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We give here the general rules for determining the relative phases of higher-order terms in the to-
pological expansion. We treat separately topological amplitudes and their discontinuities. Phases
associated with the various discontinuities of a given topological amplitude are found to be ( —1),
where n is the total number of quark loops in the intermediate state. Further rules are also given for
determining the relative phases for the different topological contributions to the same process.
Based on these results, the effects of higher-order terms can now be studied.

I. INTRODUCTION

Topological particle theory' gives a fully relativistic
theory of hadrons as well as a theory of electroweak pro-
cesses. The hadron sector of the theory which we discuss
here gives Regge-behaved amplitudes whose quark de-
grees of freedom are handled differently than in the stan-
dard QCD model but all the desirable properties of earlier
dual resonance models are present. The strong interac-
tions are represented in the simplest approximation by
planar zero-entropy amplitudes which are to be deter-
mined by self-consistency or bootstrap equations' in
which the mass of all stable hadrons have the same degen-
erate value mo.

All distinct zero-entropy amplitudes corresponding to
the particular process being considered must be summed
as a first approximation in the topological expansion. To-
pologically the zero-entropy amplitudes, being planar,
have a single boundary on which the particles lie and no
handles. Subsequent corrections consist of including am-
plitudes with higher numbers of boundaries and handles
and with chiral and color switches. Various complexity
indices can be introduced to catalog and rank the levels of
approximation. Once the zero-entropy amplitudes have
been determined by the bootstrap conditions, essentially
all higher-order corrections are calculable from these am-
plitudes.

A critical problem in this whole program is the deter-
mination of the relative phases of the various terms to be

F

added in the topological expansion. Recently it was
shown how the relative phases for the zero-entropy terms
can be determined by the requirements of self-
consistency. ' These results are summarized and re-
viewed in Sec. II. The present paper shows how to extend
these results by giving simple rules to determine the rela-
tive phases of terms in the topological expansion with ar-
bitrary numbers of boundaries and handles. We discuss
here explicitly only the "naked" terms in the expansion
having no chiral or color switches. The further generali-
zations required to include these latter cases must eventu-
ally involve off-shell considerations with which we have
not yet dealt. In addition to the simple rules for relative
phases of the naked terms in the topological expansion,
we shall also indicate how each topology separately has
the correct spin and statistics properties. '

II. PHASES OF ZERO-ENTROPY AMPLITUDES

We begin here by reviewing the essential features of the
phases of zero-entropy amplitudes. An example of a
zero-entropy momentum graph is shown in Fig. 1, where
the labels A,B,C, ... designate the momenta, spin states,
and all other quantum numbers of each particle on the
boundary, and the dot represents the starting point in the
order of variables. ' lt will frequently be convenient for
us to regard A,B,C, . in diagram. . s of the form of Fig 1.
as each being a cluster of particles which possesses a net
baryon number +1. Assume now that we work with such
clusters. Then if there exists another distinct zero-entropy
amplitude for the same process with external particles
permuted, then these are to be summed in the topological
expansion with dots placed such that the labels following
the dots (say, in counterclockwise order) are even permu-

FIG. 1. Zero-entropy amplitude. FIG. 2. Dot positions in zero-entropy amplitudes.
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N~„(m) =number of incoming mesons,

N~„(8)=number of incoining antibaryons;
(2.3)

FIG. 3. Thickened momentum graph.

(2 1)

In (2.1) r is a phase which depends upon the order of vari-
ables (i.e., the placement of the dot in the zero-entropy
amplitude):

v =+1 if the dot lies above a diquark

line in the thickened graph,

w= —1 if the dot lies above a

single-quark line in the

thickened graph;

also we have

(2.2)

tations of one another. An example is shown in Fig. 2. It
should be noted that there may be other contributions to
the process in Fig. 2 in which particles whose baryon
number is zero are in different clusters.

Momentum graphs such as Fig. 1 can be "thickened" to
reveal the quark structure of the particles. This is indicat-
ed in Fig. 3. Each line on the boundary of Fig. 3 corre-
sponds to a quark or a diquark line. This graph surface
can be given an orientation and we specify this by the can-
vention that all single-quark lines on the boundary have
arrows which run clockwise and all diquark lines have ar-
rows which run counterclockwise. If any of the particles
in Fig. 3 are actually clusters, further quark and/or di-
quark lines can be added to fully delineate these particles.

