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Solution of the light-cone equation for the relativistic bound state
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The ladder approximation to the bound-state equation at equal light-cone time is investigated in

the framework of scalar theory. With help of the Pock transformation the equation is reduced to an

eigenvalue problem for a compact operator. The eigensolution for the ground state is found.

I. INTRODUCTION

The conventional tool for dealing with the relativistic
bound-state problem is the Bethe-Salpeter' equation. The
one problem which is treated by explicitly covariant
methods is the solution of the Wick-Cutkosky model, i.e.,
the Bethe-Salpeter equation describing the bound state of
two spinless bosons of mass m interacting via exchange of
a massless scalar field.

Allowing for at most one exchanged boson in the inter-
mediate states one obtains the Bethe-Salpeter equation in
the ladder approximation, BSLA (Wick equation ). Be-
cause of symmetries that are present and the possibility of
performing a Wick rotation, Wick and Cutkosky were
able to introduce a spectral representation for the bound-
state wave function in the momentum space and reduce
the eigenvalue problem to one of the Sturm-Liouville type
for this spectral function. In this way they were able to
obtain a nonperturbative solution of the BSLA for any
physically allowable value M of the bound-state mass, i.e.,
for 0(M(2m.

An alternative approach to relativistic bound-state
problems is the light-cone quantization method which
provides a Hamiltonian formalism and Fock-state repre-
sentation at equal light-cone time r =t +z jc. The
momentum-space bound-state solutions to the system of
coupled relativistic equations are functions of the light-
cone variables x; and kz, and thus are immediately suit-
able for calculations of covariant observables.

This method has been attracting considerable interest
over the last few years for its unique and remarkable
property, that the perturbative vacuum state is also an
eigenstate of the full Hamiltonian. This makes it ideally
suited for studying QCD dynamics in large-momentum-
transfer reactions, for the Tamm-Dancoff truncation of
the Pock space is there a genuine perturbative approach.
Therefore, covariant observables, such as structure func-
tions, distribution amplitudes, correlations, anomalous
moments, and other hadronic properties could be calculat-
ed within a standard perturbative scheme.

Unfortunately, the mathematical complexity of the ef-
fective light-cone equation offers a formidable challenge.
Even the lowest-order (light-cone ladder approximation or
LCLA) equation for the bound state of the Wick-
Cutkosky model (i.e., the Weinberg equation) constitutes
a serious problem, which remains, to our knowledge, only

partially solved. The binding energy was calculated
several years ago in the perturbative way for small values
of the coupling constant by Feldman, Fulton, and Town-
send. An approximate expression for the bound-state
wave function was proposed by Karmanov, who investi-
gated the asymptotic properties of the LCLA kernel. Re-
cently, Brodsky, Ji, and Sawicki obtained the asymptotic
expression for the large-momentum-transfer behavior of
the bound-state wave function by means of the evolution-
equation approach. However, the questions of the
bound-state mass and the exact form of the wave function
have been left open.

The purpose of this paper is to present the nonperturba-
tive solution of the LCLA equation valid for all physical-
ly admissible values of the bound-state mass M. This is
achieved by means of suitable transformation of variables
in the light-cone equation and subsequent application of
the Fock transformation, ' which establishes a one-to-one
correspondence between the unit hypersphere S in 8
and its stereographic projection onto the hyperplane R of
those new variables. The reader may realize that the final
goal of solving the light-cone equations is achieved by
means of a technique similar to that used in nonrelativis-
tic molecular physics.

The paper is organized as follows. In Sec. II the light-
cone equation is presented and the relativistic momentum
is introduced as the new variable. In Sec. III the Pock
transformation is outlined and the resulting eigenvalue
problem is formulated. In Sec. IV the numerical solution
for the ground state is presented. A short discussion of
the result is given in Sec. V.

