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Orientations of the embellished two-dimensional bounded manifold that embeds the Feynman
graph in topological particle theory (TPT) are shown capable of representing alI discrete particle
properties; there is no need for a second surface. By recognizing more fully than heretofore the
patch structure of the surface, a representation is found for quark generation and lepton generation
as well as for spin-chirality. "Color" is given a representation similar to that found earlier for iso-
spin. Previously developed representations of baryon number, electric charge, and "quark" chirality
remain essentially unchanged. The proposed modifications of topological particle theory 1eave had-
ron dynamics unaltered while facilitating TPT extension to electroweak interactions.

I. INTRODUCTION

In evolution since 1978 has been a continuing effort to
associate all discrete particle properties with orientations
of one- and two-dimensional Feynman-graph "embellish-
ments, " with the aim of removing arbitrariness from par-
ticle theory. ' Rather than starting with a Lagrangian, a
graphical S-matrix expansion is taken as fundamental in
this approach —which we call "topological particle
theory" (TPT). Convergence of the topological expansion
to a unitary S matrix must eventually be verified, but a
generalization of Feynman's rules for topological ampli-
tudes satisfies unitarity order by order within the expan-
sion (Ref. 7 and Appendix C).

How are expansion components ordered? TPT extends
the Feynman graph from a one-dimensional entity to
something two-dimensional by embedding the graph in a
surface The r.eason for so "thickening" is to endow the
embellished graph with an unambiguous comp/exity or
"entropy. " Each embellished graph is characterized by a
set of non-negative integers that describe its entropy (Ap-
pendix A); when graphs are combined through connected
sums, entropy cannot decrease, so components of the to-
pological expansion may be arranged in a sequence of in-
creasing entropy. Entropy integers such as genus stem
from the topology of the embedding two-dimensional
manifold; numbers of embedding dimensions higher than
2 are unsuitable for entropy bookkeeping.

The hope for convergence of the topological expansion
is based on the tendency, recognized ' in the early 1970s
and now familiar in so-called "1/N expansions, " for
Feynman amplitudes to diminish in multiplicity with in-
creasing entropy. For strong-interaction topologies the ef-
fective value of N has turned out in some cases to be as
large as 2', corresponding to ten two-valued orientations
of Feynman-graph embellishments' (Appendix C). This
paper will describe the most economical and consistent
oriented embellishments so far recognized.

Two different categories of consistency requirements
may be identified.

(1) Although Feynman's original expansion did not con-
template graph contraction —whereby certain graphs are
recognized as equivalent to other graphs (contraction is
often characterized as "duality" )—a single term of the to-
pological expansion represents all embellished graphs that
can be contracted to the same structure. Contractions
maintain orientations together with entropy indices and
control dynamics at the level of zero entropy, where am-
plitudes are self-generating ("bootstrap, " Ref. 11 and Ap-
pendix B). A consistent set of entropy indices and associ-
ated contraction rules place severe demands on those
Feynman-graph embellishments that connect with the
Poincare group; Poincare embellishments will remain a1-
most unaltered in this paper, although we shall slightly
extend those established earlier so as to describe spin as
weH as chirality. But "extra-Poincare" embellishments
are less constrained by consistency with contraction, and
it is here that we shall be proposing modifications.

(2) A second category of constraints arises from the
need to provide a basis for classical momentum measure-
ment. Elementary hadrons are self-generated at zero en-
tropy, but it is necessary, in order to achieve meaning for
the "asymptotic" momentum measurements on which the
S matrix is based, to postulate massless photons not gen-
erated by hadrons but coupled to a conserved electric
charge that can be carried by hadrons. (Reference 13 has
described the generation from TPT hadron dynamics of a
nonhadronic weakly interacting scalar boson that shares
some characteristics of photons and thereby gives promise
of a future TPT connection between the fine-structure
constant and the dimensionless hadronic coupling con-
stant. ) (Stapp' has shown how classical electromagne-
tism emerges from coherent soft-photon collections gen-
erated through Feynman rules. ) Photons must be accom-
modated with the same two-dimensional oriented mani-
fold that describes hadrons, and this requirement con-
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strains embellishments related to electric charge. We
shall, in this paper, tamper only shghtly with earlier
charge-related embellishments of the Feynman graph,
which required elementary photons to be accompanied by
seven other elementary massless "gauge" bosons'" and en-
dowed many terms of the topological expansion with an
SU(2) isospin symmetry. '

Our tampering will relate chiefly to "quark color" and
"quark generation. " The oriented two-dimensional mani-
fold has no room for SU(3) color gauge symmetry; TPT
accommodates no vector gluons in the sense of QCD.
[Dependence of TPT on zero-entropy contractions ex-
cludes massless gauge-vector strongly interacting analo-
gues of photons —such as the gluons of QCD. Massless
gauge-vector bosons require contraction-forbidding
nonzero entropy in spin-chiral topological structure (Ap-
pendix A).] Nevertheless, as will be seen in Sec. III, "to-
pological quarks" have a three-valued degree of freedom
reminiscent of color in pre-QCD quark models.

Both quark color and quark generation have previously
been associated in TPT with a second surface —transverse
to the Feynman graph —but this paper will find a natural
place for these degrees of freedom within the surface that
houses all other particle features. Certain lines and
patches within this surface, that previously were unorient-
ed, will be given orientations of the kind already associat-
ed with electric charge and with chirality. The location
of these newly oriented lines and patches decouples their
orientations from Poincare transformations and allows
their interpretation as "color" and generation.

Why was it felt for so many years (since 1978) that a
second, transverse, surface was needed'? Historically the
TPT need for color was inferred from contraction con-
sistency before introduction of the lines that are now pro-
posed as carriers of color. (These lines were introduced in
1981, not to carry color but to control chirality, in the
sense reviewed in Sec. VA. ) Consistent contraction rules
required an ordering of line segments incident on cubic
vertices along the "belt"—the boundary of the surface
that embedded the Feynman graph. A natural way to
achieve such ordering was to thicken the belt into a trans-
verse two-dimensional manifold called the "quantum sur-
face." A triangulation of the quantum surface, dual to
the belt, then allowed association of elementary hadrons
with triangulated disks on the transverse surface, and
orientations of hadron-disk perimeters became interpreted
as quark generation. We have thus far found no incon-
sistency in such a quantum-surface representation of
"quark" "color" and generation and, indeed, purely
strong-interaction Feynman rules remain unchanged by
the representation to be proposed in this paper. -

Why then might elimination of the quantum surface
constitute an advance for TPT? Our motivation relates to
electroweak interactions of hadrons. For "gauge" bosons
the quantum surface is irrelevant, a situation that extends
to leptons and to a nonhadron family of "horizontal" (H)
scalar bosons predicted by TPT (Ref. 16). As a conse-
quence there is no visible source of "quark"-generation
symmetry breaking so long as this degree of freedom re-
sides on the quantum surface. Our proposal to locate
quark generation on the same surface as leptons and H

bosons opens the door to quark-generation mixing and
symmetry breaking.

The proposals of the present paper, furthermore, are
economical. Beyond representing color and quark genera-
tion, the quantum surface has never proved to be very use-
ful. All interesting action has occurred on the "classical"
surface housing the Feynman graph. Entropy indices, for
example, have derived exclusively from the classical sur-
face. The threeness of "color," which heretofore has been
associated with quantum-surface triangles, equally well
associates with the classical-surface feature that all non-
trivial vertices along the belt are cubic. We shall recog-
nize in Sec. III that representation of "color" gives a new
meaning to quark triality: 3= 1+2, where 2 is the num-
ber of orientations of a "color" carrying line and 1 is the
number of Feynman lines close to a belt cubic vertex.

