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We construct the relationship between the radial equations of the d-dimensional hydrogen atom
and the D-dimensional simple harmonic oscillator. The supersymmetric partners of each of these
systems are obtained, and a series of maps between the various systems is delineated. We present an
explicit physical example of our maps. Finally, we generalize to D dimensions the recent work of
Balantekin on the supersymmetric oscillator with spin-orbit coupling, and we demonstrate that this

supersymmetry is different from the one we study.

I. INTRODUCTION

The advent of supersymmetry has had a significant im-
pact on theoretical physics in a number of distinct disci-
plines.! One subfield that has recently been receiving
much attention is supersymmetric quantum mechan-
ics,”~% in which the Hamiltonians of distinct systems are
related by a supersymmetry algebra. In the simplest case,
the eigenspectra of two systems are found to be identical
except for the supersymmetric ground state, which is as-
sociated with only one spectrum.

In this work, we are concerned with clarifying the rela-
_tionship between two distinct supersymmetric systems:
the supersymmetric simple-harmonic-oscillator radial
equation and the supersymmetric hydrogen-atom radial
equation.’ We emphasize that we consider the radial
equations, rather than the full set of multidimensional
equations discussed in Sec. V. There exists®’ a map be-
tween the radial equations of the three-dimensional
Coulomb potential and the harmonic oscillator in arbi-
trary dimensions in the absence of supersymmetry, but no
such map has been identified for the supersymmetric ex-
tension. Our first goal is the construction of such a map.

We begin in Sec. II with a presentation of the map be-
tween the radial equations of the d-dimensional Coulomb
problem and the D-dimensional simple harmonic oscilla-
tor. To our knowledge, this generalization of the works of
Refs. 6 and 7 has not been presented before in the litera-
ture. ‘

Section III contains a discussion of the supersymmetric
Coulomb and oscillator systems. The supersymmetric
Coulomb radial equation for three dimensions has been
discussed previously,” but we need the extension to arbi-
trary dimensions to construct the map between the two
systems. Also, we analyze the supersymmetric radial
equation of the D-dimensional harmonic oscillator.

The map between the two systems is presented explicit-
ly in Sec. IV. There, we also describe the maps between
the standard Coulomb problem and the supersymmetric
oscillator, and between the supersymmetric Coulomb
problem and the standard oscillator. In Sec. V we discuss
a physical example that illustrates the application of these

.maps.

Recently, the supersymmetric oscillator in three dimen-
sions with generalized spin-orbit couplings and the associ-
ated spectrum-generating algebras have been analyzed.>*
In Sec. IV we extend these results to D dimensions. As in
three dimensions, this supersymmetry manifests itself in
the spin-orbit spectra. In contrast, the supersymmetry in
our radial equation relates the principal-quantum-number
spectra to each other. The two supersymmetries are dis-
tinct.

In Sec. VII we close with a few comments.

II. GENERALIZED CONNECTION
BETWEEN COULOMB AND OSCILLATOR PROBLEMS

The radial equation of the d-dimensional Coulomb
problem may be written as®

d? (d—1) d 1(+d-2)

dx 2 X dx X 2

+ —:—— u(x,d,nl)=0, (2.1)

1
4
where x =r/kry, ro=#*/2ue?, k=n++(d —3), and
n>1-+1. The energy eigenvalues €, are given by

€,=—€o/[n++(d—3)]*, 2.2)

where eg=me* /27
The solution to Eq. (2.1) is®
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u(x,d,n,)=c(d,n,l)e ~*"*x'L? 9V (x) , (2.3)
with normalization constant
c(dnD)=ro™4[n +5(d —3)] 74+

X[[(n —=D1"?[20(n +1+d —2)]712. (2.4

Note that the Laguerre polynomials L are those defined
in handbooks on mathematical functions® and are not the
more limited L, , often used in discussions of the hydro-
gen eigenfunctions.

The radial equation of the D-dimensional simple har-
monic oscillator may be written® as

d> (D—1) d L(L+D-2)
dx? X dx Xx?

