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Quantum field theory on discrete space-time. II
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A quantum field theory of bosons and fermions is formulated on discrete I.orentz space-time of
four dimensions. The minimum intervals of space and time are assumed to have different values in
this paper. As a result the difficulties encountered in the previous paper (complex energy, incom-
pleteness of solutions, and inequivalence between phase representation and momentum representa-
tion) are removed. The problem in formulating a field theory of fermions is solved by introducing a
new operator and considering a theorem of translation invariance. Any matrix element given by a
Feynman diagram is calculated in this theory to give a finite value regardless of the kinds of parti-
cles concerned (massive and/or massless bosons and/or fermions).

I. INTRODUCTION

In a previous paper' (hereafter referred to as I) we have
mentioned the philosophy of our discrete space-time and
formulated a quantum field theory of bosons on this
space-time of two dimensions. In that case we had the
solutions of complex energy in the Klein-Gordon equation
of discrete space-time version. Since these solutions
seemed unfavorable for physical understanding, we have
simply discarded them. However, the solutions of real en-
ergy alone cannot satisfy the completeness relation. Con-
sequently, we did not have the equivalence between phase
representation and momentum representation. This
means that we should not discard the solutions of co'm-

plex energy. On the other hand, it became clear from de-
tailed investigation that the complex energy brings other
difficulties into the theory. Therefore, the situation can-
not be improved without changing the assumptions of I.

In this paper we give up one of the assumptions of I:
the space unit is equal to the time unit, i.e., ~=A, (c =1).
The new assumption instead is r=a A,, where a is a certain
constant given later. We will then see that the complete-
ness is recovered and the equivalence between phase repre-
sentation and momentum representation holds again,
though the symmetry of space and time is somewhat
sacrificed. In Sec. II we describe bosons on discrete
space-time of full four dimensions, and show that the
points mentioned above are realized in this case. In con-
trast with the two-dimensional case we see that the propa-
gator of the field does converge always even for the mass-
less case.

When we formulate the theory of fermions on discrete
space-time, we find that the difference operator so far
used is unsuitable for this purpose, because the use of this
operator leads necessarily to a non-Hermitian action and
thus to inconsistent field equations. Therefore we must
define a new difference operator. The operator should re-
veal right-left symmetry and should refer to the middle of
neighboring space-time points. This would seem to con-
tradict our original philosophy that there is no meaning in
considering a smaller length than the unit of space-time.
However, when we consider the translation invariance

theorem in a wide sense, we see that it is not the case. In
fact if we apply the new operator to the case of bosons, we
obtain exactly the same results as those obtained before
with the old operator (Sec. III).

In Sec. IV we solve the Dirac equation on discrete
space-time of four dimensions. The field is quantized
canonically and the propagator is obtained. All is
straightforward and no problem is found in this case. In
the last section (Sec. V) we list the problems remaining,
especially the relation to the lattice gauge theory.

II. SCALAR FIELD

As we mentioned in Sec. I we assume that the time unit
is not equal to the space unit, i.e., r=aA, (a &1). If we
adopt the unit A, =1, then the time unit is r=a. Thus any
space-time point is represented by x =anpO+ n ~ 1

+n22+n&3, where P (p, =0,1,2,3) is a unit vector directed
along the p axis and n&'s are integers.

Now let P(x) be a scalar field at x and define a differ-
ence operator b.„as follows:

1
hpP(x) =——[P(x+aO) —P(x)], (2.1)

5 P(x) =P(x+i) —P(x), i =1,2, 3 . (2.2)

S:—g —,
' [[b.„p(x')][bug(x')] —m p (x') I (2.3)

is stationary for arbitrary variation at x,

P(x') ~P(x')+e5„„,
then the field equation is

3
b, P(x —aO) —g 5; P(x —i)+m P(x)=0. (2.5)

Throughout this paper we will occasionally use the fol-
lowing abbreviations:

t =xp, r=(xi, x2,x3) xux"=t —rJM 2 2

h=hp, h=(hi, b2, hp), b.„LP=6 —6, etc.

