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Anomalous, chiral Lagrangians of pseudoscalar, vector, and axial-vector mesons
generated from quark loops
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The authors' previously reported approach of producing the purely pseudoscalar Wess-Zumino
anomalous action from a quark-loop expansion is extended to include, also, hadronic spin-one fields
and the photon. A line of argument is presented which links QCD to an effective-Lagrangian model
of quarks with nonlinearly transforming pseudoscalar mesons and other composite bosons. Several
methods of modeling vector and axial-vector hadronic currents are reviewed, and a novel nonlinear
treatment of the axial-vector currents is also introduced. The inclusion of the spin-one sector in the
loop calculations is described. The loop calculations of three- and four-point functions are
developed. m —+3~ is calculated and compared to experiment and to the results of other works.

I. INTRODUCTION

The standard picture of the consequences of quantum
chromodynamics (QCD) at low energy is generally regard-
ed to be fairly represented by a chiral Lagrangian dom-
inated by the would-be pseudoscalar Goldstone bosons in
the zero-momentum limit. ' A host of phenomenological-
ly successful applications of this picture has accumulated
over the years, and a number of theoretical issues have
been clarified, such as the QCD origin of the g' mass.
However, the abnormal-parity terms in the chiral La-
grangian, those involving the rank-four, totally antisym-
metric, constant Lorentz tensor e ~z„had been largely ig-
nored or, at best, treated unsystematically, until recently.
Witten's reformulation of the anomalous Wess-Zumino
action involving vector, axial-vector, and pseudoscalar
fields, from which one can derive all of the low-energy-
theorem content of the chiral anomalies, stimulated new
interest in these abnormal-parity interactions. Two
groups of authors ' have reported a series of studies of
the phenomenological application of the Wess-Zumino
Lagrangian in the Witten form, and they find good agree-
ment with data on processes involving weak and elec-
tromagnetic currents and on purely hadronic processes.
These studies go a long way toward supporting the case
for the importance in phenomenology of the chiral anorn-
aly, a case which had been supported alone by the a —+yy
example, a phenomenologically successful application
which dates back to the discovery of the anomalies.

In the present paper, we extend our approach, reported
earlier, of generating the purely pseudoscalar Wess-
Zumino action from a quark-loop expansion to include,
also, hadronic spin-one fields and the photon. In Sec. II
we present a line of argument which provides a QCD-
based rationale for our effective-Lagrangian model of
quarks in interaction with nonlinearly transforming pseu-
doscalar mesons and other composite hadronic bosons.
This section amplifies on the remark in our previous
work that such an effective Lagrangian could be regarded
as the consequence of "integrating out" the gluon degrees
of' freedom, and this development provides the back-
ground for Sec. III where we introduce the effective La-

grangian. In Sec. III we also review several methods of
treating the vector and axial-vector hadronic currents and
describe their inclusion into our loop calculation. We
treat the case of linearly transforming spin-one fields and
the case of nonlinearly transforming fields. ' In the
latter case, we outline a model for including the axial-
vector as well as the vectors as nonlinearly transforming
fields. The vector and axial-vector fields are clearly not
chiral partners in such a treatment, and this parallels a
scheme which we have reported previously where the sca-
lars and pseudoscalars are treated as independent, non-
linearly transforming fields. "

In Sec. IV we discuss the loop calculation of three-point
and four-point interactions, and we modify our loop-
generated effective action by adding a Bardeen counter-
term' in order to ensure vector-current conservation.
The axial-vector, vector, vector (A VV) vertex and its role
in the m ~yy calculation is discussed in this connection.
The Bardeen counterterm must also be added to the
anomalous action when calculated in the manner of Wit-
ten, as shown by Kaymakcalan, Rajeev, and Schechter.
After the m ~yy discussion, the PVAA, PPVA, and
PPPV interactions are calculated and then the interaction
terms relevant to co~3~ are presented. . In each case, the
linear- and nonlinear-model results are presented in paral-
lel. It is remarked that vector-meson dominance in the
anomalous action does not produce the current-algebra re-
sult for- the ye+~ m. vertex, as noticed by Rudaz' in
connection with the calculations of Ref. 7. Also in Sec.

'

IV, we briefly consider some points of phenomenology re-
lated to fixing the values of parameters in the completely
nonlinear theory, and to subsequent calculation of the
co~3m rate. Some summarizing remarks are included in
Sec. V. An appendix provides some details of our loop
calculation of the four-point interactions.

II. QUARK PLUS HADRONIC-MESON
EFFECTIVE I.AG RANCxIANS

We develop here a line of reasoning which leads one
from the QCD Lagrangian to Lagrangians depending on
quark degrees of freedom and composite-boson degrees of
freedom. This "hybrid" type of Lagrangian is the basis
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for our fermion-loop evaluation of effective actions of the
anomalous Mess-Zumino type.

