
PHYSICAL REVIE%' D VOLUME 32, NUMBER 10 15 NOVEMBER 198S

Conformal invariance and string theory in compact space: Bosons
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The area law of the Nambu-Goto string is generalized to include a solid-angle-type term, which is
purely topological in nature. Such a term exists and is unique provided the manifold M in which
the string lives satisfies certain topological conditions. This generalization may be useful to main-
tain conformal invariance in case M is compact. Using methods of Polyakov and Friedan we identi-

fy the conformal anomaly coefficient with the central charge of the Virasoro algebra of this string
theory. As an illustration we choose M to be a compact Lie group and compute the anomaly coeffi-
cient following the work of Knizhnik and Zamolodchikov.

I. INTRODUCTION

II. T%'O SIMPLE EXAMPLES

To motivate the generalization consider the motion of a
nonrelativistic particle with electric charge k/2 in three
dimensions. The generalization of the free action consists
of adding the interaction with a unit magnetic monopole
sitting at the origin. The (Euclidean) action of any closed
trajectory C specified by the three functions x'(t) then be-
comes

2

which by Stokes's theorem can be written as
r

S(C)=It)—1 dx'
2 dt

4

+ f Fjdx'Rdxj,

X is any two-surface whose boundary is C and FJ is the
eld due to a unit ~~g~~t~c

Superstring theory in 10 dimensions offers an attractive
possibility of unifying all known interactions including
gravity. ' For special gauge groups like SO(32) and
EsXEs the theory is free of gauge and gravitational
anomalies. This theory is based on a supersymmetric
generalization of the Narnbu-Goto string where the action
is proportional to the area swept by the string.

However, two questions which are not yet well under-
stood relate to the nature and mechanism of the compacti-
fication of string theory, and to its short-distance proper-
ties. In this paper we consider only Bose strings and
present a natural generalization of the area law of string
theory. This generalization may be of significance in a
discussion of the above two questions. Our work has been
motivated by recent studies in QCD current algebra.

In Sec. II we discuss two simple examples that motivate
the generalization. In Sec. III we present the model. We
discuss the consequences of reparametrization invariance
in Sec. IV. In Sec. V we consider a specific example of
the model in which the manifold where the string lives is
compact, and discuss its conformal invariance and critical
dimension. Section VI contains concluding remarks.

If we write the mono ole term in polar coordinates
r, 8,$, it becomes i(k/2) sin8d8dg. The integral over
X is the solid angle subtended by X at the origin. This
immediately explains why S(C) is independent of local
deformations of X. Also, since the total solid angle of a
closed surface enclosing the origin is 4m. , it is clear that if
e ' ' is to be totally independent of X, k must be an in-
teger.

For a relativistic particle the first term in (1) is just the
length of C. By adding the monopole term we are adding
another "geometrical" term, the solid angle subtended by
C at the origin. This term also has the obvious property
that it is not sensitive per se to the length or spatial extent
of the trajectory C. It picks out only the "compact di-
mensions, " for it measures only the angular spread of the
trajectory.

As another example, consider a two-dimensional Eu-
clidean field theory with the field x taking values in R .
Consider a configuration under which the image in R of
the two-dimensional spacetime is a closed two-surface Xz
topologically equivalent to a sphere. The action is

a blk
A mon( )

t)x t)x
zz t)p t)p

in which the second term is the interaction of the field
with the antisymmetric Kalb-Ramond potential A,b(x)
of a "monopole. " The corresponding monopole field
strength is F,b, e,b,4x "/R .——By Stokes's theorem

x' Bx' ikS(X2)=f — + f F,b, dx'hdx hdx',
*z 2 tlat t)P tr

(2)

where X3 is a three-surface in R with boundary Xz. The
integral over X3 is aver the solid angle

dQ'3'=sin 8singd8dgdy

in polar coordinates R,8,g, y. For the same considera-
tions as for (1), S(Xz) does not depend on the specific
choice of X3, and k is quantized. It is worthwhile noting
that in terms of the SU(2) matrix U=(x"+ix'w;)/R, (2)
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can be written as