If the action sum

32 2659 1985 The American Physical Society



HIROSHI YAMAMOTO 32

It is also rewritten as Following the procedure of canonical quantization, we
have the commutation relations

[P(x+aO)+P(x —aO)] —g [P(x+i)+P(x —i)]
a i=1

+ m +6— P(x)=0 . (2.6)
a

[p(t, r), m(t, r')] =i 5„3,

[p(t, r),p(t, r')] = [tr(t, r), m(t, r')] =0 .

(2.13)

(2.14)

The equation is easily solved to give

y( ) d 38[/1 (8) —i(alt/a —e r)
R

+g «(8)ei(t0t/a —e r)]

where A (8) is an arbitrary function and t)) is given by

. ,a), , 8) . , 82 . , 83 m'
sin —=a sin +sin +sin +

2 2 2 2 4

(2.7)

(2.8)

Substituting Eq. (2.10) for m(t, r') in Eq. (2.13), we find
,!

[P(t,r),P(t+a, r')] =ia5, , (2.15)

1/2

f [a(8)e i(tot/—a —e r)d 8
(sl nit) )

a
16m

When we rewrite the solution (2.7) in the following nor-
malized form,

T

W=g I[A„g(x)][leap(x)]—m (I) (x)I, (2.9)

we have the momentum conjugate to P(x),

The domain of integration R is n. &8;—&m (i =1,2,3). If
a &(3+m /4) '/, then co is real for any 8 in R. For
convenience sake, we assume 0&co &m. In I a was equal
to one and hence tt) became a complex number for a cer-
tain 8 in R. To avoid it the region which gives complex a)
was removed from R. Thus, the solution became incom-
plete and the equivalence between the x representation
and 0 representation has been lost in I. On the contrary,
the domain of integration in Eq. (2.7) is not restricted at
all. This assures the completeness of the solution (2.7)
and the equivalence of the two representations as will be
shown later on.

Using the Lagrangian

+a t(8)ei(mt/ ae.r)]

(2.16)

we then obtain the commutation relations

[a(8),at(8')] =5 (8—8'),

[a(8),a(8')] = [a (8),at(8')] =0 .

(2.17)

(2.18)

In contrast with I the commutation relations (2.14) and
(2.15) are obtained from Eqs. (2.17) and (2.18), because the
solution (2.16) or (2.7) is complete as mentioned before.
Thus, we see that the two representations are equivalent.

Corresponding to the Heisenberg equation we have

m.(x) =
a~y(x)

[(I)(x+a 0)—t)t (x —a 0)],2a

and thus the Hamiltonian,

A =g n.(x)hP(x)
r

(2.10)

f d Hsing) at(8)a(8)
a

besides zero-point energy.
Using the vacuum

~
0) defined by

(2.20)

[P(x),A ]= [P(x+aO) —P(x —aO)] .
2a

The right-hand side of Eq. (2.19) is not equal to ib,P(x).
The Hamiltonian (2.11) is similarly rewritten as

g [$2(x)—P(x+aO)P(x —aO)],
2a

(2.11)

where we used the field equation (2.6). Similarly, we veri-

a(8)
~
0) =0,

we find that the propagator

Dz(x —x';m ):—(0
~

TP(x)P(x')
~
0)

(2.21)

(2.22)

2m=0 . (2 12) is calculated to give

a 38
D (x m )= f [8(t)e '"' ' "+8( t)e'"' ' "]—

2(2~)3 & since

ia 38
a

d eXp[ i (ptla —H.r)]-
(2m. ) ~ —a 4 sin (tl)/2) —4a sin (8/2) —a m +ie

where we used the abbreviation

(2.23)

sin (8/2) =sin (HI/2)+sin (82/2)+sin (83/2) .

To investigate the divergence we look for the value at x =0,
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DF(0'm )= a d'8
2(2~)3 ~ since

1
3 f d 8[sin (8/2)+m /4] ' [1—a [sin (8/2)+m /4]J

4(2m )
(2.24)

which is infinite regardless of m =0 or m&0, because a~&(3+m2/4) . This is a new result found in the ease of
three-dimensional space. In I the space dimension was one and Dz(0;m ) diverged at m =0. As a special case, if
a =(3+m /4) ', then

Dz(0;m )=
3 J d 8I[sin (8/2)+m /4]cos~(8/2)I1

4(2m) a
(2.25)

where cos (8/2) is a similar abbreviation to sin (8/2).