—X24+K |\U(X,D,N,L)=0, (2.5)

where X =R/Ro,, Ro=(mw/#)'/?, K=2N+D, and
N > L. The energy eigenvalues E, are given by

Ey=+#wo(2N +D) . (2.6)
The solution to Eq. (2.5) is®
U(X,D,N,L)=C(D,N,L)e ~X*/2xL [ (L+D/2=1)(x2)

(2.7)
with normalization constant
C(D,N,L)=R,~?[2I"(N—+L +1)]'/?
X[T(3N++5L+5D)]7'%. (2.8)

(i) Direct map between solutions (2.3) and (2.7). The
map taking Eq. (2.1) into Eq. (2.5) is x =X?2. Restricting
D, N, and L to integers, we find that the solution (2.3) for
u (x,d,n,l) can be related to U(X,D,N,L) by

u(x,d,n,)=AoU(X,2d —2,2n —2,21) , 2.9)
where ‘
Ao=(+RX~Y/refln+Hd =3)1+112 . 210

The d- and n-dependent constant A, arises because
u(x,d,n,l) and U(X,D,N,L) are normalized to unity in d
and D dimensions, respectively. A

The identification (2.9) yields the solution

D=2d-2,
N=2n-2, (2.11)
L=2].

Note that the three-dimensional Coulomb problem is in
one-to-one correspondence with half the states of the
four-dimensional oscillator,!® namely, those states with
even values of N and L.

(ii) General map between solutions (2.3) and (2.7).
There exists a further degree of freedom in the map
x =X2. A generalization of Eq. (2.9) sets’

u(x,d,n,l)=AX"*U(X,D,N,L) , (2.12)
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for integer A and constant A,. Because of the factor X ~*
in front of U, U must contain X~ +* This implies that
L—L+A. Hence, L7225 V(X?) remains the same if
N—N +A and D—D —2A. Even the normalization of U
is unchanged, except for the factor R,~*. Therefore, we
find that

u(x,d,n,)=AX " MU(X,2d —2—2)\,2n —2+A,21 +1) ,

(2.13)
Ay=AoRo™?, (2.14)
yielding
D=2d —2-2A,
N=2n—-2+A, (2.15)
L=2l+A\.

Clearly, A must be an integer if N, L, n, and [/ are in-
tegers. It is a general feature of this map that the spec-
trum of the d-dimensional Coulomb problem is related to
half the spectrum of the D-dimensional oscillator for any
even integer D. However, the quantities in Eq. (2.15) have
parameter spaces that are further restricted by the proper-
ties chosen for the map.

For instance, suppose we wish to map all states of the
d-dimensional Coulomb problem into a harmonic oscilla-
tor. Since on physical grounds we known that D22,
N20, L=0, we must impose d=2+4+A, n25(2—A),
I2 —+A. This yields the bound —2/<A<d —2. Fur-
ther requiring n2=1, /20 restricts the bound to
0=A=d—2. We conclude that all states of the d-
dimensional Coulomb problem can be mapped into the
appropriate harmonic oscillator, except for d =1.!!

As an example, consider the three-dimensional
Coulomb problem. Assuming we wish to map all its
states into the harmonic oscillator, we must impose
0=<AZX1. First, take A=0. Then, the hydrogenic s orbi-
tals (n =1,] =0) are related to the (N =2n —220, L =0)
states of the four-dimensional harmonic oscillator. Simi-
larly, the hydrogenic p states (n 22, [ =1) correspond to
the (N =2n —222, L =0) states of the same oscillator.
In the latter case, note the missing ground state. As a
rule, the lowest-lying oscillator states are excluded, one by
one, with each higher value of /.