Let us begin by noting that the general form of the ac-
tion after gauge fixing and integrating over gluon fields
and possible ghost fields in the QCD generating function-
al for connected Green's functions is

W= f dx W(x)= f 1il(x)(i9—m)f(x)dx

+Trg, G'„.. . , (x (, . . . , x„)g(x, )
PE

+ ~v/ P(x 1 ) ~ ~ ~ y(x )I y(x )

+source terms,

where color and flavor indices are implicit, I „are cou-
pling matrices which involve internal symmetry and
Dirac indices and G'„.. . „(x~, . . . , x„) are connected

1 n

pure Yang-Mills n-point functions. An integral
~ ~

~

~

~

~

~

~

~

~

~

~

~

dx&, . . . , fdx„ is understood. Except for the mass
term, Eq. (1) is globally chiral symmetric, reflecting the
chiral symmetry of the original QCD Lagrangian.

At this stage we can introduce the bilocal auxiliary
fields g(x,y) and 8(x,y), which are matrices in Dirac,
color, and flavor space, by the following device. ' We add
the terms involving g and 8 to W as follows (source
terms will be henceforth set to zero):

W[@,f, ri,B]= f g(x)(i9 —m )g(x)dx

Tr f—dx dy g( yx)[8(y, )xg(y)P—(x)]

—Trg, G', . . . ,
El .

XI.,B(x„x,) . r. 8(x„,x, ),
(2)

vvhere color, flavor and spin indices are implicit as before,
and Jdx„. . . , dx„ is understood in the last term.
The equations of motion or g and 8 equations of con-
straint) are

Z D D D i ~&»&) D~ 2fn»)

DDDqe « ~). (6)
I

From Eqs. (2) and (6) we see that W[f, 1Ti, q] breaks into
a term depending only on P and g, one depending only
linearly on g, f, and g and one depending only on g,
which is the general form we seek:

W[P, g, g]=f dx P(x)(iQ —m)P(x)

—f f dx dy g(x)q(x, y)P(y)+ W[g] .

From inspection of Eqs. (3)—(7), it is apparent that W[g]
is chiral symmetric if the starting I. was, ' and that it will
involve arbitrarily high orders of derivatives of g if the
nonlocal terms contained in these expressions are expand-
ed about a common point. Note here that one has the op-
tion of assigning the mass term

/mal

to the quark La-
grangian alone, partly to the quark Lagrangian and partly
to W[q], or entirely to W[g] since one can write

gm Q=Tr[mB(x, x)],
which looks like a part of the last term in Eq. (2). It is
consistent, for example, to split the Pm/ into a singlet
mass term mog1ii and a flavor-symmetry-breaking piece
TrmsBB(x, x) which starts with Tr[msB(M+M )], where
M is a spin-zero (3,3')+(3',3) flavor representation, as
elaborated below.

We turn to the explicit development of the terms

fdx fdye(x)q(x, y)g(y) about a common point to illus-
trate how the expansion of the effective Lagrangian into
successively higher derivatives can unfold. Let us intro-
duce variables z and t through x =z+ —,

' t and y =z —
2 t

and rename g(x,y) to be ri(z, t). We expand 1' and p:

y(z —, t ) =y(z) ,' —t„a~1/!(z)+——

P(z + ,' t) =P(z) + ,' t„dt'Q—(z) + ~ ~ ~ , —

and

5S' =0=8(y,x) f(y)P(x)—
5g(x,y)

(3)
and we make the plausible assumption that the color-
singlet part of rt(t, z) admits a bound-state type of factori-
zation, namely,

58'
YiYp vi s v2

=0= —g(x,y) —G~ „(x—y)I „8(x,y)l „
ri(z, t) =M(z)FO(t)+d„M ti'F, (t).

+M QMF2(t)+ ~ ~ (9)

+ a ~ ~

When Eqs. (3) and (4) are replaced in the equation for f,
(iQ —m)g(x) —f dy rt(x,y)P(y) =0, (5)

one gets the same equation for g that would have been ob-
tained directly from Eq. (1), thus showing that the actions
of Eqs. (1) and (2) are equivalent.

The generating functional Z can be written as

where the field M is a (3",3)+(3,3') say, of a chiral fla-
vor SU(3) group under which the P's transform as triplets.
The functions F; are singlets. In what follows, just the
color-singlet part of ri will be kept and only the flavor
symmetry content will be considered. The higher-spin
terms in the expansion Eq. (9) are not explicitly shown, so
that our expressions stay manageable.

We expand the term in the action which is of interest in
the loop calculation, finding

f f dx dy g(x)ri(x, y)g(y) =f fdt dz[g(z)+ ,
' t„B"g(t)+ ]—

X[M(z)FO(t)+B&MtI'F&(t)+MQMF2(t)+ . . ] [f(z)——' t&B"g(z)+ . ), (10)
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and we collect the leading terms in the form

f f dx dy p(x)g(x, y)g(y) =p f dz g(z)M(z)g(z) t—' —f dz g(z)M(z)QM(z)g(z) —X f dz B„17(z)M(z)cp1((z)
~ A.