II. THE LIGHT-CONE BOUND-STATE EQUATION

We shall consider the light-cone description of the rela-
tivistic composite system of two scalar particles interact-
ing via exchange of a massless scalar boson (Wick-
Cutkosky model ' ). The interaction Lagrangian is
L=g:P Po , where (b is a s.calar field with mass rn and Po
is a massless field. The bound state can be described by
means of the Fock components of the state vector defined

on the light-front surface. We denote them by wave func-
tions. The effective equation for the two-body wave func-

tion reads '
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g(x;,ki) = g y E;,ky;, M y;,
m +kg 0M—

(2.1)

where x;(y;) are the fractions of the total I'+ momentum of the bound state carried by the ith constituent, x&+x2 ——1,
[dy]=dyidy25(l —yi —yq); kq (li) are the two-dimensional perpendicular momenta [d li]=[1/2(2m ) ]d li, and M is
the mass of the bound state.

In LCLA the kernel of Eq. (2.1) reads

E(x;,ki,yg, li iM )=
+kjM—

1

(ki —li )'

y& —&i

+(1~2) .
m +lg

y2

(2.2)

We note here that the original Wick equation, when pro-
jected onto the light cone, also takes the form of Eq.
(2.1). The kernel, however, contains not only one-boson-
exchange terms as in Eq. (2.2) but also an infinite sum of
multiboson-exchange irreducible box diagrams, which
provide an additional interaction in the two-body system.

It is useful to introduce the relativistic relative momen-
tum q as the new variable and work hereafter in polar
coordinates. We have

ki ——qi ——(q sin8cosg, q sin8sing),

and the wave function P is defined by
2 2

Nl +qj
P(q)= z 2 g(q)—= (1—x )f(x;,ki),

m +q
(2.7)

where P(q) is the wave function of Eq. (2.1) now ex-
pressed in terms of the new variables. We note here that
the kernel of (2.5) clearly has azimuthal symmetry and is
invariant under the parity transformation q~ —q,q'~ —q'. We introduce the following parametrization of
the bound-state mass M:

x cos8
e(q)

so that

(2.3) 8 =2m —M,
8=8 —Bz/4m,

g =(M/2m) =1—8/m .

(2.8)

J.k +mx
2

1 —x

ki +m2
cos8= —x

ky +Pal x

where

e(q)=(m +q )'~, x =xi —xz

(2.4)

Equation (2.5) now reads
T

1+8 P(q) = d'q'
4(2~) m (1+q' /m )'~

X V(q, q', M')P(q') .

(2.9)

and

dxid kz 2xix2d q/e(q——) .

The structure of Eq. (2.9) is analogous to that of the
Lippmann-Schwinger equation for nonrelativistic posi-
tronium with reduced mass p =m /2,

In terms of these variables Eqs. (2.1) and (2.2) take the
orm

2

+8 4(q)= Jd'q'
2p 2 (q- q')' (2.10)

(2.5)

where

V(q, q', M )=[(q—q') +R(q, q', M )]

R(q,q', M ) = —q q'cos8cos8' c(q) —e(q')
e(q)e(q')

+[@(q)+e (q') ——,'M ]

(2.6)

q cos8 q'cos8'
~(q) e(q')

M
q +m —. P(q)= J, V(q, q', M )P(q')

4(2~)' e(q')
if we set a=g /16m. m . This equation has bound-state
solutions P'„i~ (q) (Ref. 11) with eigenvalues
8„/m=a /4n . Note that defining A, =a/m we conform
with the original Wick notation.

In the nonrelativistic region (q/m «1 and Blm «1)
the kernel of Eq. (2.9) coincides with that of Eq. (2.10). It
had been demonstrated by Feldman, Fulton, and Town-
send that the Coulomb wave function P'„~' can serve as a
lowest-order solution to Eq. (2.9) for small values of cou-
pling constant a.

The Lippmann-Schwinger equation (2.10) was first
solved by Fock, ' who transformed it in the O(4)-invariant
integral equation for the four-dimensional spherical har-
monics. The same transformation wi11 be used in the ac-
tual case of Eq. (2.9) as presented below.
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III. THE FOCK TRANSFORMATION
AND THE HYPERSPHERICAL BASIS

The Fock transformation'o is defined by the one-to-one
mapping of the hyperplane R of the variables q onto the
unit sphere S in R,

where the hyperspherical harmonics Y& ( g) form the
orthonormal basis on the sphere S

f dQ Y„(Q)Y„(Q)=S

and p =(n, l, m), where the integers n, l, m are such that

R'eq g =(g„g)eS',
p —1

eo

where I'& is the stereographic projection

S ~R
I'q

(3.1)
0( ~m

~

&l&n .