Next, suppose A=1. The hydrogenic states are then
mapped into the odd-integer states of the two-dimensional
harmonic oscillator. The hydrogenic s orbitals (n21,
1 =0) map into the (N=2n—121, L =1) oscillator
states, while the hydrogenic p orbitals (n 22, / =1) map
into the (N =2n —123, L =1) oscillator states. Again,
the lowest states are successively excluded with increasing
L

III. THE SUPERSYMMETRIC COULOMB
AND OSCILLATOR PROBLEMS

In a supersymmetric quantum-mechanical system,’
there exist operators Q;, i =1, ...,M, that commute with
the Hamiltonian,
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[Qi,H]=0, (3.1)

and that anticommute to generate the Hamiltonian,

{Q1,Q) } =Hb;; . (3.2)

The smallest such system has M =2. The simplest reali-
zation involves a two-component wave function ¥ and
two-by-two matrix operators Q; and H .

We choose to work with matrices Q and QT, defined by

0=—=(0:+i0,),

: (3.3)
Q'=—=(01~iQs) ,
so that
(0N =H . (3.4)
In particular, we take
i dU
Q= p- 2 dz g->
(3.5)
t i4du
Q'=|p+ 2 dz |t
where
01 00
o+=1o ol ©-=11 ol (3.6)

and U(z) is a function of z to be related to the potential
of the supersymmetric Hamiltonian. The form (3.5) im-
plies that Q and Q'r act as lowering and raising operators,
respectively, on the Pauli spinor .

Anticommutation yields

H, 0
Hg = 0 H_ 3.7
with
d2
Hi=—g;2‘+Vt,
: (3.8)
2
L, _1lav | 14U
T dz | T2 ar

One can show? that the ground state of Hy is associated
only with H, and that it has zero eigenvalue. Its eigen-
vector is given by

Yo~exp(—5U) . (3.9)

The remaining eigenvalues of H, are degenerate with
those of H _.

To construct the supersymmetric Hamiltonian for the
hydrogen atom in d dimensions, we proceed as in the
three-dimensional case.” First, we multiply u by the
quantity x‘¢ 172 obtaining

v(x,d,n )= —x"9=V"2 (x,d,n,l) . (3.10)
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Here, x4—172 js the square root of the volume element in

d dimensions. Its use removes the first-order derivative
term in Eq. (2.1), so that v satisfies an equation that has
only a d?/dx? derivative term, as does Eq. (3.8). For a
given I, Eq. (2.3) shows that the ground state has
n=I+1. Therefore, combining Egs. (2.3), (3.9), and
(3.10) yields ,

Ulx=2L |=X —2l+d —1)Iny —Inky), (3.11)
where
ko=Il+1++(d-3). (3.12)
Substituting this into Eq. (3.8) gives
1 [+3d—=DF1[++d-1)]
Vi= —_— 4 2
y y
1 (3.13)

+ 1 -
41 +1+4(d—3)]

Effectively, by changing the y —2 term, the supersym-
metry shifts the spectrum n=/+1 into the spectrum
n'21+2 and renormalizes the ground state to zero by
adding the constant term in Eq. (3.13). Therefore, the su-
persymmetric partner has angular momentum quantum
number ['=1I+1. This is the left-hand relationship of
Fig. 1. A discussion of the evidence for the phenomeno-
logical manifestation among atomic spectra of the d =3
version of this supersymmetry may be found in Ref. 5.

Similarly, we may construct the supersymmetric
partner of the harmonic-oscillator Hamiltonian. We con-
vert Eq. (2.5) into the form (3.8) with the substitution

V(X,D,N,L)=—Xx'?—V2y(X,D,N,L) . (3.14)

For a given L, Eq. (2.7) shows that N =L is the ground
state. Therefore, combining Egs. (2.7), (3.9), and (3.14)
gives

U=X*—(2L +D —1)nX . (3.15)

2n-2+x=N
24+x=L

Coulomb Problem
d dimensions
State (n2/+1,{)

Hormonic Oscillator
D dimensions
State (N2L,L)