+ Y f dz[ —P(z)a„M(z)a~@(z)+a~y(z)a„M(z)q(z)]+

M =exp[2ivr(x)y5/F ], (13)

with ~ the nonlinearly transforming, matrix pseudoscalar
octet, @=A.'m /~2. The (1,8) + (8,1) fields V+-= V+A
are similarly defined, V+—=(V+—)'A, '/V'2, where the SU(3)
matrices are normalized according to Trk, 'X =25'".
Completing the definitions, we have

DpM = i3pM —igM Vp+ +ig V@ M

and

F„-'„=a„v.'-—a„v„'-+ig[ v„-', v.-'] .

where

X=+, f dt F,(t)t', Y—=—„f dt F,(t)t',

p= f dt F,(t), i =—f dtF, (t),

and where several terms vanish because fdt Fp( t)t& =0.
If M(z) in Eq. (11) is identified as a (3*,3)+(3,3*) of

chiral SU(3) and is a function of a nonlinearly transform-
ing pseudoscalar flavor octet of fields while P are flavor-
triplet quark fields, then the first two terms in Eq. (11) are
recognizable as two of the effective-Lagrangian terms
which we considered in a previous work. Obviously the
expansion of Eq. (9) admits also the presence of other
fields of various spin and parity corresponding to QQ
bound states other than the lowest mass pseudoscalars.
We have isolated the latter for simplicity of discussion of
the main ideas.

The preceding line of argument is provided to clarify
the motivation and content of models and fermion-loop
calculations based on these models which we present in
the following sections.

III. QUARK-MESON CHIRAL MODELS

The basic structure of the models which we adopt is
given by the following Lagrangian form:

W =P(x )[i & pM —g( F+—A y q ) ]f(x )'

M
+W(DqM, Fp, )+~, Tr(VIV" +ApA"), (12)

2

where the P's are quark fields, M is a (3,3*)+(3*,3) chiral
SU(3) flavor matrix of fields

Outline of the linear model

In the form shown in Eqs. (12) and (14), the Lagrangian
has kinetic energy and mass terms which act as counter-
terms for divergent terms in the fermion-loop expansion. '

In the linear case, where the fields V and 3 are indepen-
dent, mixing between m and A is induced by the mass and
kinetic-energy terms of the mesons, and diagonalization is
achieved by introducing properly normalized fields 9 and

3„,where

~&+ 2 F~Dp w+ '
P P ~ 2 ~ P (15)

with

D~P=B 2 —ig[V„,S.]

In the absence of fermion loops the a s in Eqs. (12) and
(14) would all be equal to one. Higher derivative terms
and globally, but not locally, symmetric terms have not
been included. The former limitation is made because we
will be interested in the low-energy regime, and the latter
is made with the application of the phenomenologically
successful, field-current identity and vector-meson domi-
nance of the electromagnetic current in mind. ' As out-
lined in Sec. II, QCD implies a global chiral invariance
for these mesonic terms in the low-energy effective La-
grangian, and our restriction to a form which is locally in-
variant except for the mass term introduces an additional,
dynamical assumption. Globally invariant V, 2, M
abnormal-parity terms could be added arbitrarily other-
wise. For example, Tr(V+ 8~M 8"MB'M )e tt&„ is glo-
bally, but not locally, chiral symmetric.

The spin-one fields can be introduced either linearly or
nonlinearly, the latter case allowing one to include either a
single vector field or a vector field and axial-vector field
which are not chiral partners, along with the pseudoscalar
field. We consider both cases, linear and nonlinear, below
in order to illustrate the loop techniques for generating
the terms in the anomalous action, which, besides the
traditional ~, p, E, etc. , systems, might have application
to composite systems with Goldstone modes which crop
up, at higher mass scales in composite pictures of weak
Higgs and/or gauge-weak bosons and fermions.

The mass term for V and A and the locally invariant term
W(D&M, F„„)serve to renormalize th—e fermion-loop ex-
pansion which we discuss in the next section, and we
adopt the form

W(DqM, Fq„)= F TrDqMfD"M
32

and

2

Mv'

1/2

1/2

1+ 2 F =135 MeV .
Mv

+x3( —4TrF~g+I' ,' Trig "") . ——

(14)
In what follows we will drop the tilde symbol and all
quantities will be understood to be properly normalized.
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The set of transformation laws for the P, V, A, and M
fields is defined as follows: (i) vector,

@(x)~e '~g(x), M~e '~Me'~,

addition to m. One can express V and A in terms of a
nonlinearly transforming vector field 8& and the non-
linearly transforming pseudoscalar field m. We write

( V+A )p~e '~( V+A )~e'~ ——e '~ape'~;