III. SYMMETRIC DIFFERENCE i b,„P(x)y"+~/(x) =0 . (3.10)

ho f(x)=—[g(x +a 0)—lit(x) ],a
(3.1)

In this section we will show that the difference operator
h„used in Sec. II is not suitable for describing fermions
on discrete space-time. Thus we must introduce a new
operator suitable for this purpose. To distinguish the two
operators, we call the old one a right difference operator
and express it as 6& instead of 6&, i.e.,

Equations (3.6) and (3.10} are, however, inconsistent. In
fact, the Hermitian adjoint of Eq. (3.6) is

i b,„"g(x)y"+~@(x)=0 . (3.1 1)

The reason for this inconsistency is simply that we started
with the non-Hermitian action (3.3).

We consider now the following symmetric difference
operator:

b,"f(x)=g(x+i) —f(x) .

Let P(x) be a spinor field and assume the action

S~—= —g g(x')( i y"b,„"+~—)P(x'),

(3.2)

(3.3)
Dog(x) = [g(x+aO) —g(x —aO)],

2a

(3.12)

(3.13)

0 I 0 o;
Vo Vo I 0

I

—o. 0
C

i =1,2, 3 . (3A)

where lt(x)=g (x)yo. The representation of y matrices
are the same as that in Schweber's textbook, i.e.,

6;g(x) = —,
' [f(x+ i) —P(x —i)] .

The action written in terms of this operator,

S~= —g f(x)( i y"6—&+v)P(x),

(3.14)

(3.15)

is Hermitian this time. The equations given by this ac-
tion,

Considering that g(x) and g(x) are independent functions,
we take a variation of P(x') at x:

( iy"b,„+a.)g(x) =—0,
i b,&f(x)y"+a/(x) =0,

(3.16)

(3.17)
(x')~P (x')+e5„„5 (3.5)

Then we have the following equation of g(x) under the
condition that the action (3.3) be stationary for the varia-
tion:

are consistent with each other. Operating with
(i y&b&+x } on Eq. (3.16}from the left, we have

(h„b, ~+ a )P(x) =0 (3.18)

( iy"bz+v)P(x) =—0 . (3.6) or, equivalently,

The action (3.3) is, on the other hand, rewritten in the
orm

S~———g [ihzg(x ')yl'+ a/(x ') ]g(x '), (3.7)

b 0$(x):——[f(x)—g(x —a 0)],a

5 P(x)=P(x) —P(x —i) .

(3.8)

(3.9)

Thus a variation of g(x) in S& yields the equation of P(x):

where b.„is called a left difference operator and is defined
by

4a
[g(x+2aO)+ g(x —2a0)]

[Q(x + 2i) +P(x —2i) ]
i=1

Q(x) =0 . (3.19)
1 3

2a

As is seen from Eq. (3.19), we have a relation between
g's at next-nearest-neighbor space-time points. That is,
the values of g's at two neighboring points are indepen-
dent of each other. More exactly the equation gives no re-
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A A
lation between P(x), P(x+aO), f(x+i), g(x+aO+i),
p(x+i+j) (i~j ), g(x+aO+i+j), p(x+1+2+3), and

g(x+a0+ 1+2 +3). This means that there exist 2 =16
independent solutions. Each solution corresponds to a set
of space-time points out of 16 sets which cover all the
space-time points. Almost all of these solutions (except
for a certain combination) are spurious solutions (see the
Appendix). It would be, however, very difficult to give
these spurious solutions physical meaning. Therefore, we
must discard them by imposing some restriction on the
solutions by hand. It destroys the beauty of the theory
very much.

In this way we arrive at a final operator. The operator
is denoted by 5& for brevity, though the same notation is
used in Sec. II. We define

or c =+(—,
' )i, Eq. (3.23) gives

g err(x)$13(x+ , aO—)=g g~(x+ —,aO)gp(x), (3.25)

(3.26)

S{{= y[~—'~„y(x)y"+&/(x)]tp(x) . (3.27)

This is the Hermitian adjoint of Eq. (3.22), and hence S~
is Hermitian. From the action (3.22) or (3.27) we have the
field equations

Making use of Eqs. (3.25) and (3.26), we see that the ac-
tion (3.22) is rewritten in the form

kgb(x) = [f(x+—.—2aO) —P(x ——,
' aO)], (3.20)

