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An approximation technique to construct the low-lying energy eigenstates of any bosonic field
theory on the lattice is proposed. It is based on the SLAC blocking method, after performing a
finite-spin approximation to the individual degrees of freedom of the problem. General expressions
for any polynomial self-interacting theory are given. Numerical results for P~ and P~ theories in
1+ 1 dimensions are offered; they exhibit a fast convergence rate. The complete low-lying energy
spectrum of the P theory in 1 + 1 dimensions is calculated.

I. INTRODUCTION

In the past few years, we have seen a marked increase in
the study of approximate, nonperturbative methods in
quantum field theories. These methods are particularly
important for the study of physical issues, such as quark
confinement in @CD, computation of hadron masses, etc.
Roughly speaking, we may divide these techniques into
two large groups: those inspired by semiclassical approxi-
mations, and those based in the lattice strategy. ' In this
second group, perhaps the most notable results have been
those coming from Monte Carlo simulations for the spec-
trum of gauge theories, using techniques developed by
Creutz. Similar Monte Carlo techniques have been used
for scalar theories in different space-time dimensionality,
with important results in particular for the kP theory. 5

A severe limitation of Monte Carlo techniques is the
determination of excited-state masses for given quantum
numbers. This is because Monte Carlo techniques typical-
ly look at numerically evaluated propagators at large dis-
tances, where they become exponentials in the mass of the
lowest-lying state. But higher masses may not be separat-
ed unambiguously.

In this paper we develop and apply a technique for
determining all the rest-state (P=O) energies of a quan-
tum field theory on the lattice. It is based on the Hamil-
tonian blocking procedure of Drell, Weiristein, and Yank-
ielowicz which constructs approximate ground and first
excited states for lattice theories. The basic philosophy of
their method consists in projecting the Hamiltonian of the
theory into a truncated space of suitably chosen states;
this leads to an effective new Hamiltonian. This process
is repeated successively producing a series of effective
Hamiltonians whose coupling parameters change at each
step. The procedure is iterated until entering a regime
which can be handled simply by perturbation theory. The
criterion to choose the retained states is implemented at
each stage, by dissecting the lattice into small sets of de-
grees of freedom (blocks), which are diagonalized; the trial

space of states for the whole lattice is expanded by the
product of the low-lying states of the individual blocks.
Depending on the number and nature of the states one re-
tains in each Hamiltonian block, one may be driven to ef-
fective Hamiltonians which maintain the original form, or
in general to the appearance of an increasing number of
new couplings, induced by renormalization. This second
possibility may be a source of difficulty and even may
render the method impractical. In this paper we wish to
remark that a straightforward and efficient way to apply
this philosophy to boson theories consists in performing a
finite-spin approximation to the individual degrees of
freedom. Even in the most unfavorable situations such as
the massless free theory, we have observed a fast conver-
gence of the results with the number of retained states per
site (size of the spin). Once one sticks to a definite size of
the spin, this fixes the largeness of the basic matrices one
has to deal with, without any other additional worries
such as new couplings, looseness of locality, etc. In addi-
tion, the results are improved at will by increasing the size
of both spin and block. In this sense the finite-spin stra-
tegy looks preferable to other variational methods '—
similar to this spirit of thinning degrees of freedom to
those which deal always with the boson degree of free-
dom, by performing canonical transformations between
the block variables and retaining the lowest energy.

The method may be summarized as follows. After di-
agonalizing the original Schrodinger problem of one (n)
degree of freedom, we retain a certain number (e) of its
low-lying energy eigenstates. With those e states, we con-
struct a finite truncated trial space for a two (Zn)
degrees-of-freedom problem, which may be diagonalized
because all the required information is known from the
previous stage. The new diagonalization renders new
eigenstates, and we retain again the lowest ones. The pro-
cess is iterated for successive scales until attaining a con-
vergence for the ground-state energy density, gaps, etc.
We never construct effective Hamiltonians, but only ma-
trix elements of the original Hamiltonian —at different
scales —in the trial space built from the previous stage.
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In a renormalization-group spirit ' one should analyze
the evolution of the couplings (matrix elements) generated
in the process. Should the number of retained states be
arbitrarily large, that would imply a complicated work.
Therefore we stick to a direct Rayleigh-Ritz spirit of the
approximate method, looking simply at the energy eigen-
values of the theory. The general formalism appears in
Sec. II. Sections III and IV are devoted to the numerical
analysis to the P and P theories, respectively. Finally
our conclusions are exposed in Sec. V.