(ii) axial vector,

g(x)~e ' f(x), M~e ' Me

( V+A)„~e ' (V+A)„e
l ys9y5 +iy5B——e o e
g P

(16a)

(16b)

Vp —A~y5
—= UBp U ——U Bp U:—Vp

V@+Apys ——U BpU ——U Bp U—= V~

where

and

(18a)

(18b)

(19a)

The pmm coupling constant evaluated on the p mass
shell is, with the interactions shown in Eqs. (12) and (14)
and after taking into account the renormalization of
kinetic-energy and mass terms,

2

(17a)
Mp.

where

I (p mn)= — (M —4M )
i . (17b)

2 (g,,)'
3 4m

P

Higher derivative terms, invariant under the local
transformations (16a) and (16b) can modify the g~ ~g
relationship. For example, the term

~4Tr(F+""D„MtD,M+F "'D„MD Mt)

has been included in phenomenological chiral Lagrangians
discussed in the 1iterature. '

The usual vector-meson-dominance prescription' calls
for the introduction of a photon kinetic energy,——,

' F" F„,where F" =8"@—8 @"and 4" is the elec-
tromagnetic potential, and for the replacement of Vz by
V&+(e/g)QN& everywhere but in the mass term, which
breaks the local gauge invariance. Here

2 0 0
Q= —0 —1 01

3
0 0 —1

is the quark charge matrix. A change of variable can be
made to eliminate N& in the gauge-invariant part of the
Lagrangian, and V„—(e/g)Q@„, where V& is the ha-
dronic vector field, appears in the mass term. A mixing
term

—g 'eMv MTr( V&Q)

is induced. The mixing term and the hadronic interac-
tions of V produce the Lagrangian for electromagnetic
processes involving the hadrons.

—i my~/F=e —l P5 (19b)

The axial transformation properties of V& are

+ +1+5 + + i+5 l + l 8']/5 ~ + l B/5
V& —+e V& e ——e a&e (20)

as in Eq. (16b), and the vector transformations are those
shown in Eq. (16a). The vector transformations of U and
8& are linear, but the global axial-vector transformations
are given by

e iQB e —EQ e iQQ e
—iQ

P P g P (2 la)

U~e'"Ue ', U~~e 'U e (21b)

where u is a function of m and 0.
Expanding the expressions (18) and (19) and determin-

ing 8z and A& in terms of V& and m, one finds that

8„=V~+ —
~ fm, Dpn]+ .l 1

g2F'
g&„= D„~+, t n, D„m I +1 1

2F.'

where

(22a)

(22b)

Dpm =Bqn+ig[V~, m.] . .

In this nonlinear example where there is only one indepen-
dent spin-one field, the covariant derivative of M is iden-
tically zero:

DpM =BpM+ig Vp M —igMVp ——0 .

The kinetic energy of the pseudoscalar fields comes from
the vector-meson mass term alone, while the V~+ cou-
pling arises partly from this mass term and partly from
the kinetic energy of the spin-one field. One finds that
canonical normalization of the pseudoscalar kinetic ener-

gy requires

Outline of the nonlinear model of V, A
Mv'/g 'F~'=1 (23)

In a nonlinear model for the V and 3 potentials which
appear in the Lagrangians in Eqs. (12) and (14), we first
consider the case of a single independent spin-one field in

while

Wv igTrV~[n, np]+ —— Tr(QV~[m', d"n]) . (24)
2g F
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On the vector-meson mass shell, the coupling is then

Mp.
gv 1—

2g I
and comparing to the p —+m.m decay

(25)

where

W = ——,'Tr(v&„v+~ + V V &")

+ —,M) Tr( Vp V"+A„A")

with V+— defined in Eqs. (18) and (22). The remaining
terms are

(26)

where the condition Mv /g F =1, Eq. (23), has been
used. This leads to

M = 2~ Me Tr(C~C('),

~KE(C) 4 Tr(C& C ),
(31a)

(31b)

( )'gp~
4m

while experimentally (27)

Wcv=a Tr(C„V„+C~+V+I'), (31c)

where

C„„=D„C D„C„,—D„C =B„C„ig[B„,C—„] .

( )'
gpmm'

4m

The constraint Eq. (23) and the subsequent results Eqs.
(26) and (27) were pointed out long ago by Gasiorowicz
and Geffen, who concluded that one must introduce
axial-vector partners for the vectors and implement the
chiral symmetry with linearly transforming vector and
axial-vector fields.