( iy"b,—~~a)it/(x) =0,
i b,„P(x)y"+~it/(x) =0,

(3.28)

(3.29)

Q, 1t(x)=P(x+ —,i) —P(x ——,i) . (3.21)

These equations seems to contradict the original philoso-
phy of I that the minimum distances in space and time
are 1 and a, respectively, because Eq. (3.20) or (3.21)
refers to a half-distance —, or a/2. However, it must be
noticed here that the time (or space) difference in the
right-hand side of Eq. (3.20) or (3.21) is still a (or 1), and
the number or density of space-time points is the same as
before. In fact, we consider the action

S~———g g(x)( i y"6„+a )—P(x), (3.22)

where the summation of x =an00+ni I+n22+n&3 runs
over all integers for nz and not half-integers.

We introduce here a simple theorem, which we call
"translation invariance. "

Let F(x) be an arbitrary smooth function of space-time
point x and c be a real four-vector, then

Sp ——g —,
'

I [h„P(x)][5"P(x)]—m2$ (x)J . (3.30)

The seeming form of Eq. (3.30) is exactly the same as Eq.
(2.3), but the difference operators in the two equations are
different. From Eq. (3.30) we obtain the field equation

(A„bF+m 2)P(x) =0 .

When we write it down explicitly,

(3.31)

z [P(x+aO)+P(x —aO)] —g [P(x+i)+P(x —i)]a i=1

which are, of course, consistent.
Before we solve these equations, we will apply the new

operator to a scalar field and see whether or not we will
have the same result as what we had in Sec. II. Assume
the action

QF(x)=QF(x+c) . (3.23)
m +6— P(x) =0, (3.32)

a

F(x)= f f d Of(8)e

The proof is as follows: From Eq. (3.24) we have

4 „ i{cot/a —8.r) i{coco/a —e c)Fx+c — d Of Oe

(3.24)

The smooth function here means that F(x) has the
Fourier transform we find it the same as Eq. (2.6). Therefore, Eqs. (2.5) and

(3.31) are completely the same equation. From an aesthet-
ical point of view Eq. (3.31) is much better than Eq. (2.5).
The explicit form of Eq. (2.3) is

[P(x +a 0)—P(x) ]

Therefore,

QF(x+c)=(2~) f . f d 8f(8)5(OO/a)5 (8)

3—g [{t}(x+i)—{t)(x)] —m P (x) (3.33)

i(,coco/a —9 c)Xe

—(2m. ) f f d Of(8)5(8 /a)5 (8)

=QF(x) .

Applying the translation invariance (3.23) to Eq (3.33), .
we have

z [P(x+ —,aO) —P(x ——,aO)]
a

In particular, if c =anO or c =ni (n an integer), Eq. (3.23)
is nothing but a change in numbering of space-time
points. Thus, Eq. (3.23) is obvious. When c=+(a/2)0

3—g [P(x+ —,
' i) —P(x ——,'i)] —m P (x)

(3.34)
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which is exactly the same as S~ of Eq (3.30). As we have
seen above, we may say that the symmetric difference de-
fined by Eqs. (3.20) and (3.21) is not unnatural.

IV. SPINOR FIELD

r 'T

co . gi

2K Q 2 ~

1 2g u, (8)u, (8)= —yosin ——g 2y;sin +a.

(4.7)

(baht'+tt )P(x)=0. (4.1)

The solution of this equation is already known in Sec. II.
Thus, we write the solution of Eq. (3.28) in the form

u ( g)e i(tat—/a —e.r)
(4.2)

where

We have seen in the foregoing section that the action
(3.22) with the symmetric difference (3.20) and (3.21)
leads to the consistent field equations (3.28) and (3.29). In
this section we solve Eq. (3.28), then quantize the spinor
field, and obtain its propagator.

When we operate with (iy"b,z+x) on Eq. (3.28) from
the left, we have

Us ~s
1

2K

2 . co——yosin-
a 2

Assume the Lagrangian

3 g.
+g 2y;sin +~

i=1

Wp ———g f(x)( iy„—h" +tt)ttt(x) .