II. GENERAL FORMALISM IN TVfO DIMENSIONS

and
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by diagonalizing the former matrix, and retaining the e
lowest eigenstates (denoted by
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A general self-interacting bosonic theory with nearest-
neighbor interactions is described, on a one-dimensional
spatial lattice, by the Hamiltonian

and the new eigenstates are related to
I
K ) 12 through

II&12 FIJI~&12 ~ (14)

a= g [ ,'p, '+V—(x,) xJxf+—, ]

with the canonical equal-time commutation relations
fp~', xJ]= 15J—'J V(.xJ ) is a polynomial in the coordinate
xJ with appropriate restrictions. H represents an infinite
set of quantum-mechanical problems in each coordinate
xJ, coupled by the xJxJ+1 terms.

Without the existence of the gradient terms, all the
structure of the spectrum of FE would be given once we
know the spectrum of

h=2p +V(x). (2)

Hence, as a first step we diagonalize h as accurately as
possible. Let us assume that this is already known and
that

I
n ) are their eigenvectors

h In)=E„ I
n) .

In fact we only require the lowest-lying ones, say, up to

With them we form a new set of trial wave functions to
describe the set of 2 degrees of freedom, ,

I
M &14=&JJ II &12 I ~&34 ~ (15)

H14 —H]g +H34 X2X3 ~ (16)

Using the basis
I
M) 14 the matrix representation of H14

is done by
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(17)

D —AJJ JIJJ(EJ +EJ )

M' MF AI'JiAIJX7'IXJ'J
t L' LXI'I ~I'L 'A ST'ASTXT' T+IL
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It is now clear that by successive iterations we shall arrive
at the same equations which describe the finite-time evo-
lution of a dynamical system

X,(t+1)=F,(X,(t),X,(t), . . . , X„(t)),
7f = I,2~3~4~. . . ~ 8 (4) X,(t + 1)=F,(X1(t),X2(t), . . . ,X„(t)),

I.et us define the matrix elements of the operator X by
xiJ

xJ=&i IXlj) . (5)

After knowing the low-energy structure of the 2+-
degrees-of-freedom problem, with X=0, we continue by
describing approxima'tely the case of N= 1, based on the
just-acquired information. Now, the Hamiltonian of the
two degrees of freedom is

- H1 ——h1+h2 —x1x2 .

The trial wave functions for this problem will be the set
expanded by the states

I &&12 JIJJ I I)11~&2 (7)

where the summation over indices is understood, and the
coefficients AJJ satisfy

X„(t+1)=F„(X,(t),X,(t), . . . , X„(t)),
but now the essential physical magnitudes are the eigen-
values of the successive Hamiltonians and the role of the
time parameter is played by the number of iterations, that
is by the lattice length

(n + 1) (n) {n) (n) (n)E1 ——F((E(,E2, . . . , E1v,X,J ),
(n + 1) {n) (n) (n) (n)E, =F,(E, ,E, , . . . ,E„,X,, ),

(22)
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X~J F~(E1, . . . , EN, X——
~J ),

and we must look for the attractor points of the system.
Explicitly,

H(n+1) D(n+1) ~(n+1)
IJ EJ iJ
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AIJAIJ ~KK'

Then we have
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where

(&)+K'K XK'K (25)

III. P2 THEQRY

In the free bosonic theory the potential V in Eq. (1) is

The successive matrices are quite straightforwardly en-
tered into a computer, and the convergence, for a fixed e,
is observed by looking to one or several "observables" like
energy density, gaps, etc.