Model including nonlinearly transforming axial-vector

Choosing the parameter e to be

a=+
8 gF~Mc(Mv /g F~ 1) ~—

recalling that

Eq. (22b), and introducing M„by the identification

8o,
Cp —Mp+ Dp~,

gF Mc

(31d)

As an alternative to introducing chiral partners for the
vector fields, one can in'elude a term to produce an extra
pseudoscalar-kinetic-energy contribution' and/or intro-
duce an independent, nonlinearly transforming axial-
vector field C&, whose mixing with the pseudoscalars in-
troduces another parameter which modifies the relation-
ships (23), (25), and (26). This idea of adding the axial-
vector fields as independent, nonlinearly transforming
fields rather than as chiral partners of the vectors is simi-
lar to that in our previous treatment" of the scalar fields
as a nonlinearly transforming multiplet rather than as
chiral partners of the pseudoscalars. We now outline the
main features of a model where a nonlinearly transform-
ing axial-vector field C„ is introduced.

The axial-vector field transforms as

Cp —+e'"Cpe (28)

C-+ e -'&C-+e'&-
P p (30a)

under the global, axial transformations. The function u

was defined in Eqs. (21a) and (21b). The vector transfor-
mation on C& is linear. The fields C& are defined by

Cp =y5UCpU, Cp ———y5U~CpU, (29)

with U as defined in Eqs. (21a) and (21b). The set of
transformation laws for C&, Eqs. (28) and (29) are then (i)
vector,

we can write the Lagrangian in diagonalized form as

, TrV„„V""—+2M& Trv& V"+ ,
' TrD m D"—m

Mp.
+ig 2 2

—1 TrDpvr[ Vq, n]
g2+ 2

My

2Q 2 gym'
=3.75 (33)

where Mz ——MI ——0.77 GeV, E =0.135 GeV, and

g) gpvrm/')/2 =4.3——5 have been used in (33). We
will return to the question of the value of g when we dis-
cuss co~3~ in the following section. There we will
describe the construction of the anomalous, effective ac-
tion from the loop expansion in the presence of V& fields
for both the linear and nonlinear cases.

IV. THE FERMION-LOOP EXPANSION
AND THE ANOMALOUS ACTION

+ , Mc TrM&M—" 4TrZ&+—" + . . (32)

The fourth term in Eq. (32) shows that we have paid a
price—the loss of local gauge invariance in some
interactions —for the introduction of a new "masslike"
term (31c). The relationship between gv and g which
follows from Eq. (32) is

(ii) axial-vector,

+l8/5~+ +lof5
Cp —+e Cpe

Our nonlinear Lagrangian model is then given by

~0+~Mc +~CV+ ~KE(C) ~

(30b)

The loop expansion of the fermion determinant which
follows from the Lagrangian of Eq. (12) produces the ef-
fective Lagrangian

W)~p ——i Tr g —[(i())—p) '[p(M —1)+gP+gg y5] I" .a=i"
(34)
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yields all of the abnormal-parity, minimum-
derivative, finite terms in the Wess-Zumino effective La-
grangian, thus incorporating all of the phenomenological
consequences of the chiral anomalies. Our loop calcula-
tions treat A and V symmetrically, so both the A and V
currents based on Eq. (34) are anomalous. The counter-
term which allows one to remove the anomalies in the
vector current, which turns out to be necessary in order to
implement vector-meson dominance of the electromagnet-
ic current, is obtained by calculating the pure V and A
anomalous part of W)~~ when M =1 is exactly the coun-
terterm discussed first by Bardeen. ' We develop this
anomalous part of W)„„when M = 1 is exactly the coun-
terterm discussed first by Bardeen. ' We develop this
point below in the framework of our loop approach to the
anomalous action. This approach amplifies and comple-
ments the discussion of the need for such a counterterm in
the work of Kaymakcalan, Rajeev, and Schechter and of
Gomm, Kaymakcalan, and Schechter, who follow the
method of Witten in arriving at the form of the
anomalous action, a method in which the underlying
quark degrees of freedom never appear explicitly.

The counterterm to Wf p

A calculation of the simple m ~yy vertex reveals the
question quite clearly. If we calculate m ~yy by intro-
ducing the electromagnetic covariant derivative in the
purely pseudoscalar model discussed in our previous
work, then the effective action is

where F ~=8 4~:d~@, N is the number of quark
colors and Q is the quark charge matrix as defined in Sec.
III.

Next, we include A& and V„. For purposes of the
present argument, we do not have to do the Vz~4& mix-
ing treatment outlined in Sec. III, but may simply include
the gauge-covariant derivative with @& in W)„~, Eq. (34),
which leads to

W)„~' i T——r g (i9 p)—' p(M —1)
n=1

+g F+—Q@+A yg

n

where either

(37)

A&~A„+ F (B&m+),. linear model,

or

1
A&~ Bzm+ . , nonlinear model .

gF

The problem is now clearly seen. There is a new pseudo-
scalar coupling -B&~ and an additional term, shown in
Fig. 2, which contribute, respectively,

W)„p(M, Q) w (m.,P,P) =— &e
24m F

g2F 2/M 2

1

=i Tr g —[(ie1 p) '[p(M——1)+eQP]I",
n=1

(35)

and the classic graph shown in Fig. 1 yields the familiar
result

2

W(rr, P,P) = J dx Tr[m(x)Q ]e p„+g()F" (x),
16m F

)& J dx Tr[m(x)Q ]e~p&+~„)F~~„') . (38)

I
I

l

I

FIG. 1. The simple m~yy loop graph.