The explicit expression for F& reads'~
' 1/2

(Q) (
.)i 2n (n —l —1)!

n(n +l)! s1n A

(3.12)

and the parameter qo is related to the binding energy via

(qo/m) =B/m .
For g= I'z '(q—) one defmes

(3.2)

qo —q
2 2

go ——cosa = 2,
q

2 +q
2

g'= sina( sin8 cosP, sin8 sin!t, cos8)

2qo
2 2q

qo +q

(3.3)

Here a, 8, and P are spherical coordinates on the sphere
S, and q=

~ q ~

. Conversely,

and

qo

1+go

2
2qo

qo +q =
1+g

(3 4)

(3.5)

The invariant measure dQ on the sphere S is related to
the Euclidean measure d q in R as follows:

dQ=sin asin8dad8dp=
2qo

qo +q
(3.6)

with 0&a&m, 0&8(m', and 0&/&2~.
The distance

~ q —q'
~

may be transformed accordingly
and one would obtain

With the definition
4qp

(3.7)

P(Q)=,~, (qo'+q')'P(q),
4 5/2

the Lippmann-Schwinger equation (2.10) takes the form

p(Q)= — f dQ' 2$(Q'),
2m 2 qo

(3.8)

(3.9)

2 2

Y~(g) Yp (g'), (3.10)

where Q, Q' are the polar coordinates of the points g, g' on
the unit sphere S3, respectively. The square of the dis-
tance between points on the unit sphere could be written
as

d cosA

'I
C„' t (cosa) Yi (8,$), (3.13)

where the C„' i(cosa) is the Gegenbauer polynomial and
F~ are the spherical harmonics on S in the convention
of Messiah, ' i.e.,

1/2

(8 ~)
(2l + 1)(l —m)! p ( 8),~p

im ~
=

4 (l ), im (3.14)

1+m

I'i~ =—
&

(sin8)( —1)' (sin8), —l & m ( I .
2'l t

(3.15)

It follows from Eqs. (3.10) and (3.11) that the Lippmann-
Schwinger equation (3.9) is diagonal in the basis Y& with
the eigenvalues qo/m=(mA, )/2n. Thus, the eigenfunc-
tions of Eq. (2.10) are

4 5/2

(qo'+ q')'
The proportionality constant in (3.8) is chosen to ensure
the following relation between scalar products on S and
R:

d cos8

f dQit'ji(Q)$2(Q)= f d p 2 Pi(p)Pq(p)
2Po

dj 1 P 2P (3.16)

(3.17)

C is a normalization constant, and

f(q) =(1+q /m ) (3.18)
Note that f '~ factors appearing in Eqs. (3.17) and (3.20)
below and originating in the phase space of the relativistic
kinematics are the "minimal relativity" factors of Ref. 14.

Upon Fock transformation, Eq. (2.9) yields
T

tP(Q)= — f dQ'
27T 2 qp

1
r(g, g', q /m)g(Q'),

(3 19)

where we defined

so that Eq. (3.11) implies orthonormality of P'„I' . [The
last step in Eq. (3.16) follows by using the virial theorem. ]
In the actual case of the light-cone equation (2.9) it is use-
ful to work with a symmetric kernel. To this end we de-
fine the wave function

P(Q) =Cf '~'(q)(qo'+q')'P(q),
where now

(qo/m) =B/m, (3.2')
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2

I (ggt q /m) f l/2(q) I K
—

K I f1/2(

I c—0'
I
'+~(k 0' q0/m)

Explicitly, in terms of polar coordinates on S, we have

=2[1—cosa cosa' —sina sina'cosO cosO' —sina sina'sinOsinO'cos(P —P') ],
and

(3.20)