A second convergence process is observed by increasing
e, i.e., the number of retained states. Finally the process
may be implemented by departing from the initial diago-
nalization of not one degree of freedom but from a small
block. The observation of convergence in this trial of
directions for a given observable would be a sign of real
accuracy in the prediction.

The application of this method for a theory with a high
number of spatial dimensions is, at least conceptually,
quite straightforward. After performing the block choice,
that in 2+ 1 theory may be clusters of four sites per
block, and in 3+ 1 theory cubes'containing eight sites
each, and having defined the size of the spin as explained
previously, one would diagonalize every block Hamiltoni-
an and perform the truncation of states. In a 2 + 1 theory
the number of original links which form a new link would
be 2(N —1) for any step in which we are processing 2 +'
sites, and the equivalent for 3+ 1 dimensions. But this
does not imply the storing of new information in memory
but a simple multiplication of the XII matrix by the num-
ber of sites. Aside from this difference all else is similar
to the 1+ 1 examples analyzed here. The only concept
that would more complicate the result is the increasing
number of sites per block, which would imply larger ma-
trices to deal with.

0

—A(p)

0

E2+EI +A(p)

0

0
E2+E) —A(p)

0

—A(p)

0

2E2

(31)

Its lowest eigenvalues are

A,'1"——E2+Ei —[(E2—El ) +A(0) l
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1

2

14&»= 12&i I
2&2

where 11& and 12& correspond to the ground state and
first excitation of the harmonic oscillator with Hamiltoni-
an

2

h = + —,'((M +2)x
2

h 11&=Ei 11&,
(30)

h 12&=E, 12&,

A(0)=((2 IX I
1&)

Hence

V= —,
'

((M +2)X (26)

cgk=[(M +4S111 ( 2 k)], k=' 11
2.m+1

(27)

where p is the mass parameter. The Hamiltonian of this
field theory represents an infinite number of harmonic os-
cillators coupled by the gradient.

The exact solution of this theory describes a system of
noninteracting oscillators of frequency

corresponding to

I
1 &12=~111&i

I
1 &2+P(12&i12&2 *

12 & 12 ( I
1 &112&2+ 12 &111&2)

1

2

naI ——

[I+((o ) ]
n

I Ei —E2+ [(Ei—E2)'+ ~(o)']'"I .
A(o)

(33)

n =0,+1,+2, . . . , +m,
with ground-state energy density

eo —— I dk[p +4sin2( —,
' k)]'~2 (28)

The Hamiltonian of the 2 block is

H14 ~12+~34 x2x3 (34)

to be diagonalized in the truncated space expanded by

I
1 & i4= I

1 & 1211&34

12&14= ( I
1 & i212&34 12& 1211&34)

1

2

and a value for the gap exactly coincident with )((,.
To begin the application of the approximate variational

procedure, we notice that here all the informatjon (E„,X, )
about the spectrum of the single-site problem is automati-
cally known.

To illustrate in detail the general expressions of Sec. II,
let us particularize them here for e =2. Thus the trial
space for N =2 is

13 & i4= ( I
1 & i212&34+ 12& i211&34»

1

2

14&i4= 12&1212&34

the new Hamiltonian matrix is

(35)
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H14 —— 0

0

0

+k2 +A(i)(1) (1)

0

0

0

+A 2 + c4-( 1 )

—2A2
(1)

(36)

Therefore, in general we would have

g(a+i) g(n)+g{n) t(g{n) g(n))2+A 2]i/2

g(n+i) g(n)+g(n)
2 1 2 (n) ~

6 (n + i ) ((g(n) g(n) )2+ A 2] i/2

( 1 (n))2
A(n) —,A(n —1)

I+(p~" )

(37)

(n) I~(n) g(n)+~(g(n) ~(n))2+A 2]1/2I

And the only information we need, to trigger the iterative
relations is

A (0) ~

(o) (0) (38)