X
1

I

I

FIG. 2. The additional m —+yy loop graph that arises from
a~A mixing. This graph should be subtracted. The vector-
dominance version of the graph is used for illustration. On the
mass shell, the X factor in y- V mixing, the V propagator, and
the factor g all combine to produce a factor e, of course.
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(c)
FICi. 3. The VARY, VAam, and V~~m vertex loop graphs.

Subtraction removes the VA AA graph. Details of the computa-
tion of {a) are shown in the Appendix.

This comes about because the V and A current terms
alone are producing an extra contribution from the
anomalous A VV vertex,

W(A, v, v)

1

12~2 '" dx Tr(Vi'a V&A" aVi'V&A —)

which has anomalies in all of the legs, V as -well as A.
The nonlinear model, where A is the pion field to leading
order, is especially interesting because

W(~, P,P)+ W'(~, P, P) = , w(~, p, p),—

but this is not unexpected, since models in which the V
and A currents are treated symmetrically are known to
have anomalous A VV vertices with the anomalous diver-

gence in each channel being one third of the value that it
has when two channels are anomaly free and the third is
anomalous. ' '

Our answers in Eq. (38) are the same, of course, when,
as prescribed by vector-meson dominance (VMD) of the
electromagnetic current, @ is absorbed into a redefinition
of V in Eq. (37) and then the mass-mixing term
—(e/g)Trgu&M is used to compute m~yy from
~~ VV and V~4. The lesson of the above discussion is
that, as pointed out by other authors, the local,
anomalous functional of V and A which results when the
field M = 1 in Eq. (34) should be subtracted from Wt«~

W„,~ =W~„~—W~„~(M= 1, anomalous ),
and the resulting W&«~ used for phenomenological appli-
cations to hadronic processes. Wt„~ alone is inconsistent
with isospin conservation and, when VMD is implement-
ed, with electromagnetic-current conservation. From the
loop-diagram point of view, it simply means that all
abnormal-parity terms, those proportional to e p„, which
involve only A's and Vs attached to the quark loop,
should be omitted in calculating the anomalous action.

Venal, Vm.mA, and V~AH terms in the effective actions

We turn next to a discussion of the quartic terms
Vmvrm, v.~m. A, and VmAA in the effective action in order
to illustrate the loop calculation more fully and to prepare
the ingredients for the calculation of co +3m and r—elated
processes.

The relevant terms from the loop expansion are con-
tained in the n =4 term,

4
2pl

W&«~ ———Tr (i 9 p) ' —a+gF'+gA y5OOP

The calculation, which is outlined in the Appendix, pro-
duces the following effective-action terms corresponding
to Figs. 3(a), 3(b), and 3(c), respectively:

~ 3

W( Vn AA ) = dx Tr[ —'8 ~V~A "—A — mB V~A "—A + mV 3~A "A ——'d V~m A "A "—
2 F 6 3 6 6

'7T 7r

——'V ~B~A "A — BmAPV"A" —~A 8~V"A "]—e— (39)

W(vmmA)= dx Tr(28 nB~vrv"A 28 vrV~B"vrA +—nB mA~d" V" 8nnA~B" V )e —
i3„

ig %
(40)

W(V~~~)= 'g, f dx —Tr(V Bi'mB"mBvr)E p„. . . .
3~'F.'

Equation (41) agrees with the low-energy theorem for.
y~m. ~m. in early work on the anomalies ' when one re-
places V ~—(e/g)Q@ in the trace expression.

The expressions Eqs. (39)—(41) provide the contact
term for the V~m.mm interaction needed in co~3m, for
example. For illustration, let us compare the linear model

with the nonlinear model with one independent field. The
linear-model replacement,

F
A —+g

v' "
yields
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i' 3g Fm 3 g Fn-

3m F Mv 2 Mp2 31— 2+—
2

X J dx Tr(V dPnd"mB'v. r)e pz„

(linear model) . (42)

For the nonlinear model, the replacement

Ap —+ Bpm.
1

gF

yields

W(Vrinn)=+ . f dx Tr[V dPmd"~d n]e pp,6~2F 3

(nonlinear model) . (43)

When VMD is used with either (42) or (43) the resulting

y ~3n. vertices are different from the chiral-algebra
value, a point already made by Rudaz' in connection
with the work of Ref. 7.

This concludes our discussion of the loop evaluation of
terms in the Wess-Zumino action when V and A fields are
present along with the pseudoscalar, m field. This discus-
sion expands our previous work on the loop evaluation of
the pure m effective action, and supplements some of the
theoretical consideration, like choice of counterterm s,
given by other authors in the context of the Witten form
of the m. , V, A action.