S(Xz)=f [—,(B~R) + ,'R—Tr(d~Ud~U ')]d g

III. THE BOSON STRING MODEI.

The above idea of coupling the system to a Kalb-
Ramond monopole can be carried over to the string
theory. Let the string lie in a manifold M. The string
variables x' are then the local coordinates of M. A string
world sheet is defined by a map into M from a two-
dimensional parameter space o2 parametrized by (g', g ),
i.e., by specifying the functions x (g). If cr2 has a metric
g&~(g'), the area action can be written as

A&(g, x)= f d g~gg" d„x'd~ G,b(x), (3)

where G,b(x) is the metric of M in terms of the x coordi-
nates. The integral in (3) equals the area of the string
world sheet if g„„(g) satisfies the classical equation
motion 5A ~(g,x)/5g""(g) =0.

To generalize the solid-angle term we consider vacuum
configurations of a closed string. The world sheet X2 (the
image of o'z) is then a closed surface in M. For free
strings Xz is topologically the two-dimensional sphere S
and for interacting strings it is S with handles. We can
always find a three-surface X3 in M of which X2 is the
boundary, provided the second Betti number of M is
zero. The solid-angle term for the string world sheet X2
is constructed by locating a three-surface X3 of which X2
is the boundary, and integrating a three-form F in M over
X3.

f e'J"Tr(a UU 'a -UU 'a„-UU ')d-'g
l2~

For configurations of constant "radius" R, this is the
SU(2) XSU(2) chiral model with the Wess-Zumino term.
The new term is sensitive only to the compact dimensions.

such forms is also guaranteed by the nonvanishing of
p3(M).

Finally, if we require that F be unique (up to normali-
zation), then P3(M) must be 1. Thus the condition that
we should be able to add a unique solid-angle-type term to
the string theory results in the constraints

pz(M) =0, p3(M) = 1

for the possible compactifications. The solid-angle term
in the action is then

iraq ik f——F,
where k is an integer. It depends (modulo 2mi) only on
the string world sheet X2 and not on the specific choice of
X3. By construction it is reparametrization invariant
under transformations that are continuously connected to
the identity. The full string action is the topological term
(S) added to the geometrical term (3):

A(g, x)=A&(g,x)+iA2(x) .

To write Az in terms of the g coordinates, we extend o2
to a three-surface cr3 parametrized by coordinates
(g', g, g ). If F,b, are the components of F in the x coor-
dinates, we have

A2(x)=k d ge' 8;x'8 x B„x'F, (x) . (7)
0'3

If cr3 is a manifold with metric gj(g', g, g ), (7) can be
put in the form

~,(x)=k f d'g~g. ""a,x a,x'a„x F.„,(x),

where e'~~—:e'J"/~g is the fully antisymmetric tensor on
o.3. Note that A2 is independent of the metric, by con-
struction it has nothing to do with geometry. It is a pure-
ly topological term. The full reparametrization invariant
string action is then

A (g,x)=
2 f d g~gg""d„x'B~bG,b(x)

2

The form F must be closed (curl free), i.e., dF =0, so
that continuous deformations of X3 keeping the boundary
Xz fixed do not change the integral. This is necessary be-
cause we do not want the dynamics to depend on a specif-
ic choice of X3, it should depend only on the string world
sheet X2.

We further require that F not be an exact form, i.e., it
cannot be expressed as F=dA, otherwise Stokes's
theorem will enable us to write Az as the integral of the
two-form A over X2 itself. Since F is closed but not ex-
act, the manifold M must have a topological obstruction
that allows for the existence of three-forms that are closed
but not exact. This is possible if and only if the third Bet-
ti number Pq(M) is nonzero.