Also worth anticipating in this introduction is that the
representation to be proposed for quark generation is
parallel to that for lepton generation while at the same
time being distinct. There are four "quark" generations in
one to one correspondence with four lepton generations
and mechanisms for symmetry breaking are similar. Mix-
ing lepton generations will nevertheless be impossible,
while mixing quark generations appears as an option.

II. FEYNMAN AND FINKELSTEIN LINES;
MOMENTUM AND ELECTRIC CHARGE

In TPT any open connected Feynman graph F with X
external lines (carrying momentum in the usual sense) is
embedded in a two-dimensional bounded, connected,
oriented surface X with I' ends located along the surface
boundary BX at separate points e;, i = 1, . . . ,X. We shall
denote an I' line as f. The surface X has in previous
literature been called the "classical surface. " The (closed)
one-dimensional BX decomposes into disconnected "exter-
nal" and "internal" parts. The external part we shall refer
to as the "belt, " following the terminology of Ref. 3.
Internal parts of BX touch no I' ends but relate to internal
gs in a way to be described in Sec. IV. The belt decom-
poses exhaustively into connected particle portions m;,
each m housing within its interior (not at a n end point),
exactly one F end, i.e., an elementary particle i belongs to
a m; which includes e;.

Forthcoming embellishments of X will decorate each m

so as uniquely to establish a particle type. This section
will review the charge decoration of m's for elementary
mesons and gauge bosons as an illustration of general
TPT principles related to momentum and electric charge.

Figure 1 shows how a three-meson, single-vertex F is
embedded in an oriented disk whose circular belt (here the
entire BX) divides into 3 m s, each m containing one e.
Notice that F embedded within an oriented X implies a
cyclic ordering of f's incident on any I' vertex.

When a graph F is built by a connected sum of two oth-
er graphs F' and F", there is a corresponding connected
sum of the embedding surfaces

X=X'g X"

made by identifying and erasing certain segments of the
n and n

'
(within BX' and BX") that belong to an inter-
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~~~ Finkelstein line {T')

Feynmon tine(f)

FIG. 1. Single-vertex, 3-meson Feynman graph embedded in

a disk.

FEG. 3. Finkelstein-line embellishment of the Fig. 1 disk.
(The shading will be explained by Fig. 15.)

mediate Feynman line f;. The identification, called a
"particle plug,

" is made so as to perpetuate the global
orientation of X and also those local orientations, to be
described in the course of this paper, that establish parti-
cle identity. Figure 2 shows how global X orientation is
perpetuated when two cubic meson vertices are connected
by a single intermediate meson m.,'~~+;". In this example
the entire n identifies with the entire m;". Generally we
require some segment from each "half" of a m to be iden-
tified and erased in a particle plug, recognizing that e;
divides any n; into two halves. (The possibility that cer-
tain segments of m; not be identified and erased in a parti-
cle plug will be related in Sec. V to Lorentz transforma-
tions and the attendant nonconservation of particle spin
and chirality. ) The plugging rule is to mismatch, in iden-
tified segments of BX' and BX", the orientations induced
by the respective X' and X" orientations. Feynman end
points e and e;" are always identified and erased in a
plug of particle i.

The global orientation of X implies alternating +,—
indices on successive belt segments, as we shall see im-
mediately below. The plugging mismatch rule then
translates into a rule that + segments of the belt are to
be identified with —segments. The relation between +
and —boundary segments is like that between particle
and antiparticle or between an "ingoing" and "outgoing"
particle. Both these notions in TPT connect with the glo-
bal X orientation.

We have noted how Feynman's momentum-
transporting graph F divides each n into two halves; fur-
ther boundary segmentation results from oriented lines,
beginning and ending on the belt and not crossing I' or
each other, that were proposed by Finkelstein and colla-
borators in order to represent electric charge. Here we
shall denote a Finkelstein line by the symbol ~, because
these lines subsequently become recognized as the TPT re-
pository of isospin. ' Figure 3 adds r's to Fig. 1 and

~
~

~W+)(-)

:::. '&~$
C ~ ~ ~ ~

~ ~ ~ 0

-j. , W .
meson -"

' ~ ~ ~ ~ ~

~ ~
~ ~

~ ~
~ ~

~ ~

0

~ meson

thereby carves the belt into a total of 12 segments. We
have attached (+,—) indices to these segments according
to the rule that, following the sense of the global X orien-
tation, any boundary segment immediately. following a
point of F contact has a ( —) index. This rule is general
and we shall generally use the symbol p for any segment
of BX. In Fig. 3 thereare6P 's and 6P+'s.

The orientation of each r allows algebraic characteriza-
tion by a two-valued index defined by comparing r orien-
tation to (+,—) labels induced on the r ends by X orien-
tation in conjunction with F. Following the sense of X
orientation along the belt, the first r end encountered after
an e carries a ( —) label, with subsequent alternation of
(+,—) labels on v ends along the belt. If the two ends of
a r locate on the same belt component (as in Fig. 3), they
necessarily carry opposite (+,—) labels, because of the
rule that no r crosses any other line within X. If the two
ends of a r locate on different belt components (as in Fig.
4), we require location such that the (+,—) labels be op-
posite. A c index is attached to a ~ whose orientation is
directed from its ( —) end toward its (+ ) end; otherwise
we give the ~ an index n. In particle plugs ~ orientation is
continuous, so the (c,n) index corresponds to two con-
served quantum numbers.

The (c,n) index is transferrable to certain p's along the
belt which touch ~ ends. The (c,n) index transfers from a
r end to the contacting p whose (+,—) label agrees with

pi i & i.

FIG. 2. Single-meson connected sum of two single-vertex
disks.

FICi. 4. Embellished Feynman graph for photon interaction
with pair of charge mesons.
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that of the r end. Any/, —can be said to carry +1 unit of
electric charge while P„- is electricaily neutral; total elec-
tric charge is thus the number of P~+ minus the number of

C

The reason a P,—can be described as "charged" is that
only such P's couple to photons; a photon m. consists of
P,+ and P, , as shown in Fig. 4 where a photon couples to
a pair of charged mesons. Here the photon occupies an
entire (closed) two-segment disconnected component of
the belt while each meson occupies a four-segment (open)
belt portion. Appendix A reviews the status of Fig. 3
within the topological expansion, and Ref 17. deals with
Fig. 4. Here we invoke these special topologies, without
explanation, as simple examples of general principles.

Reference 15 explains that the orientation of each r in
Figs. 3 and 4 is independently reversible, so each meson
and gauge boson carries an ordered pair of (c,n) labels—
each such particle corresponding to the element of a 2&2
matrix in charge space. One may say more generally that
isospin has been topologized; Ref. 15 shows SU(2) isospin
symmetry to be a feature of any Feynman amplitudes
whose topology permits reversibility of individual Finkel-
stein orientations. In TPT a/I internal symmetries and
quantum numbers are analogously to be understood —as
will emerge from what follows.

A topological quark or antiquark is usefully defined as
a 2-P continuous belt interval divided at its midpoint by a
v and touched at exactly one end by I", as shown in Fig. 5.
Each "quark" or "antiquark" carries a c or n label (i.e.,
has isospin + —,). (The meaning of fractional electric
charge for TPT "quarks" has been discussed most recent-
ly in Ref. 18.)

An elementary meson, such as appears in Figs. 3 and 4,
belongs to a ~ which is a quark attached to an antiquark
by an e. See Fig. 6. The belt of Fig. 3 is composed of
three such meson m's while one of the two disconnected
components of the belt in Fig. 4 consists of two meson
& S.