(3.21)

b (g, g', q0/m ) =— f (q) f(q'), , qo 1+ —2 sina sina'cosOcosO'+2 + 1

1+tg al2 1+tg a'/2

X
I
f(q)(l+tg a/2)sinacosO —f (q')(1+tg a'/2)sina'cosO'

I
(3.22)

with

f(q)=[1+(q0lm) tg a/2] (3.18')

Evidently, the kernel of Eq. (3.19), although symmetric in variables g, g is not diagonal in the basis Y . However, due to
underlying azimuthal symmetry the kernel is still diagonal in magnetic quantum number nz and one has the decomposi-
tion

where

q0 lm ) g g g Cnlm, tt 'I'm (q0 lm ) Y„lm ( Q ) Y„ l ( Q' ),
m nl n'1'

(3.23)

Ctttm, n't'm'(qo/m)= f dQ f dQ'Yes(Q)r(f, g', q0/m)Y„l m (Q'), (3.24)

and, for given m, the sum in (3.23) runs over all (n, l) and (n', I') satisfying condition (3.12). Moreover, the invariance of
the problem under the parity transformation ensures that the right-hand side of Eq. (3.24) vanishes unless l and l' are
both either even or odd. It follows that the general solution of Eq. (3.19) could be written in the form

(Q) = pa„t Y„l (Q),
nl

(3.25)

where l's are either even or odd and n & I &
I

m
I
. We combine Eqs. (3.19), (3.10), (3.23), and (3.25). The resulting prod-

ucts of hyperspherical harmonics are next reexpressed as follows:

Y„l (Q) Y„ l (Q)= g [(21+1)(2l'+1)nn'n "/22r ]'/ (1m, l'm'
I

l"m")

,' (n —1)—,—,
' (n —1), l

X ,'(n' 1—),—,(—n' —1), l' Y„-l- ..(Q),
—,(n"—1),—,(n"—1),l"

(3.26)

L

where the curly brackets are the 9J symbols. With help of the orthogonality property (3.11), one arrives at the system of
equations

anlm g dnlm, n'!'m (q0/m)att'l'm4~ qo
(3.27)

where

n dm, ln' 'l'm= g g g [(2I"+1)(2ll+1)n "nln/2m ] (I"m", Ilml
I
1m)

n "1"rn' n &11~1 212 2

x [(2l"+1)(2l2+ 1)n "n2n'/22' ]'/ (l"m "l2m2
I

1'm')

—,
' (n' —1), —,

' (n"—1),l"

X I , (n, —1),—,(nl —1),ll-
—,(n —1), 2 (n —1), l

—,
' (n"—1),—,(n"—1), I"

2 (n2 1 )» (n2 1) ~l 'C l, l (q0/m)

—,
' (n!—1),—,

' (n ' —1), l'

(3.28)
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IV. NUMERICAL RESULTS

Equation (3.19) constitutes the eigenvalue problem

4m qp
(4.1)

for the compact operator D acting on the Hilbert space
H =Lc (S ) of the square-integrable functions on the
sphere S . Because of the underlying azimuthal symme-
try of the problem, the Hilbert space is the direct sum of
subspaces H indexed by the magnetic quantum number
m. This is quite similar to a situation one encounters
when studying the bound-state energy levels of mole-
cules. ' ' In the hyperspherical basis F& the operator D,
when acting on the particular Hilbert subspace H, could
be represented by the infinite blocklike matrix D' ' with
elements D„'P„'I d„r~ „——I ~ [cf. Eq. (3.28)]. The blocks of
several rows (columns) are numbered by n (n') Wi.thin a
particular block the rows (columns) are indexed by l (l').
The Hermitian matrix D' ', constructed in this way, is, in
fact, real and symmetric due to the invariance of the prob-
lem with respect to the parity transformation, as discussed
after Eq. (2.7). This ensures a significant gain in comput-
ing time and memory. In order to find the ground state
of the system, we set the magnetic quantum number
m=0 and searched for the largest eigenvalue qo/m for a
given value of the coupling constant I,. To make the
problem finite, we truncate the harmonic basis Y&,
p=(nlm), at some maximal value N of the principal
quantum number n and approximate the matrix D'
by the one calculated in the truncated basis. There are
k=N(N+ 1)(N+2) basis functions contributing to the
calculation of the matrix elements D„'1 „=1 ', whereas the
rank of the matrix is f=N (N + 1)/2; for example,
k =4,20,56,120 and f=3,10,21,36 for N =2,4,6,8, respec-
tively. The ground-state solution of Eq. (3.19) is then ap-
proximated by the finite expansion