This means that there may exist different X3's with the
san1c boundary X2~ which cannot bc contlI1uously de-
formed int'o each other. I must be such that its integral
over different X3's with the same boundary X2 should
differ by at most a multiple of 2m. This implies that
F/2n. must be an integral three-form and the existence of

+ik f d~gej 8;x'Bjx "8 I x' ,Fb( x).

Before concluding this section we would like to make
an additional remark about the three-form F. In the
monopole case the two-form F represented the magnetic
field of the monopole. Thus the F that occurs in (1) satis-
fies the Maxwell equations; i.e., in R —IOj, it is a solu-
tion of

dF =0 is just the statement that V 8=0 everywhere ex-
cept at the site of the monopole. deF =0 is the other
Maxwell equation V&8=0. Thus the Maxwell equations
simply state that both F and its dual are closed in
R —IOj. This implies that F is a harmonic form, i.e.,

where 6 is the Laplace-Beltrami operator,
h=d +d e + ed ed.
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The three-form F in the string theory also satisfies the
same equations. We have already said that F exists and is
unique if and only if P2(M)=0 and P3(M)=1. We wish
to add that if, in addition, M is a compact, orientable
Riemannian manifold, F can be determined uniquely (up
to normalization) by demanding that it be harmonic:
~=0. If M does not have a boundary, this is also
equivalent to the statement that F satisfies "Maxwell
equations" dF=0, deF=O. This construction may be
considered as a generalization of the concept of magnetic
monopole.

These statements are in particular true for compact Lie
groups. In this, up to normalization, the three-form F is
given by

F=F,s,d8'hd8 hd8',

BU U, BU U, BU
U88' B8b B8'

antisymmetrized in abc. Here U is a matrix, an element
of the group, and 8', a =1,2, . . . , dimM are the local
coordinates of the group.

Liouville action

Consider infinitesimal reparametrizations

z —+z +u'(z, z ), z~z+ v'(z, z ) .

These induce a transformation of the metric

g ~(z,z)~g ~(z,z)+5g ~(z,z),
5g ~(z,z) =8&v (z,z)g~~(z, z)+Bzu~(z, z)g~(z, z)

u~(—z,z)a@ i'( ,z)z.

(12)

(13)

The asap indices each take two values z and z. The scalar
fields x' also transform:

S(y)= „S= „, fdip ,' a—„ya„y+&ze&)

and show that the constant k is both the conformal anom-
aly coefficient and the coefficient of the c number in the
central extension of Virasoro algebra. Qur notation is
that of Friedan, and we generalize for an arbitrary
A (g,x), Friedan's discussion of the Polyakov string.

IU. %'ARD IDENTITIES
OF REPARAMETRIZATION INVARIANCE,
LIOUVILLE ACTION AND CONFORMAL

ANOMALY COEFFICIENT

where zx represents integration over all string con-
figurations and fMg represents integration over all
metrics. The measure &ex is defined by a metric in
function space that depends only on detg.

If (9) represents the string propagator, it must be
reparametrization invariant. This requires S(g) to be
reparametrization invariant: if two metrics are obtained
from each other by a reparametrization g—+g', S(g) is the
same for both. In particular, S(g) must be invariant
under conform al reparametrizations [in which
z—:g'+i/ ~f(z), z=—g' ig ~f(z) and f and —f are,
respectively, analytic and anti-analytic-functionsj.

Since S(g) is reparametrization invariant one can work
locally in the conformally Euclidean gauge g„„=ei'5„
Then

r

Z= f u, y exp p,'f d'gag fu, xu, bu, e

g e —&(p)

Xexp[ —A (g,x)—A (g, cb)]

(10)

where b and c are the Faddeev-Popov fields correspond-
ing to the conformal gauge. We shall argue that S(P) is
proportional to the Liouville action:

We now discuss the quantization of the model (8). Fol-
lowing Polyakov, the amplitude for string propagation is
given by

Z= f &gexp —po f d g~g f &ex e

x'~x'(z, z ) + 5x'(z, z ),

where V~ stands for the covariant derivative. Since 5S =0
for arbitrary u this leads to the "Crauss law, "

r

1 5S V-. 1 5S 0
~g 5g- ~g 5g=

5S ; 1 5S
~g 5g= ~g 5g=

=0.

