorithms.

We again simulated the pure gauge theory on a 2)&5
lattice with P = 4.9 and S.S, this time using the first order
Runge-Kutta scheme just described. Our data for the pla-
quette are plotted for different e s in Figs. 3 and 4. This
algorithm ran 20—50 times faster than the simplest algo-
rithm [Eqs. (2.16) and (2.17)] for similar precision. It
also outperforms the algorithm with shifted couplings
[Eq. (2.2S)].

III. ALGORITHM SPEED AND FOURIER
ACCELERATION

1
E

p max+ ~
where p~,„—1 is'the maximum momentum (in lattice
units) on the lattice. Thus, as expected, we require that
E & 1 for a stable simulation as g ~ oo {m ~ 0).

To see how this restriction affects the correlation time
X„we can solve the evolution equation (3.2) in momen-
tum space, where M —+p + m . %'ith the initial condi-
tion P(p, ~=0) = 0, the solution is

n

p(p, r„) = V~e. g (1 —c [p2+ m2])" Jil(p, rj i).

(3.6)

Since
I

1 —e[p +m ] ~
& 1 from Eq. (3.5), p(p, r„) de-

pends less and less upon ri(p, ~~ ) as n —j grows. Roughly
then, we can define the correlation time N, {p) for a given
e and p by the relation

log, Il —F[pz+ m2]) '
I ——1

which implies

N, (p)— 1
(3.7)

e[p +m]
Choosing e —em» —[pm»+m ] ' tmphes that the
high-momentum components of the field will evolve with
a very short correlation time: X,(p,„)—1. However, the
correlation time for the low momentum structure usually
will be much longer:

N, (p-0)— 1
(3.8)

Thus Q (g ) times as many updates of the field configura-
tion are required to obtain the same statistics as for high
momenta. Unfortunately, it is these long-wavelength
components that are usually the most important physical-
ly.

This analysis illustrates a general problem with the lo-
cal Langevin algorithm, and indeed with most other
Monte Carlo algorithms used today. The evolution of
long-wavelength structure is held back by the need for sta-
bility at short wavelengths. Unfortunately, the problem
becomes more and more severe as the grid is refined and
the correlation length g increases.

Such critical slowing down can only be remedied by
resolving different length scales and dealing with them
separately. Our analysis of free field theory suggests that
this can be accomplished by updating the fields in
momentum space, using different e's for different mo-
menta in such a way as to speed up the evolution at low
momenta without destabilizing the high momenta. This
means employing a nonlocal e ~:

1S = —, PM 1 ——M P+ constants.
2

(3.3) y eely (x —
y)&{p)

This equilibrium theory is obviously unstable unless Equations (3.5) and (3.7) indicate that the choice
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~(p)— I
(3.9)

p +m
is optimal, at least for free field theory. Then the stability
criterion [Eq. (3.5)] is satisfied, while the correlation time
[Eq. (3.7)] is N, —1 for all momenta, not just for
p —pm, „. Consequently, the number of field updates re-
quired for a simulation is reduced by a factor of 1/g, and
computing power need only grow linearly with the size of
the lattice, rather than as V

bP(x) = —F e(p)I' + &e(p)q(p)
5$(x)

(3.10)

where Ii is an operator representing a Fourier transform.
The computation required for fast Fourier transforms is
roughly comparable to that needed to evaluate 5S/6$,
since only two transforms are required for each update of
the entire field configuration. A similar strategy would be
impossible with Metropolis or heat-bath updating, where
a new Fourier transform would be necessary for each hit
at each site.

The optimal «(p) for an interacting theory again should
be

e(p) =
P +PA

(3.11)

where F determines the accuracy of the simulation (Sec.
II) and where m will usually' be of order 1/g.

In some theories ultraviolet and infrared behavior are
strongly coupled. For example, the bare and renormalized
masses in a four-dimensional scalar field theory differ by
O(g ) due to ultraviolet fiuctuations. One might worry
about speeding up evolution at low momenta for such a
theory, since the high-momentum structure must be suffi-
ciently well developed to allow a very accurate estimate of

B. Interacting field theories

The basic strategy for accelerating simulations of an in-
teracting field theory should be similar to that for free
field theory. In particular, working in momentum space
provides a way of separating the different length scales.
Introducing a momentum-dependent step size is both
straightforward and not particularly expensive with
Langevin updating: Eqs. (1.3) are replaced by

r

the O(g ) renormalizations. However, such effects are
largely determined by structure at distances of order a lat-
tice spacing, and thus one has O(g ) independent samples
in a single configuration from which they can be deter-
mined. Consequently the mass renormalization, for ex-
ample, is specified to an accuracy of g /(g )' —1 by a
single configuration —just adequate for our purposes.
Such linkage between high momenta and low momenta
generally does not seem to be a problem.