We then have the momentum conjugate to f (x):

~, (x)=am, /a~y. (x)= t.y.'(x) .—

Hence the Hamiltonian is

A p
——g itt(x)( iy—h+tt)P(x),

(4.9)

(4.10)

(4.11)

sin (co/2)=a [sin (8/2)+tt /4],
0&co&m., t2 &(3+tiz/4)

and

hA p
——0 (4.12)

Then u(8) and U(8) satisfy
T

2 N——yosin —+ g 2y;sin +it u(8)=0, (4.3)

is easily verified.
The quantization is straightforward. The equal-time

commutation relations are

'2 co—yosin ——g 2y;sin +a. U(8) =0, (4.4)

I fa(r r»fp(r r')
I =&a,gr, r'

[g.(r,r), yp( r, r')I = [y.'(r, r), year, r )I

=0.

(4.13)

(4.14)

respectively. These equations are the same as those in the
usual continuous space-time, if the energy-momentum p„
ls 1eplaced by

2. ~ . 6'1 . 2s1n, 2 s1n, 2 s1n, 2 s1n2' 2' 2' 2

[ttt(x), A &]=i b, ttt(x),

f gf(x), PPg] =i hite(x) .

(4.15)

(4.16)

However, it does not hold for a nonlinear quantity, e.g.,

Thus the Heisenberg equation holds for g(x) and f (x):

Therefore, we can obtain the solutions easily, but we do
not write them here. Instead we show the relations which
u(8) and U(8) satisfy

(4.17)

[ttt (x)Qp(y), ~g]=i [b ttt (x)]tttp(y)+ittt (x)b tttp(y)

&ib [gtt(x)tttp(y)] .

u„(8)u, (8)= U„(8)u, (8—) =5„, ,

U„(8)u,(8)=u, (8)U, (8)=0,

(4.5)

(4.6)

This clearly comes from the distinction between deriva-
tives and differences.

When we write down the solutions of Eqs. (3.28) and
(3.29) in the normalized forms,

aK

16m

1/2

I dg sin—
R 2

—1/2

g [u (g)u (8)e i{tat/a —e r—)+bi(8)U (8)ei(tat/a —tt r)] (4.18)

16m

' 1/2

I dg sin—
R 2

—1/2

g [b (8)U~(g)e l(att/a —e'r)++ t(g) ——
(g) (~ tt/ear)] (4.19)
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then from the commutation relations (4.13) and (4.14) we
obtain

The vacuum is defined by

{a„(8),a, (8') j = {b„(8),b, (8') j

=5„g5 (8—8'),

a, (8)
~
0) =b, (8)

~

0) =0 .

(4.20) Then the propagator of a spinor field defined by

(4.23)

{a, (8),a, (8') j = {b„(8),b, (8') j

= {a,(8),b, (8') j

= {a,(8),b, (8') j =0
The Hamiltonian (4.11) is

(4.21)

Sz(x —x';~)—:(0
i
Tg(x)f(x')

i
0)

is written in the form

(4.24)

~&——f d'8 sin —g [a, (8)a,(8)+b, (8)b, (8)] .
a S

(4.22)

Sz(x;x )= (i y"6„+a )DF(x;x'),

where DF(x;a. ) is given by

(4.25)

d 8
( . 2) ii [8(t)e —i(rut/a —8 r)+8( t)&i(rot/a —s r)]

2(2~)3 & sin(co/2)
(4.26)

To examine the divergence problem we investigate the
propagator (4.25) at x =0 and find it finite. The domain
of integration is finite and the denominator of the in-
tegrand has no zero point except for the case a =0, though
the measure at this zero point is still finite in the three-
dimensional case.

V.- DISCUSSION

We have formulated a free scalar field and a free spinor
field on discrete space-time of four dimensions. Thus, we
can calculate any transition matrix elements perturbation-
ally, in principle, if the relevant interaction Lagrangian is
given, and we know that they give finite values. There-
fore, our original motivation is sufficiently satisfied.
However, there are still many interesting problems, if we
want to apply the theory to the recent subjects. In what
follows we give a few examples.

(i) Determination of interactions: All the interactions
so far proposed in the theories of continuous space-time
can be adopted as the interactions of our theory of
discrete space-tiine without large modification. However,
it is interesting to determine the interaction through the
gauge theory, which is widely accepted at the present day
as a very promising theory. Therefore, we consider it now
the most urgent and important problem to settle the gauge
theory in our framework. In doing it the lattice gauge
theory may provide us with useful information.