In Tables I and II we collect the numerical values ob-
tained for the ground-state energy density and the mass

gap, for different choices of e. In Fig. 1 the mass gap is
plotted in the successive approximations, showing the fast
rate of convergence of this method. Except for the sim-
plest case of two states retained at each step (e =2), in
general (e & 2) we have performed the calculations in the
center-of-mass system of the particles (P=O); this is im-
plemented by retaining symmetric states (under exchanges
of site coordinates) only. In addition to the advantage of
being able to observe the second mass gap clearly, because
of the absence of P&0 states, we have the bonus of saving
memory and time of CPU in the computer. The obtained
results for the second excited states agree with the expec-
tations of having a second mass gap identical to the first

one, E2 Ep —=2(Ei —Ep), and the onset of the continuum
spectrum after this second excitation

Negative values for p in Fig. 1, should be understood in
the sense of inserting a minus sign to the mass term of the
Hamiltonian ((u x ~—p x ). The prediction of the criti-
cal point in that region is a product of our approxima-
tions. Near the critical point (p=O), the spacing of the
energy levels of the primary oscillators tends to zero and
that is why our finite-spin approximation is particularly
bad there. However, increasing e quickly corrects that de-
fect, as is apparent in Fig. 1. This situation, in which all
the energy spacings of the one degree of freedom tend to
zero, does not appear in the next application ({() theory)
and therefore it is reasonable to expect that the point )M =0
of the free theory is the worst possible situation for this
method to be applied.

IV. y' THEORY

For the potential V [Eq. (1)] in the P theory, we choose

V= —,( —)M +2)x +W (39)

In all the numerical analysis- we adopt A, =1, and p
works as the coupling constant of the model. The Hamil-
tonian (1) of this lattice field theory represents an infinite
number of double-well anharrnonic oscillators coupled by
the gradient. The critical behavior of this system is well
known; it possesses a second-order phase transition for a
certain value of the parameter p =p', and for p &p' the
theory is spontaneously broken. The first gap of the
theory vanishes at the critical point, corresponding to an

TABLE I. Convergence of the ground-state energy density of
the free bosonic theory. p is the mass parameter; i in e(i) is the
number of states of the individual harmonic oscillators, retained
in this method.

TABLE G. Convergence of the mass gap of the free bosonic
theory.

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0

e(2)

0.6784
0.6804
0.6864
0.6962
0.7096
0.7264
0.7463
0.7689
0.7942
0.8216 '

0.8511
1.2197
1.6563
2.1203
2.5975

e(4)

0.6703
0.6726
0.6793
0.6901
0.7045
0.7223
0.7431
0.7665
0.7923
0.8202
0.8501
1.2196
1.6563
2.1203
2.5975

e(6)

0.6698
0.6722
0.6790
0.6899
0.7045
0.7223
0.7430
0.7665
0.7923
0.8202
0.8500
1.2196
1.6563
2.1203
2.5975

Exact

0.6366
0.6405
0.6499
0.6636
0.6809
0.7014
0.7245
0.7501
0.7778
0.8074
0.8388
1.2160
1.6548
2.1196
2.5971

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0

m(2)

0.6290
0.6351
0.6529
0.6821
0.7217
0.7706
0.8277
0.8919
0.9621
1.0374
1.1168
2.0290
3.0103
4.0047
5.0025

0.1586
0.1820
0.2419
0.3239
0.4127
0.5092
0.6051
0.7029
0.8021
0.9026
1.0016
2.0000
3.0000
4.0000
5.0000

m (6)

0.062 36
0.11335
0.203 83
0.301 29
0.400 50
0.500 18
0.600 12
0.70005
0.80001
0.90000
1.00000
2.MO 00
3.00000
4.00000
5.00000
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L,5"

0.5-

0.5 0.5

FIG. 1. A plot of the convergence of the mass gap for the free bosonic theory. (a) Two states retained per site. {b) Four. (c) Six.
(d) Exact result.

infinite correlation length. With respect to the second
gap, it has been established recently that in the region
where the theory has only one vacuum state p &p' there
are no bound states. This means that M2 ——2Mj, i.e., the
second excited state corresponds to having two particles at
rest, each one having a mass given by the first gap. It
does not mean that we have a free theory, but the absence
of bound states reflects the repulsive nature of the interac-
tion between the particles.