We have associated the electric charge (isospin) of a
quark with one of its two halves the half t—hat touches Ii.
Such a segment of BX—touching an f at one end and a r
at the other we sh—all designate as a "fermion unit, "
called P;, in anticipation of Sec. V which shows that any
P, isolated in Fig 7, carr.ies spin —, as well as isospin.

The gauge boson of Fig. 4 (discussed at length in Ref.
17) combines P+ and P units together with the interven-
ing e; a quark (Fig. 5) combines a P with one other P (to

~ ~

'~

~ ~

+ () — e + (+)

meson 77

FIG. 6. Four-segment, qq, belt portion corresponding to a
meson.

be given a name in Sec. IV) but does not include an e. Be-
cause they do not carry momentum, quarks are not parti-
cles. Any particle has an e inside its m.

We remark that the ~ bisecting a quark may be called a
"quark line, '* although it does not carry momentum.
Readers may have noted how in Fig. 3 ~'s occupy the po-
sition of Harari-Rosner quark lines. '

Because of f and r continuity, P+'s always plug into
's, and we may identify a conserved fermion number f

which is the number of P+'s minus the number of P 's.
Fermion number is zero for mesons and gauge bosons but
will not be zero for baryons and leptons. For all hadrons,
the quark number is equal to the fermion number since
fermion units in hadrons appear exclusively as "halves of
quarks. " We further remark in anticipation of Sec. IV
that fermion (P) units of BX constitute the exclusive TPT
repository of spin and chirality. All other boundary units
carry zero spin and may be described as "bosonic. "

This section has introduced no changes in previous
TPT but merely given some new language to describe ex-
isting features. The new language is appropriate to
changes that will follow. In anticipation of one such
change we now independently orient each f as well as
each v. Such an orientation has previously been thought
to be physically meaningless —merely telling the direction
of flow of four-momentum p„' attached to the line. Re-
versing the orientation of f~ can be compensated by
changing p& to —p&. Nevertheless, with a p& and an
orientation attached to each f;, continuity of Feynman
orientation in particle plugs relates to momentum conser-
vation in a sense similar to that by which continuous
Finkelstein orientation relates to charge conservation.
(An important difference is that no vertices occur along
r's. ) Furthermore simultaneous reversal of all f orienta-

~ ~
~ ~

'.'. -c n
~ ~

n c
~

i Jl
1F

~ ~ ~

I ~ ~

"quark (q)

'~.I
l

+ (-)

"antiquark" (q)

~ ~ ~t
~ ~

~ ~

~ ~
' ' s , ~ r

~ ~ ~

+ (+)

fermioA
f+

antiferrnion

FI(x, 5. Two-segment belt portions corresponding to "quark"
and "antiquark. "

FIG. 7. Fermionic belt segments.
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tions corresponds to TCP; one may now identify this sym-
metry as topological (Appendix D). Henceforth every f as
well as every ~ is to be understood as oriented.

III. JUNCTION LINES AND "COLOR" LINES;
BARYON NUMBER AND LEPTON NUMBER

The surface X generally is "feathered" —locally a
bounded smooth surface but with a finite number ofjunc
tion lines J;. Appendix C reviews the TPT consistency
consideration that requires junction lines. A junction line
can be either a (bounded} segment, with ends on the belt,
or a circle within the X interior, and along such a line
three pieces of smooth surface meet. When X is discon-
nected along its junction lines it becomes decomposed into
a number of connected smooth "sheets" Sk, junction lines
lie along sheet boundaries BSI, which generally are built
from portions of BX plus junction lines. Each Sk has an
orientation unambiguously correlated with that of other
sheets by demanding a unique induced orientation for
each junction line. Figure 8(a), which omits Finkelstein
lines, shows the global orientation of a three-sheeted X
with a single juncti. on-line segment, embedding a baryon-
antibaryon-meson single-vertex Feynman graph. Figure
8(a) can be misleading either by implying that X is embed-
ded in a three-dimensional manifold, or that there is cy-
clic ordering of the three sheets meeting at a junction line.
Figure 8(b) is more accurate —showing that J segments
along the boundaries of each of three sheets are to be iden-
tified, but without any immediate cyclic ordering. (A cy-
clic ordering will be effectively provided by "color" lines
described below. ) Figure 8(b) also locates Finkelstein
lines; in this example there are four (Harari-Rosner}
"quark" lines together with one additional 7 "close to" the
junction line and touching the ends of the baryon and an-
tibaryon f's. This extra Finkelstein line, an example of a
type to be denoted wJ, is motivated immediately below',

Appendix B gives a further reason for this w' while ex-
plaining the different shading of patches in Fig. 8(b). Fig-
ure 8 illustrates the general rule that no lines (within the X
interior) ever touch a junction line.

Those four oriented lines in Fig. 8(b) that each connect
a boundary point to a triuial vertex inside X, are caljed
"momentum-copy" lines f, . Each junction-line end j is
accompanied by the ends of exactly two f, 's and exactly
one e, as shown in Fig. 9. A belt segment p separates j
from the ends of each of these accompanying lines. No-
tice how, in the j neighborhood, distinction between f and

f, is provided by the ~~ which —contacts f.

Momentum-copy lines transport neither momentum
nor electric charge but each f, plays a role parallel to that
of an associated f. Almost all statements about an f in
Sec. II above apply also to an f, . The exception is the
rule that each particle m contains exactly one e. A m may
contain 0, 1, or 2 j's and, correspondingly, 0, 2, or 4 f,
ends. In Fig. 8 the meson neo.ntains no j's or f, ends,
while baryon and antibaryon portions of BX each contain
a single j and 2 f, ends. The reason no nca. n contain
more than 2 j's is that each j is separated by a single
boundary segment from exactly 1 e. An e can be adjacent
to at most 2 j"s.

Let us pause here to expand on the useful notion im-
plied by the foregoing that the belt is a closed graph with
cubic and trivial vertices joined by p's. The cubic vertices
coincide uniquely with js. Any end of a r, f, or f, lying
along the belt coincides with some trivial belt vertex. Ad-
ditional trivial vertices occur at dividing points between
adjacent hadron belt portions where a "quark" connects
with a "mated antiquark. " The belt graph corresponding
to Fig. 8(b) is shown in Fig. 10, where line ends are indi-
cated by line symbols. Here there are 2 cubic vertices and
19 trivial vertices.

Along any belt branch which lies along the boundary of
a single sheet, (+,—)P indices alternate according to the
rule of Sec. II, but the 3 P's touching the same cubic ver-
tex all carry the same (+,—) label, which associates with
the j located at that vertex. The induced orientation of a
junction line points from a j' ' toward a j'+', as shown in
Fig. 10 together with the induced belt orientation. The
reader should remember that the junction line is not part
of the belt but lies within the interior of X.

Section II introduced the notion of "quarks" and of fer-
mion units of BX. Let us here add the notion of a Funit
(see Fig. 9)—which includes 3 p s joined by a j, together
with end points of each P where either a ~ or an f, im-
pinges. As in defining quark and fermion units, we do not
include an e within a F unit. The BX of Figs. 8 and 10
may then be described as built from a F+ and F, 4 q's,
4 q s, and 3 e's.

Figure'l l shows the (3q, F—) —m belonging to an ele-
mentary baryon. Here we do not show the (two-
dimensional) neighboring interior of X, as we did in Fig. 6
for the meson P, but indicate the global orientation of X
by the( —) label on the j.

baryon ontibaryon

(o)

FIG. 8. (a} Single-vertex, meson-baryon-antibaryon Feynman
graph embedded in a feathered surface. (b} Embellishment of
the surface of (a} with Finkelstein and "color" lines. FIG. 9. Location of "color" line ends along the belt.
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—~ —bel t
—junction ling

FIG. 12. Y units of the belt.

g+
+ ~~i+i

FIG. 10. The belt of graph for Fig. 8(b), with attached junc-
tion line.