This discussion of scalar field theories applies to non-
Abelian theories as well. In particular, Fourier
transforms can be used just as they are for scalar theories.
The transformations used in Eq. (3.10) can be applied
without change to Eq. (2.17), used in updating non-
Abelian fields In .gauge theories it is also important that
the gauge be fixed as otherwise long-wavelength physics
can be disguised by high-frequency fluctuations due to
crinkly gauges. The A =0 gauge mentioned in Sec. II is
sufficiently smooth.

S = —Pg cos(8„—8„+„)—1'i g cos(8„). (3.12)

We shifted P, 1'i, and the field 8„so that all O(e) correc-
tions due to discrete Langevin updating cancelled [Eqs.
(2.9)—(2.12)]. We then ran on a 16X 16 lattice with both a
p-dependent and a p-independent step size:

0.02

E(p) — . p +[1—cos(2ny„/N)] + h

pg[1 cos(2mp„/X)] +—h

(3.13)

where the p dependence in the second case is that of the
free propagator for 8. Our results for the momentum-
space Green's function (

~
8(p)

~
), with p= 1.5 and

h =0.23, are given in Table I. As expected, performance
is greatly improved by Fourier acceleration. At low mo-
menta 400 sweeps with Fourier acceleration give results

C. A numerical example

To investigate the utility of Fourier acceleration we
used it in simulating the two-dimensional XP mode1:"

TABLE I. (
~
8(p)

~
) for the XF action of Eq. (3.12). Values of the momentum-space propagator

(
~
8(p)

~
) for the two-dimensional XFmodel on a 16~ lattice. Columns 1 and 2 are results from pertur-

bation theory, 3 and 4 are I.angevin results with Fourier acceleration, 5 and 6 are the same but without
Fourier acceleration. Runs were done at P= 1.5 and h =0.23.

Perturbation
0th order 1 loop 400 steps

FFT
6000 steps

No FFT
400 steps 6000 steps

1

32
1

16
1

8
1

4

2

2.093
0.798

0.338
0.190
0.105

0.082

2.512
0.958
0.405

0.228

0.126
0.098

2.372{172)
0.971 (49)

0.443 (17)
0.257 (18)
0.131 (7)

0.095 (18)

2.568(36)

0.973(11)
0.421 (6)

0.239 (3)

0.129 (2)

0.097 (4)

2.373(710)
1.023(127)

0.356 (37)

0.263 (19)
0.125 (8)

0.067 (19)

2.654(180)

0.998 (35)

0.402 (10)
0.232 (4)

0.131 (2)

0.098 (4)
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FICr. 5. Improvement due to Fourier acceleration in measure-
ments of the Inornentum Preen's functions for the XFmodel at
p = 1.5 and h = 0.23. The squares of the standard deviation
with and without acceleration are compared for different mo-
m enta.

superior to those from 6000 sweeps without acceleration.
In Fig. 5 we plot the square of the ratio of the standard
deviations with and without FVl's versus momentum.
The standard deviations were estimated by measuring
fluctuations among 16 samples of 400 measurements each.
At high momenta there is little difference, but the simula-
tion at p-0 was 20—25 times faster with Fourier ac-
celeration. We also measured the correlation time X, by
binning our data in various sized bins and measuring
correlations between successive bins. The results, in Fig.
6, indicate a correlation time of just a few sweeps of the
lattice for any momentum with Fourier acceleration,
while without FFT's the correlation time grows dramati-
cally at low momenta. — The values we obtained for the

0.05 I I I I l I 1 I I

~32 06 ~e

2/ 2
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I I l I 1 I i I I

tg2

FIG. 7. The Green's function (
~
8(p)

~

2) fox the XF model
with P = 1.5 and h = 0.23. Results from lowest and first order
perturbation theory are compared with results from our simula-
tion (with Fourier acceleration).