The surface in Fig. 3 may also be embellished by a
choice of two orientations for the patch adjacent to each
quark line. These two possibilities correspond to the
quark being so-called orthoquark —whose sign variables
are associated with two-component dotted spinors —and
paraquarks —whose spin variables are associated with un-
dotted spinors. (To orient the surface next to each quark
in a diquark pair the surface edge must be split but this
will not concern us here. ) In this paper we shall not con-
sider complications arising from differing path orienta-
tions. For simplicity we shall assume that all patches
have the same orientation so we can omit an orientation
label. Let us, then, take all quarks to be orthoquarks. A
careful study of the requirements of self-consistency on
the phases of zero-entropy amplitudes shows that terms
such as those in Fig. 2 possess phases of the form

finally I z is a residual phase (discussed in detail in Ref.
6) which depends in general on the patch structure and on
the particle types. In our discussion I z will play no role
because we assume all quarks are orthoquarks and because
its dependence on particle types T is of the form

exp[iHr[N~„(T) —N,„,(T)] J

making I"ii a common factor of all terms even when
unitarity-type products of amplitudes are taken. Particle
type T refers not to flavor content but merely to whether
the particle is a baryon, antibaryon, baryonium, or a
meson. The phase Oz can be consistently set equal to zero
gsvsng I z ——1.

The individual zero-entropy amplitudes consist of the
multiplicative phase (2.1), a multiplicative scalar ampli-
tude, a factor giving the spin dependence in terms of a
standard set of four-component or two-component
spinors ' ' and multiplicative flavor-conserving 5 func-
tions.

If the particles or clusters in Fig. 1 all have a baryon
number +1 then the boundary lines in Fig. 3 are alternate-
ly quarks and diquarks. In the case that two of the ob-
jects in Fig. 1 correspond to identical baryons (or
antibaryons) —say, e.g., A and C—there must be two
zero-entropy terms as shown in Fig. 4. The order of vari-
ables for the two terms in Fig. 4 are even permutations of
one another as required. The r phases for the two terms
have a relative minus sign so that the sum vanishes when
A =C giving the usual Pauli statistics. The relative
minus sign occurs because of the alternating quark and di-
quark boundary lines mentioned above.

III. DISCONTINUITIES OF ZERO-ENTROPY
AMPLITUDES

In this section we summarize the phases that come into
the discontinuity equations for zero-entropy amplitudes.
The discontinuity of a zero-entropy amplitude such as
Fig. 1 involves a bilinear product of two zero-entropy am-
plitudes whose order of variables are determined by the
rule shown in Fig. 5 where the dotted line indicates the
variable in which the mass-shell discontinuity is taken.
Our conventions for the discontinuity equation are such
that EDC is the in state in Fig. 5 and FAR is the out state.
Figure 5(b) illustrates the case where the dot for the am-
plitude lies to the right of the discontinuity line but with
our in-out convention the same as before. In the graph on
the right-hand side of the equalities in Figs. 5(a) and 5(b),
there are phases associated with the intermediate-state

E r B

FIG. 4. Pauli statistics for zero-entropy amplitudes.
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nonzero-entropy terms can also be determined. An im-
portant distinction must be made here between graphs
representing various topological amplitudes and other
graphs representing the discontinuities of the particular
topological amplitude.

We begin by considering the cylinder topology which
consists of two boundaries. We give an example in Fig. 6
where we have indicated first the topological amplitude
which can always be contracted to a single vertex and
then four of its discontinuities. The individual momen-
tum or particle lines can be thickened to create the ap-
propriate two-dimensional surface. In Fig. 6 we have not
yet included dots to indicate a r factor to be associated
with the diagrams. Also we note that the particles on a
boundary can be given a cyclic permutation without
changing the topology. Thus interchanging, e.g., particles
C and D in the cylinder amplitude in Fig. 6(a) does not re-
sult in a new contribution. However, in going from Fig.
6(b) to 6(c) (which correspond to discontinuities), C and D
have to be interchanged by sliding one of them around the
boundary. This in general results in two different inter-
mediate states both of which must be included in calculat-
ing the discontinuity. Thus Figs. 6(b) and 6(c) must be
added in calculating the common discontinuity.