5g is a variation of the trace of the metric and 5g is a
traceless variation This ca.n be seen from

g —g +2lg g +g
g11+g22 g11—g22 —2gg

12

g", g', and g are the components of the metric in g', g
coordinates. Thus the Ward identity (16) relates the trace
anomaly to a traceless variation of S with respect to the
metric.

In the conformally Euclidean gauge

5x'(z, z) = —v (z,z)B~'(z,z) .

These transformations, being symmetries of the theory,
generate Ward identities. A first Ward identity is ob-
tained by computing the change 5S in S(P) due to the
above transformations and setting it equal to zero:

5S =f dz dzV g 5g ~ .

Using (13) for 5g ~, one finds

5S =2 f dz dzZz g v V~
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and

ZZ

g =g =(g ) '=(g ) '=+—= —'e& which satisfies

a, (T' &0——0.

(24)

(25)

The variations of g are being considered from an initial
metric of this type. Thus 5g = —Ze 5$ is a variation
along the gauge slice and 5g a variation orthogonal to
the gauge slice. Equation (16) can be written as

1 5S
v g 5gzz

1 5S
vg 5$

(17)

Since S is a dimensionless scalar, the left-hand side of
(17) is a rank-1, dimension-3 tensor. The only such object
local in P is V',R where R is the curvature scalar. Hence

We will now establish (25) in the presence of arbitrary
sources. Then T is analytic as an operator. This opera-
tor will be used to define the generators of the Virasoro
algebra whose central charge will turn out to be —A,. In
the process we show that the conformal anomaly is relat-
ed to the Jacobian of a Weyl rescaling transformation. '

We only consider sources for the string variables x'.
The sources for the ghost fields can be treated as in Ref.
9. Define the free energy by

1 5S
V,R

48m
(18) e '' '= gx gb gc

X exp[ —A (g, x) —A (g, b, c)—(X,x)s], (26)

1 5S A,

vg 5p 48~

Integrating (19),

1 55
vg 5$

(R +p'), (20)

S = f d g( ,' B„QB„P+p—e~).

It is important to emphasize that the I.iouville action (11)
is a direct consequence of locality and reparametrization
invariance. The anomaly coefficient A, is yet to be com-
puted.

where p is an arbitrary constant. Since
R = —4p '5, B,-P = —p 'B&B&P, (20) integrates to the
Liouville action

where 7 is an arbitrary source and

(X,x)z ——f V g X'(z,z)x'(z, z) .
Qz cd
2' (27)

Make a reparametrization transformation (14) on x'(z, z).
%'e do not change g, but look upon the change in x as
simply a change of variables. In this transformation since
the coordinates z,z change without a corresponding
change in g, distances on the string world sheet are get-
ting rescaled. Thus this transformation is not a confor-
mal reparametrization but a local %'eyl rescaling.

Since A (g,x) is reparametrization invariant, the change
in A (g,x) due to this change in x can be expressed in
terms of the variation of A(g, x) with respect to the
metric: Under (13) and (14)

53=f dzdivg 5g + 5x'~p 1 5A

5g& g 5x'
Conformal anomaly as a Jacobian of local rescalings,

and Ward identity in presence of sources

The energy momentum tensor T&, is defined as

=f d. d.-Vg.- 2V&
g 5g cÃp

1 5A

vg 5x'

(21)

The vacuum expectation value of T is given by

( T~&0——
—2m 5S

g 5g
(22)

Thus if x" is related to x' by (14),

A (g,x) =A (g,x')+2 f dz div g u ~Vp 1 5A

g 5g p

Equation (22) is obtained by differentiating S(P), (10) with
respect to g . In the conformal gauge the measure does
not change under a traceless variation 5g, because it de-
pends only on P. Hence 5/5g can be taken inside the
functional integral, resulting in (22).