As explained at the end of Sec. II, the f orientation in
Fig. 11 could be assigned in either sense, but we require as
a new feature of TPT (exemplified by Fig. 11) that the two

f, s arriving near the end of any junction line be oppositely
oriented. A two-valued index generally attaches to each

f, in a sense similar to that of the (c,n) index on a ~; this
index will be transferrable to certain "quarks" where it
wi11 be described as "quark color." Let us now make pre-
cise the definition of topological color.

Lines f, are admitted only in continuously oriented se-
quences that end on the belt adjacent to j's. We shall call
such a sequence of f, 's a "color line. " The end of a color
line inherits a (+,—) label from the j which it accom-
panies and we require the two ends of the same color line
always to carry opposite (+,—) labels. An index No. 2 is
attributed to a color line whose orientation is directed
from ( —) toward (+). Otherwise the color line carries
index No. 3. Each j is accompanied by the ends of exactly
one No. 2 and one No. 3 color line, as in Fig. 12.

If a quark touches F we say it carries "color" No. l. If
it touches an f, g(3) we say the quark carries color No. 2

(No. 3). These "quark color" assignments are illustrated
in Fig. 11. Every quark carries one of three colors.

The consistency of the foregoing requires that f, orien-
tation be continuous in particle plugs as well as at (trivial)
vertices along color lines inside X. Conserved color quan-
tum numbers are implied„but we shall see below that they
are redundant with baryon and lepton number conserva-
tion. It is never possible independently to reverse f,
orientations, so there is no SU(2) [or SU(3)] color symme-
try. However, simultaneous reversal of all f, orientations,
amounting to a global 2~3 color transformation, is a
syinmetry of strong-interaction topologies.

The Y plugging rule formulated in Ref. 5 is to be main-
tained. This rule recognizes a Y+or Y belt unit at-
tached to each end of a junction line, as shown in Fig. 12,
with the three legs of each Y being distinguishable. Leg
No. 1 touches the coincident ends of two lines from the
interior of X while opposite orientations of single incident
lines distinguish legs No. 2 and No. 3. A plug identifies
Y+ with Y so as to achieve continuity of all four line
orientations. At the end of leg No. 1, where two oriented
lines impinge, the Y' plug maintains orientations of
tangent lines in the sense of Fig. 13.

Although never crossing j's or f, 's, r's may thus have
points of tangency. Reference 5 describes how qq plugs
are made independently of Y plugs, not necessarily
preserving quark color. Quark color switching is allowed.

Consistent contraction rules require distinguishability
for all three legs of a Y. Heretofore TPT has employed
the transverse quantum surface to define colors No. 2 and
No. 3; no orientation has previously been given either to
f's or- f, 's. Adding these orientations and the
Finkelstein-Feynman points of contact near junction lines
are the only changes of Feynman-graph embellishment so
far presented in this paper.

The number of Y+ belt units minus the number of Y
units is an absolutely conserved quantum number which
has been called "boson number" and designated by the

/'' '. .',
. .".. ~ ~

. .-) I.
. ~ . ~ ~ ~

I.
~ I I' ~

FIG. 11. Baryon belt portion (9 segments, comprising 3
"quarks" plus a Y ). FIG. 13. Identification of Y legs in a connected sum.
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L= , b+ ,—f. —3 1
(2)

The n. of Fig. 14 is seen to have L =+1, while all ha-
dronic n's have L =0.

Continuity of "color" lines implies conservation of
"color" quantum numbers but each unit of boson number
b is accompanied by exactly one unit of each "color."
Therefore conservation of

(3)

is redundant with "color" conservation. (Reference 15
points out that b is proportional to hypercharge —the
difference between electric charge and the 3-component of
isospin —so topological "color" relates to hypercharge. )

This feature of "color" has remained unchanged from the
quantum-surface representation, as have Feynman rules
for "quark-color" switching. In fact all purely strong-
interaction Feynman rules are unaffected by the TPT
changes proposed in this paper.

%"e close this section with three remarks.
(1) As with f, 's, TPT freezes the orientation of any

~q—a ~ with at least one end adjacent to a j. Freezing in
the c direction of hadronic vz orientations has been long
established. ' Reference 17 will explain why nonhadronic
~z's have orientation frozen in the n sense.

(2) "Color" lines, although similar in some respects to
~'s, always have vertices inside X; an f, never has both
ends on the belt, although it may have both ends inside X.
Ys never terminate inside X although they may have
points of tangency with other lines.

(3) The continuous sequence of f, 's building a "color"
line is in 1-to-1 correspondence with some collection of
f's. (In strong-interaction topologies, this collection
forms a continuous sequence. ) Even though momentum is

symbol b (Ref. 20). Baryon number B is related to fer-
mion number f and boson number b by the formula

B= , f—+—,b —.
1 1

Inspection of Fig. 11 shows a baryon to have f=+3 and
b = —I, so 8=+1, while according to Fig. 4, mesons
and gauge bosons have b =f =0 and hence 8 =0. It is
proposed in Ref. 17 that a lepton n is F+P, Fig. 14,
with f= —1 and b =+1, so leptons also h'ave a zero
baryon number. Figure 14 corresponds to the definition
of lepton number

not transported by a "color" line, a momentum p„' at-
taches to each momentum-copy line. We shall character-
ize the union of I' with all momentum-copy lines and
their linking vertices as the extended momentum graph M
(with lines designated p, ).

IV. ORIENTED SPINOR AND SCALAR PATCHES

The collection of Feynman lines, "color" lines, and iso-
spin (Finkelstein) lines divide the surface X into patches
with may be differentiated as either "spinor" or "scalar."
What is the topological meaning of such adjectives, which
usually associate with behavior of indices in Lorentz
transformations? We have seen in Secs. II and III how
each color or isospin line inherits a "sense" =xpressed
through (+,—) labels on its ends —from the orientation
of X in conjunction with the Feynman graph. Facing
along any w or f, in a direction from ( —) to (+ ) there is
a patch of X immediately to the "left" and another irn-
mediately to the "right, " where left and right are defined
by the orientation of X. Rather than using these adjec-
tives we choose to employ the terms spinor and scalar, as
shown by Fig. 15. Our choice of terminology here stems
from the consequence of our rule for (+,—) indices [e.g.,
Figs. 3, 4, and 8(b)] that any patch touching a Feynman
line is spinor according to Fig. 15. We shall find in Sec.
VA that patches adjacent to I' generate indices which
transform as spinors under I.orentz transformation.
Patches which are scalar according to Fig. 15 never touch

and do not generate indices involved in I.orentz
transformations. Scalar patch-generated indices are dis-
cussed in Secs. V C and V D. It is a general TPT principle
that the Feynman graph always locates inside a spinor re-
gion of X. Figure 8(b) (also Figs. 19 and 23) illustrate this
principle.

The boundary segments designated by iI) in Sec. II (Fig.
7) are seen to locate exclusively along the boundaries of
spinor patches. We shall find all other P's to locate ex-
clusively along the boundaries of scalar patches. A char-
acterization of iIt.as "fermionic" and all other P's as "bo-
sonic" is appropriate when one recalls the S-matrix con-
nection between spin and statistics established by Stapp. '

As used in this paper the two adjectives spinor and fer-
mion are to be understood as synonymous —. both implying
spin- —, and Fermi statistics. The two adjectives scalar
and boson here both imply spin-0 and Bose statistics.