Several phenomenologica1 considerations

The hadronic decay co—+3m can be extracted from Eqs.
(42) and (43) and the p-pole contributions from the
co~pm, p —+mw amplitudes. For example, assuming that
the momentum-dependent terms of the gz„vertex cancel
one another on the mass shell, then g~ ——W2g, and one
obtains I 3

——7.1 MeV where the Particle Data Group
lists 8.9+0.3 MeV.

In the nonlinear-model case, we can evaluate the co—+3m.

width from Eq. (43) and the value of g given in (33) in
combination with the p-pole terms. For this nonlinear
model, we find I 3

——3.0 MeV, phenomenologically a
bit worse than the linear-model result. The failure of this
value in comparison with experiment is probably what one
should expect, given that the model contains some arbi-
trariness. For example, one could add a term
A, Tr8& [C",C ] which is locally vector-gauge invariant,
to modify the momentum-dependent part of the g, ver-
tex in a way analogous to that in the linear-model case.
That such a term might be needed phenomenologically is
indicated by the value I z &

—1.0 GeV which one calcu-
lates from the Ap~ couplings contained in the Lagrangian
(32). Adding a term A. Tr Vz [C",C"] permits one to ad-
just A, in order to bring down the A ~pm width to the
neighborhood of its experimental ((300 MeV) value.
Such detailed phenomenological questions go beyond our
purpose here, which is to illustrate the construction of the
phenomenological Lagrangian under various assumptions.

We should comment here that we have not included the
axial-vector field Cz in the covariant-derivative interac-

tion with the fermions, Eqs. (12) and (34). As a conse-
quence, the anomalous action terms contain only pseudo-
scalar and vector fields, and the photon-pseudoscalar
low-energy theorems are the same as they are in the pure
photon-pseudoscalar case, with no spin-one hadrons
present.

Next, in the final section, we summarize our results and
draw several conclusions.

V. SUMMARY AND CONCLUSIONS

We have extended our fermion-loop technique of gen-
erating the terms of the anomalous Wess-Zumino action
to include also spin-one hadrons and the photon in addi-
tion to the pseudoscalar mesons. The latter alone had
been treated in our previous work. In Sec. II we
developed a line of argument, culminating in the expan-
sion Eq. (11), which indicates how an effective Lagrang-
ian expressed in terms of quark and quark-composite de-
grees of freedom could appear after integrating out the
gluon degrees of freedom. At this stage, the pseudoscalar
mesons were assumed to transform nonlinearly, and are
thus massless in the absence of quark mass terms which
explicitly break the flavor chiral symmetry.

The developments of Sec. II elaborated on remarks in
our previous work and provided background for our as-
sumption of the Lagrangian forms Eqs. (12) and (14) of
Sec. III and the consequent loop expansion of Eq. (34) in
Sec. IV. Both linear and nonlinear treatments of the V
and A fields, introduced in Eq. (12), were outlined in Sec.
III. We started with the working hypothesis that the ef-
fective, spin-one Lagrangian is locally chiral symmetric
except for the spin-one mass terms, thus ensuring the
field-current identity and vector-meson dominance of the
electromagnetic current in the manner of Kroll, Lee and
Zumino, that Wess-Zumino terms are generated with
unique relative coefficients solely from the loop expan-
sion, and that globally invariant, abnormal-parity terms of
the Wess-Zumino form are not present with arbitrary
coefficients. However, we concluded in Sec. III that the
phenomenology untenable relation M~ /g F =1, and
thus (gprim) !4vr=1.3, which is required in the simplest
nonlinear model, necessitates modifications to the spin-
one mass term in the nonlinear model. We described a
model with a nonlinearly transforming axial-vector field
which solves the phenomenological problem just men-
tioned, but in which the field-current identities are not sa-
tisfied.

In Sec. IV we first studied in detail the PVV vertices by
our loop-expansion method. Our calculation treats all
vertices symmetrically, as did Bardeen s original loop cal-
culation' of non-Abelian anomalies, and we therefore
needed to add his counterterm in order to ensure vector-
current conservation. We obtained this counterterm by
setting the field M equal to one in Eq. (34) and isolating
abnormal-parity terms. The desired counterterm is the
negative of the expression thus obtained. The standard
~ ~yy interaction was consequently obtained when
vector-meson dominance was implemented. The role of
the counterterm is rather transparent in the loop frame-
work. Our discussion complements that of Kaymakcalan,
Rajeev, and Schechter, who have treated this problem in
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the context of the Witten form of the anomalous action.
We illustrated our method with the calculation of the

anomalous four-point interactions, shown graphically in
Figs. 3, and the results are then applied to the co~3~ cal-
culation. Putting in numbers, we found

I"(co~3m) =3.0 MeV nonlinear model with nonlinear

axial vector as well as vector .
In the case of the nonlinear model with an extra, axial-
vector field, the identification of the S=O, I=1 meson
with the A1(1275) leads to I ~ p

-—1.0 GeV, compared to
1,„„,-=0.30 GeV, which indicates that our phenomenolog-
ical picture is not complete. However, we suggest that the
nonlinear picture presented here could provide an alterna-
tive way of portraying the lowest-mass axial-vector-meson
multiplet when more terms are added to the phenomeno-
logical Lagrangian.