I I 1 I I I I I I

Q No fft
O fft

propagator agree weH with perturbation theory when
one-loop corrections are included —these shift P to 1.25
and h to 0.2. Our data for the propagator are shown in
FIg. 7.

%'e have also simulated the XF model in its nonpertur-
bative phase, running at p = 1.0 and 0.7. Again Fourier
acceleration speeds the simulation by a factor of order g,

C
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FIG. 6. The nuxnber of sweeps required for statistically in-
dependent measurements of the Green's function at different
momenta iu the XI'model at p = 1.5 and h = 0.23. Results are
from runs with Fourier acceleration (FFT) and without accelera-
tion (no FFT).

FIG. 8. The number of sweeps required for statistically in-
dependent measurements of the Careen's function at different
momenta in the XFmodel at p = 0.7 aud h = 0. 11.Results are
from runs with Fourier acceleration (FFT) and without accelera-
tion (no FFT-).
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even though many vortex-antivoriex pairs are present.
Lacking perturbation theory, one can determine the op-
timal p dependence of e(p) from measurements of the
correlation time for different momenta (cf. Fig. 6); e(p)
should be roughly proportional to N, (p). We show the
correlation times, with and without Fourier acceleration,
for P = 0.7 in Fig. 8. The improvement due to Fourier
acceleration is substantial, though smaller than at P = 1.5
since the correlation length is shorter. Clearly, Fourier
acceleration is effective whenever different wavelengths
evolve at very different speeds, whether or not the theory
is in a perturbative domain.

IV. LANGEUIN SIMULATIONS
OF FERMIONIC THEORIES

S = Ss[U] —TrlnM[U]. (4.1)

Remarkably, such an action is readily simulated using the
I.angevin equation. The fermion term can be generated
simply by adding a new bilinear noise term:

U(r„+, ) = e 'f U(~„),
r r

1
f, = ~ a,S, ——,Re q, a,Mq,

(4.2a)

+ vugg, ,

(4.2b)

where g& and gj are Gaussian random numbers (with
( ~g ~

) =2). That this equation yields fields distributed
according to the action (4.1) is evident from the Fokker-
Planck equation. To O(e) in the Fokker-Planck equation,
f& is always averaged over the bilinear noise q~:

(fj ) = F ajss —Tr aJM
j. +. vga,

= eaj(ss —TrlnM) + v egj.

As this is just the fj one would use for the fermionic ac-
tion (4.1), the fermion contribution is properly included.
Note that the derivative of Tr lnM has no imaginary part,
and so we can drop the Re from (4.2b) when averaging.
The only significant cost for including the fermions is
that g =M 'i1~ must be determined once for each up-
date by solving the linear equations

A. Fermion loops

One of the major hurdles in simulating QCD has been
the inclusion of effects due to quark vacuum polarization.
In principle, quark loops can be included by adding a
term —Tr lnM [ U] for each flavor to the gauge boson ac-
tion Ss[ U]. Here, M = y5(D.y+m) is the inverse propa-
gator of the quark, together with an additional factor of
y5 which makes M Hermitian without affecting the fer-
mion determinant. Thus for a single flavor, the full ac-
tion is

fj ——e'[ajss —Re($ aJMgq)] + v e gJ. (4.2c)

The generalization for nonlocal e„~ is obvious.
This procedure has several attractive features. Most

importantly, it does not involve a Monte Carlo calculation
within a Monte Carlo calculation, as do most pseudofer-
mion methods. Also, any number of flavors, odd or even,
may be simulated by including a bilinear noise term for
each quark, or if the masses are the same, by multiplying
the existing term by nf, the number of flavors. ' This fol-
lows because our pseudofermions enter only as noise, not
as dynamical fields. Finally, the analysis developed in the
preceding sections provides tight control over errors.

The 0 (e) corrections here are similar to those for local
theories (Sec. II). In deriving the Fokker-Planck equation
one averages over both q& and qj. The asymptotic proba-
bility density then satisfies

a;(a;P+ 5 p) = 0,

where

(4.4a)

S; = a;S+ —(a —aJS)Tr
1 a;M2 aMi

+ 0 ~ ~ (4.4b)

y5M Q = Q(n) —a. g [(1—yp) U„(n) f(n+p)

and S is given by Eq. (2.19) with S as in Eq. (4.1). For a
general e„y the new terms in S resemble corrections one
might expect from a new gauge field with propagator @~&.
For example, the term

QTr a;„M ayM ey1 1

x,y

is just a self-energy correction to the quark propagator (in
a background U field). Thus, as before, these terms intro-
duce no new problems.