A long-standing TPT postulate has associated chirality
with a p label induced by an orientation of the adjacent
spinor patch. Section VA will extend the chirality label
on iti's to a double label which includes spin, after the
present section has given general rules for which X

L
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~ ~

. scaior .
.-..—::.' (+)

~ . ~ . ~. . . . . ~ .SP l AGl. . ~ ..;.- ~ ~ ~
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I

FICx. 14. Lepton F+,P belt portion.
FIG. 15. Separation of scalar from s'pinor patch by a Finkel-

stein or "color" line.
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patches are to be oriented and how. The notion of P as a
fermionic "boundary unit" will be accompanied by two
bosonic boundary units, either a single P (Sec. V B) or a
I'-shaped P triplet (Sec. VC). We shall associate quark
and lepton generation, respectively, with patch-induced la-
bels on these two types of bosonic boundary unit.

Any patch whose boundary includes a P we shall desig-
nate as o; with boundary Bo;. We orient each cr and, in-
dependently, each disconnected component (Ocr; )d of Bo;,
with these orientations to propagate coherently to the new
patch formed when a P+P pair is identified and erased
in a particle plug. That is, if the symbol o; is understood
to mean an oriented patch together with its oriented boun-
dary, such a plug amounts to a connected sum

o =o'ger" .

Figure 16 shows the connected sum of a patch o' that has
a single boundary component and a patch o" that has two
boundary components. The indicated orientations are lo-
cal; the global X orientation must simultaneously be per-
petuated, as in Fig. 2 (and Fig. 20, below). In this exam-
ple cr' carries two (local) orientations while cr" and o both
have three orientations. All patches within purely
strong-interaction topologies are disks like o', with single
boundary components and thus two orientations, but Ref.
17 will show purely electroweak topologies to require
cylindrical patches like o", with two disconnected boun-
dary compon. ents and thus three orientations associated
with the patch.

Particle quantum numbers will stem from o.-induced la-
bels on BX "units;" each unit belongs to exactly one boun-
dary component of some o. The orientation of its o will
endow any BX unit with one two-valued label and the
orientation of its boundary component will supply a
second.

All 6 patches of Fig. 3 (3 spinor and 3 scalar) and all 5
patches of Fig. 4 (3 spinor and 2 scalar) are disks, each
with a pair of BX units among boundary segments; each
of these cr's is "doubly oriented. " Figure 8(b) at first sight
might appear to contain 12 patches, but one of these (spi-
nor, in the center, bounded entirely by 1 ~ and 2 p's) has
no P along its boundary. Such a patch is not a cr and will
not be oriented; such a patch will be characterized as
"white. " (We shall describe elsewhere how white spinor
patches become o's when gauge bosons are inserted
therein. }

The junction line in Fig. 8(b) further infiuences the
patch structure so as to reduce the number of cr's; a relat-
ed effect is the occurrence, at each of the J ends, of a F-
shaped boundary unit. The requirement that no line in-

side X ever touch a J has always in TPT been accom-
panied by a rule that local areas of X connected by a J, as
well as the boundaries of these areas, are coherently
oriented, in the sense of Fig. 17. We maintain these rules
and correspondingly speak of a (single) oq as any collec-
tion of patches (on separate X sheets) that touch the same
J. The boundary of any oj contains, on a single com-
ponent, "mated" F+ and F BX units for each bounded
J "within" the ~J. These two units —Y+ and Y
inherit common labels from the oq. The two notions of
0.J and mated Y boundary units may be captured by
thinking of a junction line as lying inside cr~ even though
it places its mated Y+ Y pair on a single boundary com-
ponent. All crJ's are scalar. Examining Fig. 8(b) with the
foregoing in mind reveals a total of 9 doubly oriented o's,
4 spinor and 5 scalar, one of the latter being a crJ with a
single boundary component.

At this stage we need to describe the "internal" part of
BX, which is entirely fermionic, consisting of P+P circu-
lar. components belonging to oppositely oriented spinor Bo.
components. An internal component of BX contains no
e's (no n's) but is tangent to a p and also to a ~ as shown
in Fig. 18; a "gauge hole" here has appeared within X.
Reference 17 will explain this term. A strong-interaction
example of a gauge hole is given in Fig. 19—where 4
external mesons and 1 intermediate meson line appear in a
2-vertex embellished Feynman graph. All 9 patches here
are o's (5 spinor and 4 scalar) and we have designated by
o.

~ and o.2 the two spinor patches that touch the internal
component of BX. These two patches are independently
oriented but their boundaries are not. The P+ and P
bounding a gauge hole in X always belong to oppositely
oriented (Ocr)d's; otherwise the hole would be contracted
to zero—with two patches becoming a single patch, as in
the upper part of Fig. 19.

The patch structure of Fig. 18 arises when the meson
plug of Fig. 2 involves a quark-antiquark joining where
P+ and P belong to oppositely oriented patch boundaries
(one clockwise and one anticlockwise) and so may not be
identified. See Fig. 20. As reviewed in Sec. VA, the pos-
sibility of such mismatches for the fermionic halves of
quarks is required by unitarity. In electroweak topologies,
as explained by Ref. 17, gauge holes relate to conserved
currents (to the maintenance of a zero photon mass).

In Ref. 6 gauge holes were collapsed to "chiral-switch
lines" within X. (Chiral-switch lines were called "topo-
logical gluons" in Ref. 6.) For describing chirality in
strong interactions, switch lines and gauge holes are
equivalent, 'but to represent electroweak interactions gauge
holes are more convenient.

It has been remarked above that all strong-interaction
tr's are doubly oriented; the orientations of cr and Ocr here

FIG. 16. Connected sum of two patches. Orientation of
patch-boundary components is indicated by arrows along P's
(segments of BX—which lack intrinsic orientation). FIG. 17. A junction-line patch O.q.
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FIG. 18. Gauge hole.

behave in a parallel fashion under connected sums. Either
can be represented by an orientation induced in a BX unit.
In Ref. 6 only one of the two orientations was recognized
and was physically identified for spinor patches with
chirality. The chosen orientation was that of a patch but
could just as well have been the patch boundary. No at-
tempt was made in Ref. 6 to topologize spin.

Labels attached to a BX unit depend on comparing its o.

and (Bo )q orientations to orientations already introduced
in Sec. II. We compare o. orientation to global X orienta-
tion: if these two orientations agree (disagree), we attach
a U (D) label to the BX unit. Global X orientation further
induces in any BX unit an orientation to which a (Bo )q
orientation can be compared; if these orientations agree
(disagree} we attach an 0 (P) label to the BX unit. Every
boundary unit thereby acquires both a (U,D) and an
(O,P} label.

V. INTERPRETATION OF LABELS
ON BOUNDARY UNITS

A. Spin and chirality

Section II defined a "fermionic" p to be a segment of
BX lying along the boundary of a spinor patch; such a p
we have called a P. The present section explains the alge-

~ ~

~ ~

FIG. 19. Gauge hole inside an embellished two-vertex, four-
meson Feynman graph.

FIG. 20. Two single-vertex, 3-meson embellished Feynman
graphs whose connected sum generates the gauge hole of Fig.
19.

braic sense in which a P is a fermion unit.
The ( U, D) and (O,P) labels on a belt P we propose to

interpret, respectively, as spin and chirality. On any P
these labels correspond to a Dirac 4-spinor index. ( U,D)
associates with spin (+ —,', ——,

'
) carried by a belt P in the

sense of a Stapp M-function index, ' while 0 [P] corre-
sponds in the Weyl basis for Dirac 4-spinors to the
"upper" ["lower"] projection (1+ys)/2 [(1—ys)/2].
Under Lorentz transformations the 4-valued
( U, D))&(O,P) index on any P transforms like ir'j while
that on any P+ transforms like g—:(g yo) .