In summary, our loop calculation of terms in the
anomalous action shows the link between the underlying
quark degrees of freedom and the composite field effec-
tive action. The color factor appears explicitly, gauge
fields such as the photon, and "phenomenological flavor
gauge fields" such as p, X", and co, are simply introduced
by covariant derivatives on the quarks, and the diagram-
matic interpretation of individual terms in the action is
convenient for isolating pieces which are of phenomeno-
logical interest.

Note added in proof. Recent papers which have come
to our attention in which fermion degrees of freedom are
made explicit in deriving effective Wess-Zumino-type ac-
tions are I. ,J. R. Aitchison and C. M. Fraser, Phys. Rev.
D 31, 2605 (1985); A. Dhar, R. Shanker, and S. R. Wadia,
ibid 31, 3256. (1985). The methods of calculation and the
applications discussed are different in these works than
those in our work.
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4 4
S„' = —f + dq; 5 g q; J(p;;q;,p)I(q;), (Al)

i=1 i=1

where dq;—:d q;/(2m) . The four propagator momenta p;
are expressed as p;=p+q;, where g, ,q;=0, and

J(p;;q;,p) is a Jacobian factor. The integral I(q;) is given
by

I(q;) = fdp Q, (P+q1+p)
1

=1 (p+q ) p—
X I (q1 —q2) . (p+q4+p)l (qs —q1), (A2)

and the momentum-space vertices, I (q), are defined as

I"(q) =f d x e''2"I (x) .

Next we isolate contributions with one m, one V, and two
A' s, and we find four terms of each of the forms m VAA,
vrAVA, and mAA V. The leading term in the momentum
expansion is obtained by setting q; =0 in the propagator
denominator in Eq. (A2), keeping terms odd in y5 and col-
lecting all terms with one q; power in the numerator from
the expression

APPENDIX

In this appendix we illustrate our procedure for calcu-
lating the terms in the anomalous action by focusing on
the abnormal-parity terms with one pseudoscalar field
(m), one vector field ( V) and two axial-vector fields (A).
The relevant pieces are contained in the n =4 term in the
loop expansion, Eq. (34), and the result is presented in Eq.
(39). The graphical form is shown in Fig. 3(a).

Denoting the vertex factor

p(M —1)+g( V+Ay5)

by I below, we can write the effective four-point interac-
tion as

S',"(~,V, A, A ) = g '" —'4 f4 t t 9 y 4 (
2 2)4

X f ~dq; J(p;;q;,I)
l

XTry5I( p q1+—p)~—12(p+q2+p)F23(p+q3+p)834(p+q4 p)A41

+ (P +q 1 +i' ) 1r 1 2(P +q 2 i4 )A 23(P +q 3 +i' ) I 34(p + I4+ i4 )A 41

+ ( P ql +P )1r12(p+q2+P )+23(p+9 3 P )

X A 34(p+ q4+8 ) I 41 I

where y5 has been moved to the first place in the trace and %12=%(q1—q2)= d x e m(x), etc. Picking off4 i(q& —q2)x

terms with one q; factor will lead to effective action terms with one derivative, and the expression in curly brackets in
Eq. (A3) reduces to
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I J =[s 'qi —v(p'+s ')e2 —v(p' —
) ')(q3+q4)1~i2r23~~4~~i

+ [ I (ql q2) I (p 9 )(q3 q4)1~12~23+34~41

+fop qi+p (9'i —q2)+p(p —p )(q3+q4)p'i2~23~34r4i (A4)

2k)+k2 —k4

(k4+2k, +3k2)
4

qz=
(k2 —k4 —2k, )

4

and evaluate the p integrals to get

$n order to write a local configuration-space functional, it
is convenient to introduce variables k; =q; —q;+ ~, qq =—q &.

The Jacobian factor is

J(q;k) =J '(p;;q;,p),
and the Jacobian factor from p;~q;, p cancels that from
q;~k;. Next we substitute

I I =, [—,'(jt—2 It4—)B)J 2A3Ag
16m p

+( 6g$+ 2E3)fr]A2J 31$

+ —,
'

(P2 —E'4)~)A2A3F'g],

where 5& —=%.(k&), etc. Putting Eqs. (A3) and (A4) togeth-
er and using, for example,

f d~~(x)&~~J = ~ f «i«2dk3EQ~JA2A3J4

and performing the Dirac trace and rearranging terms, we
obtain the result quoted in Eq. (39).
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