(ii) Relation to the lattice gauge theory: When the
gauge theory is formulated on discrete space-time, an in-
teresting question is whether or not both theories, the lat-
tice gauge theory and our theory, come to the same con-
clusion. While we assumed a Lorentz space-time, in the
lattice gauge theory they assumed a Euclidean space-time.
This seems to us very crucial, though Wilson says "the
use of Euclidean space instead of a Lorentz space is not a
serious restriction. " We do not think, however, that the
difference of quantization in two theories, the Feynman
path integral in the lattice gauge theory and the canonical

quantization in our theory, produces a serious distinction.
(iii) Unitarity of scattering matrix: As we mentioned

above, we can calculate scattering matrix elements for any
Feynman diagrams and always obtain finite values, in
principle. However, we cannot prove the convergence of a
perturbation series for a certain physical process, though
each term of the series is finite. Hence the unitarity of the
total matrix remains unproved. In the case of continuous
space-time the scattering matrix can be expressed in a
compact form, i.e.,

T'

Texp —i A;„, t

This enables us to prove the unitarity. In our case we
have at present no idea how to express it in a compact
form. Besides this we still have many problems in such a
formal theory.

APPENDIX

l. A difference equation ~ith no spurious solution

We consider the equation

y [(n 1+)a ] y[na ]-
a

(A1)

We give here a definition of the "spurious solution" for
difference equations and show two examples of difference
equations, one of which has no spurious solution and the
other which has a spurious solution.

Generally, a difference equation is reduced to a dif-
ferential equation, if the distance of difference is brought
to zero. Correspondingly, the usual solutions of the
difference equation tend to the solutions of the differential
equation. However, it may occur that a solution of a cer-
tain difference equation does not tend to any solution of
the corresponding differential equation. Such a solution
of the difference equation is called a spurious solution.
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dy (x) = —ky(x) . (A2)

Equation (Al) is rewritten in the form

y [(n + 1)a ]—(1—ka )y [na] =0,
and the solution is

where n is an integer and k is a constant. If the distance
of difference a tends to zero, Eq. (Al) goes to the dif-
ferential equation

where ci and cz are arbitrary constants. If a tends to
zero, the first term of Eq. (A8) goes to

lim ci[(1+k a )'~ +ka] "=cie (A9)a~O

which is the solution of Eq. (A2), while the second term
goes to

lim c2( —1)"[(1+ka )'~ +ka]"=c2e lim ( —I)"~'
a —+0 a~O

=c2e lim ( —1)",
n~co

y[na]=c(1 —ka)" . (A4)
(A10)

lim y [na] =

lime�(1

—ka ) ~ =ce
a~o a-+0

(A5)

which is the solution of the corresponding differential
equation (A2).

2. A difference equation with a spurious solution

The arbitrary constant c is determined by a boundary con-
dition, e.g., c =y[0]. If a tends to zero with na =x fixed,
we have

which is indefinite and is not a solution of Eq. (A2).
Therefore, the second term of Eq. (AS) is the spurious
solution.

In a special case k =0, Eq. (A6) is

y[(n+1)a]=y[(n —l)a] . (Al 1)

This shows that y's at neighboring points, i.e., y[na] and
y[(n +1)a ], are independent. The solution is

Next we consider the equation

y[(n+1)a] —y[(n —1)a] = —ky[na] .
2Q

(A6)

y[na] =ci+c2( —1)"

=
2 ci[1+(—1)"l+ ~ ci[1+(—1)"]. (A12)

+c2( —1)"[(1+ka )'~ +ka]", (A8)

The corresponding differential equation of Eq. (A6) is
also Eq. (A2). Equation (A6) is rewritten as

y [(n + 1)a]+2kay [na] —y [(n —1)a ]=0,
and has two independent solutions:

y[na]=c&[(1+k a )'~ +ka]

For n=even or odd y is equal to c ~ or c2, respectively.
In order to discard thy spurious solution we must impose
a condition c2 ——0 or c

&
——c2 by hand.

From our point of view the difference equation is fun-
damental and the differential equation is just an approxi-
mation. Thus if we want to use the spurious solutions for
some purpose and to give some physical meaning, then we
need not to impose any condition.
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