In hadronic belt portions, P units appear exclusively as
"halves" of "quarks. " We shall explain in the following
paragraphs how the topological proposals of this paper
lead to the quark-line Feynman rules of Ref. 7 and give
them a detailed representation. As a preliminary we note
that a "quark" invariably appears "mated" with an "anti-
quark" in a continuous 4-P interval along BX that begins
and terminates at the M ends touching the mated pair of
P's, but the P+ and P may or may not belong to the
same o. In Figs. 3 and 8(b) both members of every mated
(P+,P ) pair belong to the same component of a Ocr,

while in Fig. 19 one of the (P+,P ) mated pairs along the
belt is divided between two oppositely oriented Bo's by a
gauge hole in X.

If (the belt) P+ and P of a quark line belong to the
same disk cr, then both carry the same (O,P) and ( U, D)
labels; hence the 4&(4 Dirac matrix connecting indices on
P+ and P is diagonal. Symmetry under reversal of a
and Bo. orientations then implies a unit Dirac matrix in
the corresponding Feynman rule. This unit matrix, as
discovered independently by Mandelstam and by
Stapp, allows topological contraction ("duality" ) in the
presence of quark spin and chirality; the unit Dirac ma-
trix is central to the algebra of hadronic supersymmetry
(Appendix 8).

On the other hand, when the P+ and P at the ends of
a quark line belong to two different disks with oppositely
oriented boundaries as in Fig. 19, their ( U, D) labels are
independent while (O,P) labels disagree The Feynm. an
rule of Ref. 7, in conformity with Lorentz invariance,
uniquely represents the connection between P+ and P in-
dices for such a topology by the Dirac matrix (Weyl basis)
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0
/mp ——

0"p /vl p

o' p/mp
(4)

where p is the momentum carried by the intermediate
Feynman (or momentum-copy) line tangent to the gauge
hole separating the two patches (see Fig. 19). The param-
eter mp is the elementary-hadron mass. Reference 17 will
generalize such association of a gauge hole with a 4-
vector, associating the pair of spin indices on the (nonbelt)
P+, P bounding the gauge hole with the four values of a
Lorentz tensor index.

The full residue of any elementary hadron pole thus
gets a familiar Feynman factor I+@/mp for each quark
line that accompanies' an intermediate momentum line.
Quark lines thereby satisfy the Dirac equation on shell

[p =m p, chirality here being suppressed because
—,(1+P/mp) is a projection operator], but within the
Feynman factor we recognize the unit matrix as represent-
ing single disk-patch quark propagation, while p/mp
represents two-patch propagation. Unless chirality re-
verses, spin cannot change. If chirality reverses, spin may
or may not change. The foregoing unsymmetrical posture
of spin and chirality, implicit in the Dirac "switch" ma-
trix (4), parallels the inequivalent (two- and one-
dimensional) manifolds underlying these particle attri-
butes.

Historically, before any topology for spin was intro-
duced, it was understood that Lorentz invariance and uni-
tarity require the switch matrix (4). Once Feynman rules
are given (including phase factors for closed loops ' )

strong-interaction theory is complete, so readers may
wonder why it has been thought necessary to topologize
spin. There are two reasons. (1) The theory must be ex-
tended beyond strong interactions to situations where the
Feynman rules remain to be discovered. We anticipate
the sole topological repository of any particle's spin and
chirality to be its P content. (2) Topologizing spin as well
as chirality may be a step toward eventually topologizing
the full Poincare group. A continuing defect of TPT is
that, although momentum flows through the Feynman
graph, there so far has appeared no way to give topologi- .

cal meaning to quantity ofmomentum. Presence of spinor
patches on both sides of each Feynman line and associa-
tion of momentum factors with gauge holes invite
developments beyond those of this paper.

Reference 17 will discuss a general requirement of
Lorentz invariance (going beyond strong interactions) that
the boundary of any patch, whether connected or not, ei-
ther includes no P's or exactly one P+P pair carrying a
single ( U, D) label. Furthermore any Bo that includes a tI5

must not include p's other than p's. We have here another
statement that each o must be purely fermionic or purely
bosonic.

B. Quark generation

A "quark" as defined by Fig. 5 is a 2-p connected belt
interval, a (4-spinor, 2-isospinor) p plus a companion p ly-
ing along the boundary of a scalar patch and never touch-
ing the Feynman graph. Such a belt segment appears only
within "quarks" and will be designated 5. A 6 carries no

(c,n) index [no isospin, because its (+,—) label disagrees
with that of the contacting r] but has a 4-valued
( U,D)X(O,P) label. We shall designate the label on a 5
by an index G = 1, . . . , 4 according to Table I.

Disconnection of 5's from F we interpret as disconnect-
ing G from Poincare transformations. In other words we
interpret G when attached to a 5 as an internal quark de-
gree of freedom, and we call it "topological quark genera-
tion. "The 6 boundary unit is bosonic.

The door is open to mixing of topological quark genera-
tions when hadrons interact with nonhadrons. In all ex-
amples presented in this paper, each 5 is mated with a
5+ along the boundary of a disk o whose orientation is re-
versible and whose boundary orientation also is reversible.
The indices on 5+ and 5 are connected in Feynman rules
for such topologies by a 4)&4 unit matrix; there is no
breaking of G symmetry and no G mixing. But if the two
members of a mated 5+5 pair belong to different o's,
there will be nondiagonal 4&4 matrices acting on the
quark-generation space and "physical" quark generations
will be those (generally inequivalent) lin'ear superpositions
of the four topological quark generations that diagonalize
these matrices. G mixing for quarks is probably incon-
sistent for pure strong interactions and for gauge-boson
coupling to hadrons, as will be explained elsewhere, but is
plausible in hadron coupling to the H neutral scalar bo-
sons predicted by TPT (Ref. 25). There is furthermore ex-
pectation of coupling between topological quark genera-
tion and the lepton generation to be described in Sec. V C.

Notice how the isospin-carrying Finkelstein line in Fig.
5 divides any quark into a fermion half — "arrying a 4-
valued Dirac index —and a boson half arrying a 4-
valued generation index. Because the fermion half
touches M, the quark Dirac index interacts with momen-
tum and is affected by Lorentz transformations. A lepton
(Fig. 14) also divides into a fermion half and a boson half,
although the boson half here is a Y (not a 5), and Sec. V C
will reveal four lepton generations corresponding to
6=1, . . . , 4. Leptons and quarks in TPT bear certain
similarities but the parallelism does not go as deep as in
standard theory. Because the two halves of a TPT quark
are not separated by an e, a TPT quark does not carry
momentum, and because lepton generation associates with
a junction line, there will be four separately conserved lep-
ton numbers. G mixing for quarks is not accompanied by .
G mixing for leptons.

The earlier topological representation of quark genera-
tion, based on the transverse surface Xg, also correspond-
ed to a 4-valued index because two independent orienta-
tions were responsible. Since the transverse surface at-
tached only to hadrons and never played any role in elec-

TABLE I. Topological generation index.

0
P

0
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troweak interactions, however, no X& motivation ever was
found for quark-generation switching.