CX 4B/m = 1+a —lna+ C
4 'IT

(4.3)

where a=A~. The unknown cz term is written in such a
way as to provide a direct comparison with the a in+
term. The expression (4.3) may seem to be justified as
long as the perturbative o; lna corrections do not exceed,

cients C„i~„i~ in the expansion (3.23) of the integral
kernel. In many molecular problems such coefficients
could be calculated analytically (see, for example, the
analysis' of the problem of a single electron in the pres-
ence of many fixed nuclei). In the actual case, the evalua-
tion of integrals over azimuthal angles P and P' could be
carried analytically and the remaining integration is per-
formed numerically. This is the most time-consuming
part of the computations, since the number of integrals
grows as k when the rank f is increased.

In Fig. 1 we present the relation between the mass of
the ground state and the coupling constant A, as obtained
upon solving the eigenvalue problem (curve LC). For
comparison we draw also the curves representing the solu-
tion of the Wick equation as obtained by Cutkosky
(curve C) and the nonrelativistic Lippmann-Schwinger
equation (curve LS). For a strongly bound system one
clearly sees a difference between results of relativistic and
nonrelativistic dynamics.

In Fig. 2 we represent the details of a weakly bound
system. Here our light-cone results are again c'ompared
with those based on Wick and Lippmann-Schwinger equa-
tions, and, in addition, with the result from perturbation
theory. Within the perturbation theory the eigenvalues
of the Wick equation and light-cone equation agree to or-
der a lna and for the ground state one has

go(Q)= g Q a„ioY„io(Q) .
n =11 even

(4.2)
I.O

2.0

Q/m
.5

The truncation of the harmonic basis Y& is the crucial
factor limiting the accuracy of the eigenvalues. However,
since D is a compact operator, a sequence of matrices of
increasing rank f provides a converging approximation in
norm on S .

The calculations were performed on the IBM3081
machine at the Computer Center of the Virginia Polytech-
nic Institute and State University. The eigenvalues have
been calculated with help of the subroutine Rs from the
EISPACK-Matrix Eigensystem Routines (Document
Number MT08). The Clebsch-Gordan coefficients have
been expressed in terms of the 3J coefficients of Wigner. '

The 3J and 9J coefficients have been calculated with the
help of subroutines COEF3J and COEF9J (Centre d'Etudes
de Limeil pour Informationes Complementaires document
362/71). It turned out that a stability of the largest eigen-
value better than 0.1% is obtained already for the trunca-
tion of the harmonic basis at N =8, corresponding to the
rank f =36 of the matrix D'~ = '.

Another difficulty is related to the evaluation of coeffi-

g i.o

0
0 I.O

FICx. l. Coupling constant A, versus g for the ground-state
solution of the scalar model in three different ladder approxima-
tions. The curve labeled LC represents our solution of the
light-cone equation. The curve C corresponds to Cutkosky's
solution (Ref. 3}of the Wick (Ref. 2} equation and the curve LS
corresponds to the solution of the Lippmann-Schwinger equa-
tion (2.10).
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I.OO uration mixing in the ground-state wave function (4.2).
The probabilities I'„I=

~
a„lo

~

are plotted versus
Surprisingly, the admixture of higher harmonics does not
exceed 3% even for the extreme case of vanishing bound-
state mass M, i.e., for g =0.