The Ward identity (18) then reads

=A (g,x') ——f dz dzVg (u'V'T +u'V'T~)1

=A (g,x')+b.
&

. (28)

V'(T &,= V R.zz 24 z (23)

Equation (23) defines an analytic energy momentum ten-
sor T~.'

In the second step we use the property that 5A /5g =0 in
the conformal gauge.

Another term in (26) that will change under this change
of variables is (X,x )s. It is, easily seen that
(X,x)s ——(X,x')z+b2, with
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62 ——f Vgv X'V~'. (29)

(lndetB —b. )» ——0 (31)

Finally, the measure Wsx' in (26) differs from &zx by
a Jacobian. Wsx =&sx'det B where B is the operator
1+u 8 . detB is independent of x and X. Thus,

e -"'s»'= u x'N b & c8

+exp[ —A (g,x') —A (g, b, c)

—(X,x ')z —b, + ln det B], (30)

where 5=b ~+52. Expanding e ~+'" " to first order in
U~ we get

note that 8 and the covariant derivative also depend upon
the metric. The result is (for a source that vanishes at z
and w but is otherwise arbitrary)

V'( T T ),» —— V, 1(z,w)+ [—2V, 1(z,w)

+1(z,w)V ](T )» .

(38)

( T T ),» is the connected part of the expectation value
of the time-ordered product to T and T „ in the pres-
ence of sources, and 1(z,w)—:(I/~g)5(z —w)5(z —w) is
the covariant 5 function.

From (38) it can be shown that

for the expectation value in the presence of sources. To
first order in v, ln detB =fdz dzV gv b~(z, z) for some
b . Using (28) and (29) for b, we have

2(z —w) (z —w)

(39)

b, X'V—,(x'),+ V'(T—),=0.a a

2m 77
(32)

b, = ——V'( T~ )o —— V,R .
24m

(33)
I

This establishes the relation between the Jacobian and
conformal anomaly.

From (32) and (33) it follows that

By setting the source equal to zero it can be seen that the
Jacobian term is given by

The operator-product expansion (39) can be considered a
solution of the Ward identity (38).

The Virasoro algebra for L„ follows from the
operator-product expansion (39). First, we note that the
time ordering in (39) can be taken to be with respect to the
absolute magnitude of z, lower values of

~

z
~

correspond-
ing to earlier times. Then, consider

([T',L ])„=(T'L. —I. T')„
(To f d~

+&To

V'(T ),= — V,R+ —X'V, (x')». (34)

This is the Ward identity (23) in the presence of sources.
Equation (34) can be rewritten

cL&T') = ,'g X'V, &— (35)

Thus

a, (T'),=0

provided the source vanishes in the neighborhood of z.
Since the expectation value of T~ in the presence of an
arbitrary source that vanishes near z is analytic, T~ as an
operator is analytic. This is the quantum energy momen-
tum tensor,

Co, is chosen to be a circle centered at the origin that con-
tains z and Co a circle that does not contain z. Then the
product of T's is time ordered in both the terms. Thus

([T',L ]),»= f —. w +'(T'T' ),»,

where C, is a contour that contains z but not the origin.
We now use (39) for the integrand in (40) and deform the
contour C, to a small circle around the singularity w =z.
The contour integration then yields

([T,L ]),»
—— m(m —1)z™2 —B,(T )»z +'

A, as central charge of Virasoro algebra

The moments, or "Fourier components" of T~ are de-
fined by

C

Co being a simple closed contour encircling the origin
once counterclockwise. We now show following Ref. 9
that L„satisfies the Virasoro algebra of conformal sym-
metry, and that —A, is the central charge in the algebra.

A second Ward identity can be established by differen-
tiating (34) with respect to g . We use the fact that
(T~)» is a second-rank tensor, and its expression as a
functional integral. In this variation it is important to

—2( T~ )»(m + 1)z~ .