This leads us to the first question regarding the phases
of nonzero-entropy contributions. In the case of Fig. 6 we
must add the discontinuities in Figs. 6(b) and 6(c) and
thus must determine the rule for establishing the relative
phase between these two terms. The rule is a simple one
and is illustrated in Fig. 7. The interpretation of the rule
which gives the relative phases between Figs. 7(a) and 7(b)
is that with the dot placed before the same particle or
cluster in each diagram the discontinuities are to be calcu-
lated by a straightforward product of the two zero-

FIG. 5. Discontinuity of a six-point amplitude.

IV. PHASES OF NONZERO-ENTROPY AMPLITUDES

In this section we shall discuss the phases to be associ-
ated with nonzero-entropy topologies, which, since we do
not consider chiral or color switches, can be classified ac-
cording to the number of boundaries and handles of the
two-dimensional surface representing the amplitude.
These higher topologies are first generated when
unitarity-type bilinear discontinuity products of zero-
entropy amplitudes are taken but the intermediate particle
lines are sewn together in a nonplanar manner. Since the
relative phases of the zero-entropy terms in the topologi-
cal expansion are determined by (2.1), the phases of the

{a)

FIG. 7. Two contributions to the same discontinuity.

particles from (2.1) as well as the r phase associated with
the second dot all of which are in addition to the phases
associated with the graph on the left-hand side. It is con-
venient to collect these "extra" phases in the bilinear
discontinuity expression into a single phase and a simple
rule exists for determining it. The net relative phase be-
tween the left- and right-hand sides of the discontinuity
equation is just ( —1)" where n is the number of closed
single-quark loops in the connected sum of intermediate
states. ' ' This result follows from a straightforward ap-
plication of (2.1). For example, we can express Fig. 5(a)
as in Fig. 5(c), where no additional phases are to be associ-
ated with the right-hand side of the equality beyond those
due to a single dot and the external particles, all of which
are now common to both sides of the equality.

From a topological point of view the bilinear product of
amplitudes in the discontinuity formula has the same to-
pology as the amplitude on the left as long as the inter-
mediate particles are connected in a planar manner. In
other words, the bilinear graph can be contracted to give a
simple zero-entropy disk with no boundaries or handles.
The purpose of the discontinuity relations is to provide
the basis for a bootstrap calculation of the zero-entropy
amplitudes. ' Although the phases of the discontinuities
will vary as ( —1)", these are absorbed into the scalar
function f when dispersion relations are used to calculate
the amplitudes from the discontinuity.
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FIG. 8. Zero-entropy diagrams associated with Fig. 7.

entropy amplitudes. All phases associated with the inter-
mediate particles are now dropped and only those phases
coming from the external particles and the r factor associ-
ated with the dot placement remain. Although the rule
given in Fig. 7 is simple it is not entirely trivial because it
holds quite generally regardless of whether the particles
are baryons, mesons, etc. In particular, particles in the in-
termediate states of Fig. 7(a), could be mesons with those
in Fig. 7(b) being a baryon-antibaryon pair. Also any
phases coming from closed quark or diquark loops have
been absorbed into the zero-entropy parts of the ampli-
tude.

We now describe the general technique which has been
used to determine the phases in Fig. 7 and which will be
subsequently used to find the relative phases between am-
plitudes corresponding to different topologies. First in
Figs. 7(a) and 7(b) we disconnect one of the intermediate
particle lines, which leaves a zero-entropy graph in which
the two vertices can be contracted as shown in Fig. 8.
The additional unlabeled particles in the zero-entropy am-
plitudes of Figs. 8(a) and 8(b) are not in general the same
type in both diagrams. In Fig. 9 we give an example of
quark line structure for the two diagrams in Fig. 8, where
u, x, y, and z denote quarks or diquarks and fiavor.