C. Lepton generation

Finally we turn attention to the Y-shaped boundary
unit (Fig. 12) that touches the end of a junction line J.
%'e have already noted that each mated Y+ Y pair car-
ries a single 4-valued (O,P) )& ( U, D) label. We may desig-
nate this label by the symbol 6 already defined by Table
I; when attached to a Y as to a 5, 6 cannot interact with
momentum or undergo Lorentz transformations and
therefore represents an internal particle degree of freedom.
One reason a Y, even though contacting M, is bosonic
(scalar) rather than fermionic is because 6 is continuously
preserved along any junction line; fermionic attributes—
spin and chirality —must have capacity to switch.

Defining a quantum number bG as the number of YG
minus the number of YG, each of 4 bG's is exactly con-
served. Our previously defined boson number b is equal
to gg, bG. According to Fig. 14 each lepton contains
one Y+, so each lepton carries + 1 unit of a bG. To con-
nect bG with lepton number for generation 6, it is neces-
sary to recall the "freezing" of all labels on hadronic Y's.
From the beginning of TPT no degrees of freedom have
attached to hadronic Y's (Ref. 3), and we do not propose
now to tamper with this principle, which will be reviewed
below. We extend the convention of Ref. 3 that hadronic
Y's carry a frozen 0 label by requiring them also to carry
a frozen U label. In other words, according to Table I,
hadronic Y's always carry 6 =4. In tabulating
elementary-hadron quantum numbers one may ignore the
single-valued 6 index carried by hadronic 7's while
recognizing each quark as carrying a 4-valued 6 index.
At the same time Ref. 17 will stress that lepton coupling
to hadrons through junction lines breaks lepton-6 symme-
try because this coupling is possible only for 6 =4.

Even though leptons couple to hadrons through 6,
there remains for each 6 an absolutely conserved lepton
number:

LG =hG++~64 .

Remembering that 8 =0 for all elementary particle ex-
cept baryons, and that for hadrons bG —— 85G4, we see-
that LG bG for leptons——while LG ——0 for all hadrons.
The previously defined 6-indepndent lepton number
L =b +8 [Eq. (3)] is equal to QG,LG

Notice that the label 6 corresponds to physical lepton
generation but not to physical quark generation. Physical
quark generations are superpositions of different 6's, and
there is no absolutely conserved "quark" number that car-
ries a 6 label.

The conserved quantum number I.& is nonzero not only
for leptons but for II bosons, whose closed Y+ Y belt
portion is shown in Fig. 21. Each of these two (nonmat-
ed) Y's carries a separate 6 label. If Y+ carries 6' and

carries G", then the H has L,G ——+ 1 and L,G- ———1.
For reasons related to photon masslessness that are ex-

plained in Ref. 17, the Finkelstein orientation of any
nonhadronic Y is frozen in the n sense —nonhadronic Y's
being electrically neutral. Both hadronic and nonhadronic

L e

FIG. 21. Y+Y belt portion of an H (horizontal) boson.
The j'+' and j' ' are not mated by a junction line.

Y's touch the extended Feynman graph M at the ends of
all three Y "legs,"with the end which touches I" also con-
tacting a rq. The difference between hadronic and
nonhadronic Y lies partly in the opposite ~q orientation
and partly in the freezing of hadronic (O,P) and ( U, D)
labels. The latter difference relates to the contractability
of zero-entropy hadronic topologies; intermediate elemen-
tary hadrons may be indistinguishable from "bound
states" of several elementary hadrons while collections of
nonhadrons are never equivalent to a single nonhadron.
(A nonhadron always is accompanied by nonzero entro-
py. ) Zero-entropy contractions begin by collapsing mated
"quark-antiquark" BX intervals together with the attached
cr's. Rules for such collapse depend entirely on "quark"
orientations; hadronic Ys are invisible in strong interac-
tions because Y+ F mated pairs are not adjacent to each
other along BX. Boundary contact between different had-
rons occurs exclusively through "quark" content (see Figs.
3 and 8).

No principle has here been proposed forbidding a
scalar-patch boundary from including both a Y and a 5.
Such inclusion could couple lepton and quark generations
and appears natural when H bosons interact with had-
rons; Ref 17 will .provide examples.

Although we now forbid patches of mixed bosonie-
fermionic character, such as were employed by Ref. 18 in
discussing how parity symmetry can arise from junction
lines, a source of parity asymmetry from junction lines
has survived through our tying the meaning of (O,P) in-
dices to orientations of Bo's that may be built partially
from rq's. Freezing of rq orientation not only breaks iso-
spin symmetry but now has the potential to break parity
symmetry.

VI. SUMMARY

This paper has simplified topological particle theory
(TPT) by restricting Feynman-graph embellishments to a
single two-dimensional surface. Strong-interaction Feyn-
man rules have remained unaffected by this change, while
quark and lepton generations have been placed on a basis
that, although common, forbids lepton-generation mixing
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at the same time as allowing generation mixing for "topo-
logical quarks. " The four values taken by a generation in-
dex have been connected to the four values of a Dirac spi-
nor index, while preserving the scalar (internal) character
of the generation index.

Topological representation of isospin has remained un-

changed while that of "color" has become similar to that
of isospin. [There continues, however, to be no SU(3)
"color" symmetry. ] The form of TPT proposed here
recognizes each elementary particle as "built" from a
momentum-carrying Feynman-line end surrounded by
three types of "unit"—a fermionic unit P and two bosonic
units, 5 and Y; Each unit carries a (+,—) index, which
alternates within a particle. Gauge bosons are P+, P
leptons (antileptons) are Y+,P (P+, Y ), and M bosons
are Y+,Y . (The comma here locates the Feynman-line
end. ) Hadrons are built from Y units plus "quarks" q, a q
(q) being /+5 (5+/ ). Mesons are q, q, baryons (anti-
baryons) are q, Y qq ( Y+q q, q), and "hexons" are
qqY, Y+q q (Ref. 10 ). A quark, like a lepton, now has a
fermion half and a boson half, with generation located in
the latter, but a quark continues, as in previous versions of
TPT, not to carry momentum.

P units carry, in addition to a Dirac 4-spinor index, a
(c,n) isospin index. Y units carry a frozen c or n index
(this freezing being a source of symmetry breaking) as
well as a 4-valued, strictly conserved, 6 index. 6 units car-
ry only a G index whose conservation may be violated in
hadron-nonhadron interactions.
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APPENDIX A: ENTROPY INDICES

For completeness here and in the following appendices
we reproduce certain essential TPT ingredients from Ref.
3, with minor adjustments required by the present paper.

An S-matrix connected part M is a superposition of
amplitudes Mz

(Al)

each M& belonging to an embellished Feynman graph y.
Each y is characterized by a set g;(y) of non-negative in-
tegers, called "entropy indices, "which allow terms within
the topological expansion (A 1) to be ordered according to
increasing topological complexity. (The first-appearing
y's not only have the smallest number of Feynman ver-
tices but the lowest entropy. ) Multivertex y's are connect-
ed sums of single-vertex y's

y=y'Ny"4 (A2)

In any connected sum an entropy index g;(y) cannot de-
crease and usually increases. Entropy indices exhibit ei-
ther "strong entropy"

g;(y) &g;(y')+g;(y")+

or, at least, "weak entropy"

(A3)

APPENDIX B: ZERO ENTROPY

Contraction rules, unchanged from Ref. 3, imply that
any multivertex zero-entropy y is equivalent to a single
vertex. Also unchanged is the rule that any zero-entropy

g; ( y ) & max [g;( Y'),g; (y"), . . .] . (A4)

Four entropy indices g; suffice for strong interactions.
Two of these, gi and g2, which we describe as "entropy of
the first kind, " were identified already in 1973 by Venezi-
ano and relate to th(F)—the infinitesimal thickening of
the Feynman graph. The genus of th(F) is gi while g2
also depends on genus but further involves the number b
of disconnected components of 8th(F) that contain ends e
of F:

g2=—g]+& —l . (AS)

The index gi is "strong" in the sense of (A3) while gz is
"weak" in the sense of (A4).