The second term in Eq. (4.4b) is not an exact differen-
tial, and therefore cannot be absorbed easily into a redefi-
nition of S. One might worry that this term introduces
unwanted infrared sensitivity due to the rather singular
factors of 1/M (as opposed to 1/M) that it contains.
However, we have examined contributions from this term
to various n-point Green's functions in perturbation
theory, and we find that almost all such contributions
cancel. (This follows from the equations of motion:
((aj aJS )f[U] ) = 0 for a—ny functional f of the fields. )
The few terms that remain seem no more singular than
contributions from ordinary perturbation theory, and are
therefore suppressed by e. Consequently, the performance
of the QCD algorithms discussed in Sec. II is unaffected
by the inclusion of fermion loops.

We have tested algorithm (4.2) on a 2 lattice for QCD
with Wilson fermions, for which

M[U]4 = rig

in terms of g, the driving function fj is local:

(4.3) + (1+y„)U„(n —p, ) l((n —p, )].

(4.5)
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We tried several values of P, s, and nf Our results for
P=4 and Ir=0. 15 with two flavors are displayed in Table
II., together with recent results by Weingarten. ' While
our algorithm requires roughly the same number of
sweeps over the lattice as %'eingarten's Metropolis algo-
rithm, it is much faster than his because the matrix equa-
tion (4.3) is solved only once per sweep, not once per link-
update. Our algorithm is also far superior to the pseudo-
fermion method he analyzes. Note that we use skew
boundary conditions for three of the four dimensions and
consequently our results should differ slightly from
Weingarten's. On large lattices our algorithm's perfor-
mance can be further enhanced by Fourier acceleration.

We have also investigated a number of related algo-
rithms for including fermion loops. One is to simulate a
theory with a new auxiliary scalar field P,

S[U,Q] = Ss[U] ~ P (4.6)

that introduces fermion loops for two flavors. An update
of the gauge fields for this theory is identical to Eqs. (4.2),
but with the bilinear noise term replaced by g (8 M ) g,

2where M g = P. The scalar field is updated using the
I.angevin equation'

Fqg —(e—q)'~ M gs. (4.7)

This procedure is comparable in speed to the one dis-
cussed above (in fact, they become identical when es —+1),
but it is limited to even numbers of flavors since M is not
positive definite.

B. Permion propagators

(4.8)

TABLE II. Data from three different algorithms for simulat-
ing QCD: Langevin [(Eq. 4.2)], Metropolis, aud pseudofermiou
(Ref. 13). Runs were done on a 2a lattice, P=4, Ir=0.15.

Number
of sweeps

Tr[line] Tr[plaquette]

Eqs. (4.2)
e = 0.05
e = 0.01

= 0.005

6000
12000
24000

—0.15{2)
—0.15(2)
—0.15(2}

0.29(1)
0.31(1)
0.30(1)

Ref. 13
Metropolis
pseudofermion

2 400
85 000

—0.16(2)
—0.15(1)

0.36{2}
0.31(3)

Another important consideration relating to fermions is
the speed with which linear equations like Eq. (4.3) can be
solved. Such computations are critical both for including
fermion loops and for studying fermionic observables.

Most iterative matrix methods work better when the
matrix is positive definite, and so we consider the equa-
tion

in place of (4.3). The speed with which these algorithms
converge is intimately related to the spectrum of M .
This is illustrated by the simplest of iterative procedures,
the Jacobi algorithm, where the (n +1)st estimate is ob-
tained from

y(n+)) (1 5M2)y(n) + 5y (4.9)

The parameter 5 controls the speed and stability of the al-
gorithm. This equation is easily solved formally:

P'n) = 5 + (1 —5M )J
j=0

(4.10)

Note the similarity of these equations to the stochastic
equations used for updating scalar fields [Eqs. (3.2) and
(3.6)]. As in that case, this algorithm converges provided
5 is chosen small enough,

1 1
5 &

I max pmax + rpi
(4.1 1)

while the number of iterations required to obtain a fixed
accuracy is [cf. Eq. (3.7)]

+inv
1 2

I min

(4.12)

Again one must wait for the long wavelength components
of g to develop; the short wavelength components con-
verge after only a few iterations.