It is not possible to directly determine the relative
phases of the two graphs in Fig. 9 because the amplitudes
represent different processes. A simple device, however,
enables us to construct amplitudes for the same process
and then to relate the phases in Fig. 7. %'e simply insert a
segment of the x line in the right boundary of both 9(a)
and 9(b) giving Fig. 10, where we have added the two am-
plitudes with appropriate dot placement. It is important
to note that the location of the dot is correct regardless of
which boundary lines are quarks or diquarks. The sub-
scripts 0 and i refer to "out" and "in." We now deduce
the relative phases of the contributions in Figs. 7(a) and
7(b) by connecting the correspondingly labeled in and out
particles. In both diagrams a zero-entropy quark or di-
quark loop is formed as well as a connection which gives
the cylinder topology. Our labeling of in and out particles
is crucial here—the first particle in the clockwise order

A~x ~zC
Ep

(b)
FIG. 10. Diagrams used to determine cylinder phases.

for a zero-entropy loop being an out particle. This con-
forms to the convention for zero-entropy loops in Figs.
5(b) and 5(c) and will be seen to give the correct factor of
—1 for each closed quark loop. Such quark loop phases,
however, can be absorbed into the zero-entropy vertices of

' the diagram. The relative phase between Figs. 7(a) and
7(b) is determined by the phases associated with the exter-
nal particle Ii; in Fig. 10(a) and E; in Fig. 10(b) as given
from (2.1). The phases associated with F; and E; are the
same regardless of what x, y, and z are, thus leading to
the result illustrated in Fig. 7—that the relative phase be-
tween the discontinuities is plus one.

Another approach to determining the relative phases of
the discontinuities in Fig. 7 is shown in Fig. 11 where
11(a) can be contracted to give 7(a) and 11(b) can be con-
tracted to give 7(b). The two zero-entropy amplitudes on
the left of the dotted line are for the same process so their
relative phases are known —the same is true for the two
amplitudes on the right. Thus the relative phases of the
two discontinuities can be determined directly and the re-
sult agrees with the earlier argument.

There are two further discontinuities across the AB
variable of the amplitude in Fig. 6(a) which result from
interchanging A and 8 in Fig. 7. The relative phases of
all these discontinuities is plus one—the dot remaining in
the same position relative to A in each discontinuity. The
cylinder amplitude of Fig. 6(a) also possesses discontinui-
ties across the variables AD and AC. However, in these
variables there do not exist several contributions to the
discontinuity analogous to those present in the AB vari-
able (see Fig. 6). It should be noted that in this section we
have only given phase rules for discontinuities which are
products of zero-entropy amplitudes and in which no
closed quark loops explicitly appear. (Closed quark loops
will be discussed later. ) Within this restriction, the results
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FIG. 12. Diagrams with handles.

FIG. 14. Phases of discontinuities of single-boundary ampli-
tudes.

we have derived here for the cylinder discontinuities are
quite general. Different discontinuities across the same
energy variable associated with permuting particles on the
same boundary all contribute with the same relative sign
regardless of the total number of boundaries. We can thus
restrict our efforts to finding the relative phases between
amplitudes corresponding to different topologies.

torus, etc. Here the same rule applies as above except that
one must remember that the discontinuities across the
zero-entropy term must include a ( —1)" where n is the
number of closed quark loops. The other terms with one
or more handles contribute discontinuities with a relative
phase of + 1 with respect to zero entropy. This result is
illustrated in Fig. 14.

V. PHASES ASSOCIATED WITH HANDLES

We first consider the problem of starting with a given
topology having a certain number of boundaries and no
handles and then ask about the phases of amplitudes in
which there are handles added. Starting with the two-
boundary cylinder problem just discussed in Sec. IV we
have terms shown in Fig. 12, where Fig. 12(b) has one
handle and Fig. 12(c) has two handles. In Figs. 12(b) and
12(c) the handles can be drawn anywhere only the total
number of handles is relevant in determining the topology
once the boundary configurations are given.

The relative phases for the terms in Fig. 12 are derived
in a manner similar to that in Fig. 10. The result is that
for any discontinuity of the amplitudes in Fig. 12, the bi-
linear products are to be taken directly with all phases as-
sociated with intermediate particles dropped and only the
phases associated with the external particles remaining.
As in Sec. IV we consider only discontinuities which are
products of zero-entropy amplitudes with no closed quark
loops. As an example, we consider the AB discontinuity
in Fig. 12. Two contributions to the discontinuity of Fig.
12(a) have already been given in Fig. 7. We give in Fig.
13 several contributions to the AB discontinuity due to
the amplitude of Fig. 12(b). Although we have illustrated
the result here for the case of two boundaries, the result is
general: all discontinuities involving a subset of nonzero-
entropy topological amplitudes with the same number of
boundaries and the same cyclic order for particles as-
signed to each of the boundaries differing only in the
number of handles having relative phases of + 1. Again
any phases associated with intermediate particles are al-
ready accounted for by this rule and are not therefore in-
troduced explicitly.