This is an operator equation since it holds for arbitrary
source. Expanding T on both sides in powers of z using
(37), and comparing coefficients yields the Virasoro alge-
bra

[L.,L~]=« —m)L. +m+ n (n' —1)5m+~, o . (41)

This completes the identification of —A. as the central
charge.

We would like to emphasize that the only input in
deriving the results of this section is that S is reparametri-
zation invariant and a local functional of P.
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V. A CONFORMALLY INVARIANT MODEL
IN COMPACT SPACE

We now consider a specific example of a conformally
invariant string theory of the type (8), in which M is a Lie
group, and determine for this model the value of A, . The
conformal invariance of the corresponding two-
dimensional field theory in flat space was first discussed
by Witten" and the model has been solved for the Green's
functions and the central charge of the Virasoro algebra
by Knizhnik and Zamolodchikov. '

To begin with, let M be a simple, compact Lie group.
For compact Lie groups Pz(M) =0, Pi(M) =1. Equation
(8) takes the form

The above one-loop calculation, though instructive,
does not reflect the presence of curved space in which the
string lives. In the next section we present the exact
answer for the anomaly coefficient I,, using the algebraic
method of Ref. 12.

Kac-Moody, Virasoro algebras

The model (42) has the property that

A (g, VU) =A (g, V)+A (g, U)

', f d'g~gM~mr(V 'a„-VV 'a„-V) .

A(g, x)=
2 f d gMgg&'TrB&UB„U

'" f d'g e'J"Tr(a, VV 'a, VV-'a„V-V '), -

(42)

where U =e " 'aeM, A,
' a dimensionless number, and the

anti-Hermitian generators t, satisfy Tr( t, tb ) = —25,b,
[t„ts]=f,b, t, . k =24mk'ING, where k' is the integer
appearing in (8) and NG ls a normalization factor that de-
pends on the volume of the smallest three-sphere in G.
The solid-angle term is the famihar Wess-Zumino term.

One-loop calculation

By expanding U about a background field Uo:
IA, 'x f

U=Uoe ', S(g) defined in (9) can be determined to
one loop. It is essentially the ln det of the operator

D"=—5"g ' 8 (egg""8 ) M""f R —8 (43)

where

The last term contains one contribution from the area
term and another from a total divergence part of the
solid-angle term. In the conformal gauge and in zz coor-
dinates,

zz zr
gzz =R—=8

e&
g -=g~ =(g ) '=(g ) '= =

2

thos

M =M =0,
M =2p '( —1+a),
M =2p '( —1 —a) .

At a=+1 a cancellation occurs between the area and
solid-angle contributions to M. Only one component of
M survives and it is a two-dimensional projection matrix.
This results in a remarkable local symmetry for (42). For
example, if a = 1,

kA, '2
M""= g""+iaei"—l~g, a =

4m
(44)

0 0
M= —4p

and R„=——,'Tr(Uo 'd„vot&). lndet D can be evaluated

by the short-time expansion of the heat kernel of D, and
yields

and

A (g, VU8' ') =A (g, U), (47)

where V, W' are analytic and anti-analytic functions,
respectively:

(1—a )fd gTrBpvodpvo
8m.

W~(Z)t W ~(Z)tV=e ', 8'=e (48)

A
&(ln p(g)

p
(45)

Here A is the cutoff, p' the arbitrary scale parameter, C„
is defined by 2C„5' =f'b'f, and p= e~

The first term in S(P) is the conformally invariant
term A,SL/48~, with A, =26—dimly. The second term,
because of 1np(g) is not conformally invariant for groups
with C„&0, unless a=+1. In a flat two-dimensional
spacetime, where p=1, this corresponds to the vanishing
of the P function. '

~ Since a ~k this indicates that if we
wish the string theory compactifled as above to have
reparametrization invariance, the solid-angle term is
necessary.