Previous attempts to study, in an approximate way, the
theory by a blocking Hamiltonian procedure correctly

describe several qualitative properties of the theory, but it
is difficult to improve systematically the results. With the
triad of convergence mentioned previously, it is simple to
compute accurately different magnitudes. In particular,
the description of the excitations seems one of the best
achievements of this method.

The machinery developed in Sec. II is directly applied

to this theory, after having diagonalized the Hamiltonian
of the double-well oscillator

2

h = .+ —,'( —p +2)+x (40)

for different values of p . To obtain in a quick way the
eigenvalues and eigenvectors of (40), we apply the method
explained in Ref. 12. There it is shown how to use an ap-
propriately scaled harmonic basis to obtain a quick con-
vergence of the double-well problem.

As explained in Sec. III for the free case, we retain only
symmetric states, in order to construct spatially homo-
geneous wave functions.

In Fig. 2 the convergence process for the first mass gap
to the left of the critical point is shown. Similarly, the
convergence of the ground-state energy density appears in

0.5

h

;\
'.1

I I' I ~

1.5

( b )

-0.5

1.5

X ~

I I
I 1

2 2.5

a

(b)

FICy. 2. A plot of the convergence of the mass gap of the (5

theory, at the "left-hand side" of the critical point (nonmagnet-
ized region). (a) Two states retained per site. (b) Four. (c) Six.

FICi. 3. A plot of the convergence of the ground-state energy
density of the theory. (a) Two states retained per site. (b) Four.
(c) Six.
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TABLE III. Convergence of the ground-state energy density
of the theory when increasing the number of retained states
from 6 to 12.

E-g,

1.5
1.8
2.0
2.2
2.4
3.0
3.5
4.5

e(6)

0.614471
0.447 220
0.292 488
0.023 958

—0.410070
—2.924 330
—6.873 962

—22.413 88

e(8)

0.614470
0.447 210
0.292 431
0.022 547

—0.413 113
—2.931 38
—6.882 21

—22.417 21

e(12)

0.614469
0.447 213
0.292 415
0.021 908

—0.414 818
—2.935 573
—6.884 320

—22.417 560

4

3

2

Fig. 3. In Fig. 4 the final results for the low-lying energy
spectrum are plotted.

In Table III we show the convergence rate for the
ground-state energy density as we increase the number of
retained states from 6 to 12; there is a good convergence
for all values of p so we believe our results are a good ap-
proximation for the exact ground-state eriergy density. In
Table IV we collect our results for this theory when we re-
tain 12 states per site. eo is our converged prediction for
the ground-state energy density and M, is the difference
between the E; and E~ i eigenvalues of the theory; M;
shows the onset of the spontaneous breaking of the sym-
metry (P~ P) for p—&p*=2.003, i.e.,

~

2I) and

~
2I+1) (I =0, 1, . . .) are degenerate. For p &p' we see

that the second excitation (at rest) corresponds to having
two particles of equal mass and then no bound states ap-
pear in the theory so the effective quantum potential must
be either repulsive or freelike. Furthermore Mz Ez-—
—E2, M4 ——E4 —E3, . . . vanish which should be under-
stood as the onset of the continuous spectrum of two par-
ticles (in the center-of-mass system) due to the relative
motion. In order to elucidate the nature of such states in

this region we have computed the Bethe-Salpeter wave
function of the different excitations, i.e., (0

~ P ~
k), and

in particular the expectation value of the field P on a
given state, then we observe that

(41)

(0)P (k)=0 (k~1),
where L is the lattice length, and at the same time

(lldl2)= —4o( )
1

L, (42)

which corresponds to the interpretation of
~
1) or

~
2) as

the one- (two-) particle state. In Table V the values for
(0

~ P ~
0) and Po(p) are listed.

Things are different for 2.8&p &p* (see Fig. 4) where

FIG. 4. Low-lying spectrum of the 1+ 1 theory. It exhibits
the "freelike" nature of this model in the nonmagnetized regions
and the crossing between the kink and particle levels for @=2.8.

TABLE IV. Numerical values of the low-lying spectrum of the 1+ 1 P theory. 12 states per site
have been retained.