Consider now the subset of topologies with a single
boundary which includes the zero-entropy terms, the

VI. PHASES ASSOCIATED WITH REARRANGING
PARTICLES ON THE BOUNDARIES —THE PAULI

PRINCIPLE

The issue we deal with now is how to relate the phases
of topological amplitudes which differ only by having a
different cyclic order of the particles on the boundaries.
We illustrate this situation for the cylinder but the results
are again general. The point is that even though the parti-
cles on the two boundaries of the cylinder have different
cyclic orders as shown in Fig. 15 it is always possible to
slide the particles around the boundaries so that the parti-
cles in the closed loop are the same as indicated by x in
Fig. 15. The relative phases of the amplitudes in Fig. 15
are just those associated with the corresponding planar
zero-entropy amplitudes which result from breaking open
the x loop. The rule is the one discussed in Sec. II; name-
ly, dots have to be placed on the two amplitudes in such a
way as to give even permutations of the baryon variables.
A simple specific example is shown in Fig. 16 where we
assume that particles D and F are identical baryons. The
minus one indicates the relative phase between these and
their common discontinuities. %'hen D =F the combina-
tion vanishes in accord with the Pauli principle. This il-
lustrates how the Pauli principle is satisfied for each to-
pology separately.

This rule for determining the relative phases for terms
with different cyclic orders of particles on the boundaries
can be immediately generalized to amplitudes with more
than two boundaries. It is always possible to arrange for
the particles forming the loops to be the same in each dia-
gram (e.g., particle x in Fig. 15)—then the loops can be

0
0

8
0

0
0

K

0

FIG. 13. Discontinuities of amplitudes with handles. FIG. 15. Different cyclic orders of particles.
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FIG. 16. The case of identical baryons. FIG. 18. Diagrams for determining relative phases of zero-
entropy and cylinder amplitudes.

severed and relative phases determined from the rules for
zero-entropy amplitudes. Even if there are contributions
in which some of the particles move from one boundary
to another, the same principles given here can be applied,
because it is always possible to make the loops in each di-
agram consist of the same particles as in the other dia-
grams, thus enabling us to reduce the problem as before to
one of comparing zero-entropy amplitudes.

VII. RELATIVE PHASES BET%'EEN AMPLITUDES
%'IT'H DIFFERENT NUMBERS OF BOUNDARIES

Having found the relative phases associated with dif-
ferent numbers of handles for topological amplitudes with
the same boundary structure in Sec. V, and the relative
phases when the particIes on the boundaries are rear-
ranged in Sec. VI, we now turn to the problem of finding
relative phases for amplitudes with different numbers of
boundaries.

We discuss first the simplest example of this problem
which involves determining the relative phases of discon-
tinuities associated with the planar zero-entropy and the
cylinder amplitude, the first having only one boundary
and the second, two boundaries. An example of two such
amplitudes for the same process is shown in Fig. 17.

It is important to note that not all cylinder amplitudes
possess a corresponding zero-entropy amplitude for the
same process. In order for this to be the case at least one
quark or diquark line on the boundary containing the D
and C particles must be the same as one on the other
boundary containing the A and 8 particles. Using the
technique introduced in Sec. IV it is possible to deduce the
relative phases for discontinuities for the two amplitudes
in Fig. 17. In this case the method involves considering
the two zero-entropy amplitudes in Fig. 18 whose relative
phases can be determined from a knowledge of zero-
entropy amplitude phases (see Sec. II).