An embellished graph y with g~ ——g2 ——0 is described as
"planar" (graphs with gi ——0, g2 ——1 are called "cylindri-
cal"). Strong-interaction dynamics is dominated by pla-
nar y because of high quark multiplicity. Each quark has
a multiplicity 2 (2 spins, 2 chiralities, 2 isospins, and 4
generations), and only for planar y can each closed Feyn-
man loop be accompanied by two closed quark loops. The
multiplicity of embellished strong-interaction Feynman
graphs generally decreases rapidly with increasing g2.

The remaining entropy indices, g3 and g4, we describe
as "entropy of the second kind. " For strong interactions
the index g3 is the number of gauge holes within X, while

g4 is the number of independent Mobius bands within
X losed paths which cross junction lines. Both g3 and
g4 are "strong" and both relate to quark-line complexity.
The index g3 counts the number of "chiral switches"
along quark lines while g4 counts "color switches. "
Reference 10 has emphasized that indefinitely large values
of g3 and g4 make important contributions to strong-
interaction dynamics; graph multiplicity does not neces-
sarily decrease with increasing g3 and g4. (According to
Ref. 10, entropy of the second kind is responsible for
dynamical development of a GeV strong-interaction scale
starting from a zero-entropy TeV scale. )

Zero-entropy y's—with g ~
——g2 ——g3 ——g4 ——0 =xhibit a

2' (bosonic) )& 2 (fermionic) supersymmetry ' which
gradually becomes broken with increasing entropy. Ele-
mentary hadrons constitute a zero-entropy supermultiplet
(Appendix B). Any embellished graph that includes
nonhadrons (external or internal) necessarily has nonzero
entropy.

Reference 17 discusses further entropy indices that be-
come significant for nonhadrons. An example is g5, de-
fined as the number of nonhadronic Feynman loops.
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FIG. 22. A 3-beaded zero-entropy belt graph. Only those
trivial vertices on one bead are shown.

FIG. 24. Shorthand quark-line diagram corresponding to
Fig. 23.

baryon
+

mes ntiboryon
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belt is a "necklace of beads, " a 3-beaded example is given
in Fig. 22. Each bead has the same structure ontaining
no e's but along each branch, that connects the bead's
mated j+j pair, there is a mated pair of ~ ends and a
mated pair of f, ends. A separate 3-patch (2 scalar, 1 spi-
nor) sheet of X, without any portion of F, belongs to each
branch of a zero-entropy bead, as shown by the single-
bead zero-entropy example of Fig. 8(b); the "color" lines
on the two sheets belonging to the same bead are opposite-
ly oriented.

A typical Feynman-graph carrying zero-entropy sheet,
S~, corresponding to the three junction lines implied by
Fig. 22, is the disk shown in Fig. 23, where spinor and
scalar patches are distinguished by different shading. The
shading in Fig. 8(b) has the same significance. There are
no color lines on a zero-entropy SF. It is immediately ve-
rifiable that all four entropy indices are zero for the exam-
ple of Figs. 22 and 23.

The combined content of Figs. 22 and 23 is economical-
ly expressible by the shorthand quark-line diagram of Fig.
24, where each "colored" quark line carries a 2 -valued in-
dex. (The color labels in Fig. 24 could be omitted. ) Each
quark line in Fig. 24 associates with a r (not a rq) that

connects q and q intervals of BX. The arrows on a quark
line correspond to the (+,—) indices on the ends of a r
(pointing from —toward +. ). The Feynman graph could
be omitted from the quark-line diagram without loss of
information, but we include F in Fig. 24 to remind
readers that TPT quarks do not carry momentum.

Contraction rules imply a single mass mo for all ele-
mentary hadrons. (According to Ref. 10, mo lies in the
TeV range. ) Figure 25 gives the shorthand representation
for the four categories of elementary hadron. Readers
should compare Fig. 2S to Figs. 24 and 23 and should
note the meaning of "diquark" implied by these figures.
The diquark notion is central to TPT hadron dynamics. 'o

All strong-interaction embellished Feynman graphs are
built by connected sum of zero-entropy y's. Strong-
interaction Feynman rules are given by Ref. 7 in terms of
zero-entropy vertex functions.

APPENDIX C: EMBELLISHED LANDAU GRAPHS

An embellished Landau graph 1.;~ '~, . . . is a connected
sum of embellished Feynman graphs y', y", . . . not ac-
companied by erasure of identified BX segments. Instead
the identified segments remain within Lf 'r, . . . as
discontinuity lines (Discont.inuity lines are not patch
boundaries. ) Figure 26 shows Lr 'r for the connected
sum of Fig. 20. This example, because of the gauge hole,
has nonzero entropy, so the corresponding y (Fig. 19) is
not contractible, while any zero-entropy connected sum
(of zero-entropy y's) is contractible to a single-vertex y.
Nevertheless, the amplitude M& belonging to any y, re-
gardless of entropy content, is an analytic function of
momentum with singularities which associate with that
set of I.;~'~, . . . belonging to connected sums which by

+
hexon

meson boryon ontiboryon hexon

FIG. 23. A zero-entropy sheet embedding a 6-hadron Feyn-
man graph. The belt is that of Fig. 22. FIG. 25. Shorthand representation of elementary hadrons.
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..4iM;Ontinuity line

25

FIG. 26. Embellished Landau graph generated by tQe con-
nected sum of Fig. 20.

contraction are equivalent to y. Rules developed by Lan-
dau and by Cutkosky associate the location, nature, and
strength of each M„singularity with some L;~'r, . . . .
S-matrix unitarity is thereby assured, level by level, within
the topological expansion (Al).

Landau-Cutkosky rules provide the dynamical equa-
tions of zero entropy. The equations are equivalent to
planar discontinuity formulas for spinless elementary par-
ticles, but for each closed loop of a zero-entropy
I.;~'~, . . . there is a multiplicity factor No, where

210 25

Because of Fermi statistics each zero-entropy quark loop
brings a factor —2s while each diquark loop brings a fac-
tor ( —2 ) . Figure 27 gives a sample shorthand represen-
tation of zero-entropy Landau graphs with quark and di-
quark loops.

Formula (Cl) reveals the need for junction lines in
TPT. Without junction lines (and attendant "diquarks")
No would be negative and a consistent S matrix probably
could not be achieved, because strong-interaction vertex
functions would not be Hermitian analytic. ' Hermitian
analyticity M(p) =M (p ) is a property of the connected
parts of an analytic unitary S matrix.

FIG. 27. Shorthand examples of quark and diquark closed
loops.

C=RR R

T =RE Rp

It follows that

(D2)

(D3)

CP =RRpRp Rp (D4)

corresponds to a reversal of all "non-Poincare" orienta-
tions. It also follows that

PCT =Rp .

APPENDIX D: I', C, T

The effect of time reversal, charge conjugation, and
parity inversion on a topological amplitude M& corre-
sponds to certain orientation reversals. Let R denote the
reversal of all orientations, both global and local. Under
R every boundary unit undergoes +~—and in ~ out in-
terchange, but all labels, (c,n), (O,P), ( U, D), (1,2, 3) remain
unaltered. If Rz denotes reversal of all Feynman-line
orientations, R~ reversal of all spinor-patch orientations
and R~ orientation reversal of all spinor-patch boun-
daries (the subscript p is a reminder that these orienta-
tions relate to the Poincare group), then
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