V. CONCLUSION

.90
0 .005

FIG. 2. Binding energy8 normalized by the nonrelativistic
binding energy BIs versus coupling constant A, for the ground
state of the weakly bound system. The letters LC and C as in
Fig. 1. The curve P represents the perturbative approximation
to the curves LC and C as obtained in Ref. 7. The arrow indi-
cates the scale of positronium (a= )37 ).

l.0
l.00

.98—
CL

.97—

say, 10% of the difference between unperturbed (nonrela-
tivistic) energies of the first two states of the system. To
ensure this one needs ~alna

~

&0.06, i.e., a(0.014 or
A, & 0.005. Therefore a sensible scale of where one expects
the perturbation theory to be valid is provided by the scale
of positronium, a= „', =0.0073 (A,=0.0023). We find our
numerical results consistent with the conclusion of Ref. 7.
Indeed, for positronium we have

~

(4/rr)lna
~

=6.26,
whereas the value of the coefficient C is found to be
C=0.35 for the case of the Wick equation and C=1.8 for
the case of the light-cone equation. This corresponds to a
1.3% correction due to the Ca term for the case of the
light-cone dynamics and only 0.25% for the Wick dynam-
1CS.

Finally, in Fig. 3, we display our results for the config-

1

m +kqM—
X )X2

f(x;,ki) =C
X)X2 X)X2

2 2m +kj
M —Sm

2OO
X 1+

~ too

X)X2

m +kjM—
X )X2

+ 0 ~ ~

(5.1)

It is easy to see that in the nonrelativistic limit
(ki/m &&1,

~

x
~

= ~x& —xz ( &&1, B/m &&1) one re-
covers the ground-state wave function of positronium.
On the other hand, for the large momentum transfer lim-
it, one obtains the asymptotic behavior

In this paper we investigated the ladder approximation
to the relativistic bound-state equation in the framework
of the Wick-Cutkosky model quantized at equal light-
cone time. Introducing suitable relativistic variables and
subsequently performing the Pock transformation, we re-
duced the problem to an eigenvalue problem of the
Sturm-Liouville type for a compact operator defined on
the Hilbert space Lc (S ). The eigensolution for the larg-
est eigenvalue (i.e., ground-state solution) has been numer-
ically found and compared with the result obtained within
other ladder-approximation schemes to this model, i.e.,
covariant ladder approximation to the VA'ck equation and
the nonrelativistic I.ippmann-Schwinger equation. There
is an evident decrease in the binding energy upon going
from nonrelativistic Lippmann-Schwinger to relativistic
(light-cone and Wick) ladders. For a weakly bound sys-
tern, such as positronium, both relativistic equations yield
comparable results, in agreement with perturbation
theory.

It is interesting to display what the result (4.2) yields
for the original light-cone wave function defined by Eqs.
(2.1) and (2.2). Using (4.2), (3.17), and (2.7) one obtains
after some manipulations

1/4
m +kj

.96—
O

.05—

.02—
Pro g(x;,ki )

1

kj ~aP X)X2

XX
[1+0(m /k~ )] (5.2)

kg

0
0 l.o

FIG. 3. Configuration mixing in the ground-state solution of
the light-cone equation. The probabilities P„i=

~
a„qo

~
fcf. Eq.

(4.2)j are drawn versus g2.

with p= ~. This result clearly differs from an approxi-
mate form suggested by Karmanovs for it is cusp free and
analytic. The systematic corrections to Eq. (5.2) originat-
ing from higher terms in (5.1) could be alternatively ex-
pressed in terms of anomalous dimensions (see Ref. 9).

We note here that the ground-state solution of the Wick
equat1on, when projected onto a 11ght cone takes the form
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/

Owick(xi ~kl )
g (x2 —xi,M) 2

X )X2

value of the light-cone equation is negligible, most of the
effect is due to a nonlocal b. term in the integral kernel,
cf. Eq. (3.20).

(5.3)

where g(z, m ) is Wick's spectral function. The asymp-
totic kz~oo behavior again takes the form (5.2) with

p =2 rather than p= —,'. The different powers originate in
the minimal relativity factor appearing in the light-cone
equation [see Eqs. (3.17) and (3.19)]. However, the effect
of the minimal relativity factors on the resulting eigen-
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