%'e have indicated in Fig. 18 the common quark or di-
quark line denoted by x. Connecting Eo to E; we arrive

at the two topological terms in Fig. 17 and the result that
the relative sign between the discontinuities of the two
terms is —1 if particle E is a meson and is + 1 if particle
E is a baryonium. This -result is indicated in Fig. 19,
where X(Q)zii is the number of quarks (as opposed to an-
tiquarks) in the AB channel of the zero-entropy ampli-
tude. Expressed explicitly in terms of discontinuities Fig.
19 takes the form shown in Fig. 20, where we have indi-
cated that there are other AB discontinuities for the
cylinders as discussed earlier. All these cylinder discon-
tinuities in AB must come with the same phase

&&&&~a
( —1) " as a consequence of previous results (see Fig
7) that all such discontinuities have the same relative sign.
The dot must be located above the same particle in all dia-
grams. The result regarding the relative phase of the
zero-entropy and cylinder term can also be derived direct-
ly from the form of the discontinuity in Fig. 20. The
right-hand vertex in both terms can be written as a
coherent sum of zero-entropy amplitudes shown in Fig.
21, where 6 and 0 are either both mesons or both
baryonia. When the sum in Fig 21 is .multiplied by the
common left-hand vertex amplitude we obtain again the
phase rule shown in Fig. 20.

It is also possible in Fig. 19 to consider the BC discon-
tinuity. The relative phases are the same as before and in
fact, Fig. 19 states a general result regardless of the chan-
nel in which the common discontinuity is taken. The ex-
plicit BC discontinuity is shown in Fig. 22.

The discussion just given sho~ing how to relate the
phases for two-boundary (cylinder) and one-boundary
(zero-entropy) amplitudes can be generalized in a straight-
forward way to find the relative phase between any two
amplitudes for the same process differing by one in the to-
tal number of boundaries We assum. ed that there are zero
handles since the problem of adding handles has already
been discussed. The general rule can be adequately illus-

{ ] )N~Q~AB

FKx. 17. Planar and cylinder amplitudes.
FIG. 19. Relative phase between zero-entropy and cylinder

amplitudes.
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FICx. 20. Relative phases for zero-entropy and cylinder am-
plitudes.

n
(-1) N{Q)AB

trated by the following example of relating the phases of a
three-boundary and a two-boundary amplitude. Figure 23
gives an example of a three-boundary process. In order
for a two-boundary amplitude to exist corresponding to
the process in Fig. 23(a) there must exist at least one
quark and diquark line which is present on more than one
of the boundaries in Fig. 23(a). An example of such a
common line is indicated by x in Fig. 23. By cyclically
permuting the particles on the two boundaries with the
common x line we arrive at the configuration of Fig.
23(b). Thus, a two-boundary amplitude of the form
shown in Fig. 24 exists. The relative phase between the
graphs in Fig. 23 and Fig. 24 for any common discon-
tinuity may be deduced using the same technique as that
employed earlier in this section. The result is also similar:
the relative phase is ( —1) if xx is a meson and (+ 1) if
xx is a baryonium. This result is illustrated in Fig. 25.

VIII. PHASES ASSOCIATED WITH PRODUCTS
OF NONZERO-ENTROPY AMPLITUDE

Up to now in discussing the relative phases of various
discontinuities for a given topological amplitude, we con-
sidered only cases where (i) such discontinuities could be
written as products of zero-entropy amplitudes (e.g., see
Fig. 13), and (ii) no closed quark or diquark loops ap-
peared explicitly in the discontinuities diagrams except in
the case of zero entropy.

In this section we give the generalization of our rules to
include these cases so far ignored. These rules are de-
duced from self-consistency arguments of the kind al-
ready discussed in previous sections. We shall proceed by
illustrating the general rules for specific examples. For
example, the cylinder amplitude, in addition to having the
discontinuities shown in Fig. 7, also possess discontinui-
ties of the form shown in Fig. 26.

Figure 26(a) includes one closed quark or diquark loop
and Fig. 26(b) includes two such loops. These loops are

FIG. 22. Relative phases of another discontinuity of zero-
entropy and cylinder amplitudes.

indicated by the lines labeled x and y. Since Fig. 26(a) is
essentiaHy a zero-entropy loop, it comes in with the usual
phase ( —1) relative to the discontinuities in Fig. 7. To
obtain the correct phase of 26(b) relative to the others we
need only note the appropriate phases associated with the
two amplitudes on the right of the dashed discontinuity
line. This is deduced from the result in Fig. 19 and is

N{Q)
shown in Fig. 27. The factor ( —1) + will be + 1 if y
is a diquark line and —1 if y is a quark line. This gives
the simple result that Fig. 26(b) contributes with the phase
( —1)"where n is the tata/ number of quark loops includ-
ing those in y. Thus each discontinuity in Fig. 26 has a
phase relative to Fig. 7 of ( —1)", n being the number of
quark loops in each case.