1.5
1.6
1.8
2.0
2.1

2.2
2.4
2.6
2.8
2.9
3.0
3.2
3.5
4.0
4.5
5.0
5.5
6.0

0.614469
0.565 112
0.447 213
0.292 415
0.177 585
0.021 908

—0.414 818
—1.035 459
—1.865 651
—2.368 764
—2.935 573
—4.278 119
—6.884 320

—13.145 436
—22.417 560
—35.496 125
—53.271 007
—76.726 175

0.956 12
0.844 33
0.560 72
0.0244

0
0
0
0
0
0
0
0
0
0
0
0
0
0

M2

0.956 12
0.844 33
0.560 72
0.0444
0.66660
1.074 5
1.769 40
2.417 88
3.062 40
3.358 77
3.61045
4.028
4.5195
5.304
6.081
6.842
7.590
8.325 0

0
0
0
0

0.042 72
0.069 32
0.11559
0.128 48
0.049 71

0
0
0
0
0
0
0
0
0

M4

0
0
0
0
0
0
0
0
0

0.034 19
0.11328
0.375
0.966
2.149
3.562
5.224
7.141
8.325 0

0
0
0
0

0.290 58
0.467 91
0.769 11
1.08045
1.481 48
1.69648
1.861 87
2.202 0
2.743 1

3.153
2.510
1.617
0.446

0
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1.5
1.8
2.0
2.4
2.5
3.0
3.2
3.5
4.0
6.0

10

l(old lo)l
0
0
0

0.929
1.012
1.354
1.475
1.651
1.929
2.970
4.989

4p

0.717
0.928
3.882
0.342
0.326
0.304
0.299
0.298
0.288
0.243
0.188

TABLE V. Numerical values for the "magnetization" and
one-particle amplitudes in the 1+1$ theory.

whereas for p&2. 8 the first excitation is a particlelike
state (this is what is expected from semiclassical
analysis' ).

With respect to the (I
I P I

I) expectation value we can
fit the results of Table V as

'a ala

( II)~
I
kink)),

&~3.22 .
(45)

Then for p, &4 we obtain (0IP IO)=p/2 and M, =v2p,
in agreement with the semiclassical expectations, because
the potential wells are very profound.

g 43(P)

4V)
(43)

whereas

(014 l4) =(1 I@ I3) =0
so

I
3) and I4) are the first particle-like excitations; then

if 2.8&p, )p the first excitation is a kinklike state

the spectrum looks typically like a degenerate ground
state (Mi ——0) followed by a nondegenerate state I2)
(E3+E2},and above these three several bound and degen-
erate states appear (E& E3,E6 ——Es, . . .——). In this case we
observe that

(2IyIk)=0, k=o, l, . . . ,

so the field does not connect to the
I
2) state either with

itself or with any other; this enforces the interpretation of .

these states as a symmetric combination of kinklike and
anti-kink-like states (because we have taken only spatially
symmetric wave functions). The corresponding antisym-
metric combination would be rejected in our algorithm
since it does not satisfy the symmetric boundary condi-
tion; that is the reason why the I2) state appears as non-
degenerate. ' In what follows we shall call such a state a
kink state. Furthermore,

V. CONCLUSIONS

Vfe have presented a variationa1 method to study lattice
field theories. It is inspired by block-spin techniques, but
it never constructs effective Hamiltonians. On the con-
trary, it builds variational wave functions for progressive-
ly extended and correlated length scales of the theory.

From the convergence observed in the free case where
near @=0 one should expect the worst possible perfor-
mance of the method, one deduces that our results for the
'iP theory are within an error of 6% in the ground-state
energy density. The nice results also obtained for the p4
theory are a check of the freelike nature of the model for
p&p and a verification of the level crossing for the
p &p* predicted by semiclassical arguments.

With respect to the method itself we observe a number
of clear advantages with respect to other approaches. As
mentioned previously, it never leads to the appearance of
a new coupling, which is one of the shortcomings of
block-spin techniques and furthermore the method can be
refined to whatever degree desired, simply by increasing
the size of the matrices to be diagonalized.
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