The classical equations of motion for the left and right
currents L„=B„vv ' and R„—= U 'B„v are
V&(M""L„)=V„(M" R&)=0. This follows from the vari-
ation of the action (42). At a= 1 these state that the
current J—= ——,'k B,v. U ' is an analytic function andJ:———,

' kU 'B,-v is an anti-analytic function:

zJ=O (49)

Under the transformation (48) J transforms as a left
tensor:

5„J(z)=[to(z),J(z)]——,
' k B,w(z) . (50)

By establishing classical Poisson bracket relations, " it can
be shown that J(J) is the generator of left (right) inulti-
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plication and satisfies the Kac-Moody algebra with a cen-
tral extension k ( —k). Defining J=J't„ this becomes

[J'(z), U(w, w)] = —ni5.(z —w)t, U(w, w),
[J'(z),J (w)]=2mi5(z w)—f'+J'(z)

+n.ik5' B,5(z —w) .

(51)

The assumption that this symmetry is realized at the
quantum level is sufficient to guarantee the conformal in-
variance of string theory, and to determine A, exactly. The
method of Ref. 12 applies also to the model (42}. The
Kac-Moody algebra can be written in terms of the mo-
ments of the analytic function J'(z}:

(53)

where Co is a simple contour encircling the origin once
counterclockwise. In terms of J„', the algebra (52) be-
comes

The generators of the Virasoro algebra are defined by

1 =+"
L„=— g:J' J„'

K m = —oo

(54)

[L„,L ]=(n —m)L„+ + n(n l)5„+ 0—(57)
12

with central charge

k dimM
C„+k

(58)

This establishes conformal symmetry since the Virasoro
algebra is realized in terms of the operators L„construct-
ed out of the symmetry generators. Note that for k'=1,
c'=rank (6).

In a conformally invariant theory L„are the moments
of the analytic energy momentum tensor T . In the
string theory the full T contains not only a product of
J's" coming from A (g,x), but also a contribution from
the Faddeev-Popov ghost action A(g, b, c), Thus L„(55)
contains another term constructed out of the moments b„
and c„of the Faddeev-Popov fields. Since A(g, b, c) is
quadratic and massless, the conformal invariance is not
disturbed. Equations (56) and (57) are still obtained but
with C' =k dimM/( C„+k) —26. This determines the
coefficient I, in (11) to be

k dimM
C„+k

(59)

M is a product of simple factors

a is a constant and the dots denote normal ordering: J„
with negative n sits to the left. Using the Kac-Moody
algebra (54) it can be seen that

[L.,Jm] = —IJri+m

provided K= —2(C„+k). Equatloii (56) is Just tile condi-
tion that the current J'(z} is a rank-1 tensor. Finally, L„
satisfies the Virasoro algebra

M=[U(l)] XGi XGzX XGg, (55) coiltams a sum
of terms with a different factor ~; for each factor. These
are determined from the requirement (56) that each J,
transform as a rank-1 tensor under conformal transforma-
tions. The radius of the U(1)'s determines a relative scale
of compactification between the U(1) and the 6; vari-
ables; if it is large the former may be considered the non-
compact spacetime variables. The final expression for A,

is the sum of the conformal anomalies from all fields-
Faddeev-Popov, free and compact fields:

k;dimG;
A, =26—d+g C„'+k;

(60)

Weyl invariance and critical dimension

From the above calculations it is clear that as far as
free strings are concerned (Xz is topologically a sphere)
the string model (42) is conformal invariant and its
Virasoro algebra has a central extension with charge k
given by (59). An important question that arises is wheth-
er the interacting string theory is conformal invariant
with a central extension. The answer is not clear, though
there are hints' that a consistent interacting string theory
is possible only when the central charge is equated to zero.
In case this is true, the equation

A, =g(conformal anomalies) =0
imposes another restriction on compactification.

This is like the chiral anomaly cancellation condition in
interacting gauge theories, where one derives restrictions
on fermion representations.