Another example of a discontinuity involving products
of amplitudes which are not both zero entropy is shown in
Fig. 28. In this case there are no closed loops. The topol-
ogy of the diagram in Fig. 28 is that of one boundary and
one handle. Since there are no closed quark or diquark
loops, it contributes with a phase of plus one relative to
the discontinuities shown in Fig. 14. Again this result is
based on an understanding of the relative phase between
the planar and the cylinder contributions.

Our general result is then the following: discontinuities
of a given topological amplitude contribute with relative
phases determined by ( —1)" where n is the total number
of quark loops. This is true whether the amplitudes in the
discontinuity product are zero entropy or not. Relative
phases between with different topological amplitudes are
still determined by the rules given in earlier sections.

(a)

FIG. 21. Coherent sum of right-hand vertices in Fig. 20. FICx. 23. Three-boundary diagrams.
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(a)

FIG. 26. Nonzero-entropy amplitudes in discontinuity prod-
ucts.

FICs. 24. Two-boundary diagram for process in Fig. 23.

IX. SUMMARY AND CONCLUSIONS

We have derived here the rules for determining the rela-
tive phases of the various terms in the topological expan-
sion. For simplicity we have considered only naked to-
pologies (without chiral or color switches) and situations
where all quarks have the same patch orientation, al-
though generalizations of our work to include other cases
should be straightforward. The present results can be
summarized as follows: With each distinct topology we
associate a specific topological amplitude which is drawn
with momentum lines emanating from a single vertex and
with a dot placed before a given external particle. In Fig.
29, several such amplitudes contributing to a four-particle
process are shown.

We give rules for (i) the determination of the phases as-
sociated with the discontinuities of a given topological
amplitude, and (ii) the determination of the relative phases
between different topological amplitudes contributing to
the particular process.

We first summarize the rules for (i). Discontinuities for
a given topological amplitude involve a product of two to-
pological amplitudes both of which may be zero-entropy

amplitudes or one or both may be nonzero-entropy ampli-
tudes (see, e.g. , Figs. 14 and 26). In all of these cases the
phase of the discontinuity for the given topological ampli-
tude is ( —1)"where n is the total number of quark loops
in the intermediate state. With this rule no phases are to
be associated with the intermediate particles. The phases
associated with the external particles and the dot location
are to be determined from (2.1) and such phases are com-
mon to every topological amplitude for the given process.

The rules for (ii) above giving the relative phases be-
tween different topological amplitudes must be broken
down into several distinct cases which can be summarized
as follows.

(a) Topological amplitudes which differ only by having
different numbers of handles are to be added with a rela-
tive phase of + l.

(b) Different topological amplitudes having the same
number of boundaries are to be compared by sliding the
particles around on the boundaries until the particles
comprising the closed momentum loops are of the same
type in each amplitude. Then by severing the closed loops
the relative phases of such terms are determined by the
same rules as those for the corresponding zero-entropy
amplitudes (see, e.g., Fig. 4).

(c) To determine the relative phase between two dif-
ferent topological amplitudes for the same process differ-
ing by one in the total number of boundaries we begin
with the amplitude having the larger number (say, N+ I)
of boundaries. If an X-boundary amplitude for the pro-
cess exists then as discussed in Sec. VIII, there must exist
at least one quark or diquark line which is present on
more than one of the boundaries in the (% +1)-boundary
amplitude. By sliding the particles around on these two

N(&Ixx-1

FIG. 25. Relative phases for two- and three-boundary ampli-
tudes.

FIG. 27. Application of Fig. 19 to right-hand vertices of Fig.
26.
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(b)

FIG. 28. Discontinuity of amplitude with one-boundary and
one handle. (e)

FIG. 29. Different topological amplitudes for a given pro-
cess.

boundaries this common quark or diquark line can be
made to circle the interior of the boundary loop for both
boundaries [see Fig. 23(b)]. These two boundary loops can
then be combined to give an amplitude with X boundaries
(see Fig. 24). The relative phase between these two topo-
logical amplitudes is ( —l) if the common line above is a
quark line and ( + l) if the common line is a diquark line.

All other relative phases between different topological

amplitudes may be determined by successive and com-
bined. applications of the rules given above.
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