The solution to this problem is identical to that for the
updating: i.e., we solve the equations in momentum space,
making the step size 5 momentum 'dependent. For the
Jacobi method, this means replacing Eq. (4.9) by

ay = P5(p)P-'( —M'y'")+ y),

where again the optimal 5(p) is something like

(4.13)

5(p) =
P +HZ

(4.14)

With this sort of Fourier acceleration, requiring only two
FFT's per iteration, all wavelengths evolve at roughly the
same rate. Then, only N;„„—1 iterations are required for
a complete solution hatt.

Fourier acceleration can be used with any matrix algo-
rithm that, like the Jacobi algorithm, updates the whole
field g simultaneously. In particular, it is compatible with
the conjugate gradient algorithm. ' On the other hand, it
is unlikely that this acceleration technique can be used
with methods like the Gauss-Seidel algorithm that update
one site at a time.

When using this method for gauge theories, it is again
essential to fix the gauge so that high momentum does in
fact correspond to short distances (and not just a crinkly
gauge function). Gauges like the A =0 gauge discussed
in Sec. II 8 are suitable. However, if for some reason one
is using Fourier acceleration only in matrix inversion and
not for updating the gauge fields, other gauges can be em-
ployed. For example, one can apply the gauge transfor-
mation
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U„(n) —+ G(n) U„(n) G(n+p),

G(n) = —g U„(n —v) —U„(n)
V

(4.15)

V. SUMMARY

In this paper we have introduced a variety of new algo-
rithms designed to speed the simulation of field theories

——Trf U„(n —v) —U„fn)]
1

before each update. In an Abelian gauge theory, this is
equivalent to adding a gauge fixing term —(t) 2) /a to
the continuum action. The effect is similar for non-
Abelian fields, except that these gauges bear no simple re-
lation to common perturbative gauges (witness the absence
of ghost fields here).

We tested Fourier acceleration of the conjugate gradient
algorithm for QCD on a small lattice (4 sites). Using
Wilson ferrnions with n& ——2 and P=6 we solved Eq.
(4.3) for lt as part of the updating algorithm for the gauge
fields. [Actually, we multiply Eq. (4.3) by M on each side
since the conjugate gradient method requires a positive
matrix. ] Near the critical ~, a.,-0.158, Fourier accelera-
tion reduced the number of sweeps needed by a factor of
—,', roughly as expected for such small lattices. The algo-
rithm functioned well for all ~'s, both above and below a,
We also examined the residual vector, M f —P, as a
function of momentum. Again as expected, the error was
distributed uniformly in momentum with Fourier ac-
celeration, while it was dominated by low momenta
without FFT's. We also found that Fourier acceleration
had no effect without gauge fixing: there was then no
correlation between momentum and error size. %'e are
currently testing Fourier acceleration on larger lattices
where the gain should be substantially larger, particularly
with small quark masses.

like QCD. Fourier acceleration, both for updating and
for matrix inversion, promises to reduce or even to elim-
inate critical slowing down. Introducing fermions as a
Langevin noise not only avoids the need for a Monte Car-
lo calculation within a Monte Carlo calculation, but al-
lows simulations with any number of flavors (even, odd,
fractional, negative, . . .). Runge-Kutta versions of the
discrete Langevin equation allow much larger steps to be
taken for each update. In addition, the Langevin formu-
lation opens up new possibilities such as the use of com-
plex actions, or the direct calculation of connected
Green's functions. These may be very important in deal-
ing with both systematic and statistical errors.

The tight control we have over errors is one of the most
attractive features of these algorithms. The nature of the
errors is readily apparent from the equilibrium action, and
their significance is easily estimated, both analytically and
numerically. This remains true even with Fourier ac-
celeration and fermion loops,

Our theoretical analysis is amply supported by a variety
of numerical experiments, on small lattices or in low di-
mensions. Needless to say, however, the extent to which
our techniques affect QCD simulations will become ap-
parent only after high-statistics tests on large lattices. Re-
sults from such tests will be forthcoming.
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