At A, =O the string theory admits Weyi invariance viz. ,
under transformations which transform the metric
g„„=5„~~to the metric 5„„,because of the absence of
the Liouville term One m.ay note that in (60), if 6 is
chosen to be SO(32) or Es XEs, k =1, and the number of
flat dimensions is d =10, then A, =O and the string theory
has Weyl invariance.

VI. CONCLUSION

In this paper we have generalized the Nambu-Cxoto
string to include a topological solid-angle term which is
allowed by reparametrization invariance. This term may
be necessary to maintain conformal invariance when
strings live in compact manifolds. In the Kaluza-Klein
approach it is a basic question to determine the compact
manifold. To determine this manifold or the metric
G,b(x) in (8), we may not add an Einstein term to deter-
mine this metric by a dynamical principle. Doing so will
lead us back to the problems of conventional gravity
theory which we are trying to avoid.

In a superstring theory the Liouville action Sr, (P) is re-
placed by the super-Liouville action S(P,P).'~ The ghost
contribution to A, in this case is 15. The full X in this case
is likely to be

A, =15—(sum of conformal anomaly coefficients

of all fields) .



2720 SANJAY JAIN, R. SHANKAR, AND SPENTA R. W'ADIA 32

What is required is a new principle, a hint of which is
already present in this work. It seems that conformal in-
variance may be this new principle and we may under-
stand the topolog'ical relations (4) P2(M) =0, P3(M) =1 as
required by conformal invariance.

In the present work we have used the specific example
of a Lie group to illustrate our point. In order to use the
algebraic computation method for more general manifolds
we need a generalization of current algebra. Even more
important is a supersymmetric generalization of the
present work. We hope to report on this in the near fu-
ture.

Tote added. While completing this work we became
aware of the work of other authors which has since been
published:

(i) D. Nemeschansky and S. Yankielowicz, Phys. Rev.
Lett. 54, 620 (1985); 54, 1736(E) (1985). We thank A.
Dhar for informing us about this work.

(ii) P. Goddard and D. Olive, Nucl. Phys. 8257 [FS14],
226 (1985). These authors have also obtained the Virasoro
algebra using Kac-Moody algebra. We thank P. P. Oi-
vakaran for bringing this report to our attention.

Rote added in proof. (i) We outline the massless spec-
trum of the closed-string model (8) with spacetime
=R &&6. The string variables are flat coordinates x",
p = 1,2, . . . , d and group coordinates x',
a =1,2, . . . , dimG. Group variables are replaced by the
moments J'„' and J'„of the currents, as in (53), and flat
variables by the oscillators a"„, a"„and momentum p".
The constraints T =T,—,-=O can be used in the light-cone

gauge to solve for the mass operator p„p& in terms of the
flat transverse oscillators a„',a'„and the moments J„',J'„.
The ground state

~
0) is defined to be annihilated by these

operators for n)0. The ground state is tachyonic. The
states at the first excited level which satisfy the closed-
string constraint are massless. These are a'

t
a'

~ ~
0) (di-

laton), (a' ~a &+a ~tT' &) ~0) (graviton),
(a' t a ~

—a ~
tT' ~) ] 0) (Kalb-Ramond particle),

a'
~
J'

~ ~0) and a' iJ' t ~0) (left- and right-moving
gauge particles), J'

~ J & ~
0) (scalar). If the last two are

excluded, this coincides with the massless bosonic sector
of the heterotic string. (ii) Strings on group manifolds
and the associated current algebra have been discussed
long ago in P. Goddard, Nucl. Phys. 8116, 157 (1976).
We thank Peter Goddard for bringing this to our atten-
tion. (iii) After the completion of this work we learned
that the construction of higher-dimensional monopoles
has been done independently by R. I. Nepomechie, Phys.
Rev. D 31, 1921 (1985). The implications of conformal
invariance for strings in curved spaces has been indepen-
dently discussed by E. S. Fradkin and A. A. Tseylin, Le-
bedev Institute Report No. N261, 1984 (unpublished).
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