=L+
N'=N+I

Supersymmetric Partner
Harmonic Oscillator

Supersymmetric Partner
Coulomb Problem

d dimensians 2nl-3+x=N! D dimensions
state (n' 2 £'+1,4) 2= 1ea=t! state (N2, 1)
FIG. 1. Relationships between the supersymmetric

quantum-mechanical Coulomb and oscillator systems. In all
cases, D =2d —2—-2A.
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Using this in (3.8) yields
[L+2(D—1DF1][L++(D-1)]
X2

Vi=X2+

— (2L +D—1%1). (3.16)
Again, the angular momentum term, which is proportion-
al to X2, shows that the angular momentum quantum
number L’ of the supersymmetric partner is given by
L’'=L +1. As before, the spectrum N =L is shifted into
N’'=L +1. This is the right-hand relationship of Fig. 1.

Note that in this case the added constant in Eq. (3.16) is
different for the two potentials V.. We illustrate the
necessity of this by considering the supersymmetric
partners L =2 and L’=3. Recall that the eigenvalue K
in Eq. (2.5) has the value K =2N +D. For the ground
state, N =L and so K =2L +D. However, the ground
state of the bosonic spectrum of the supersymmetric har-
monic oscillator must be zero. Hence, the eigenvalue K
for the bosonic system is K, =2N+D —(2L +D)
=2(N —L) where the constant term 2L + D corresponds
to the constant term in ¥, and renormalizes the ground-
state energy to zero. In our example, L =2, so
K,=2(N—-2). Since N=L, L+2,..., according to
Eq. 2.7), K, =0, 4, 8,.... Now, the constant term in
V_ is 2L +D —2=2L'+D —4 and so the eigenvalue
K_ for the fermionic spectrum is K_=2N'
+D—(2L'+D —4)=2(N'—L')+4. In our example, the
fermionic spectrum is given by K_=2N'—2; it has
L'=3 and so K_=4, 8, 12,.... Without the new con-
stant term for the fermionic spectrum, the eigenvalues
K_ would have been K_ =2N'+D —(2L'+D —2)=2,
6, 10, ... and the spectra K, K_ would have been dis-
joint. Thus, we see that the correct supersymmetric spec-
trum is automatically achieved by the appearance of the
constant term (2L +D —1+1) in Eq. (3.16).

IV. CONNECTION BETWEEN SUPERSYMMETRIC
COULOMB AND OSCILLATOR PROBLEMS

At this stage, we are in a position to obtain relation-
ships between the models constructed in Secs. II and III.
We have already provided the map (2.15) taking the d-
dimensional Coulomb problem into the -D-dimensional
simple harmonic oscillator. It is straightforward to ex-
tend these maps to the supersymmetric case.

In fact, the solution is obtained in the same fashion as
Egs. (2.15) but with ([, L,n,N) replaced by
(I'—1,L'—1,n'—1,N’'—1), respectively. This yields

D =2d —2-2A,
N'=2n'—-3+A,
L'=2l'—14+A,

4.1)

which is the bottom map of Fig. 1.

We can interpret the solution (4.1) in the following way.
The relationship between the fermionic Hamiltonians is
dimensionally the same as that expressed in the bosonic
relationship (2.15). Recall that in Eq. (2.15) only half of
the oscillator L levels is involved. In the fermionic rela-
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tionship (4.1), however, the other half of the L levels
occurs.

For example, if we choose d =3 and set A=0, we can
relate the (n'21'+1,l') states of the supersymmetric
Coulomb partner with the (2n’'—3,2/’—1) states of the
four-dimensional supersymmetric oscillator partner. If
we set A=1, then the (n'21'+1,1") states of the super-
symmetric Coulomb partner are mapped into the
(2n'—2,21') states of the two-dimensional supersymmetric
oscillator partner. Therefore, the supersymmetric
Coulomb levels are shifted by one unit with respect to
both the hydrogen /!’ and the supersymmetric oscillator L
states.

By the same technique, or by following two consecutive
maps along the edges of Fig. 1, we can also determine the
relationship between the supersymmetric hydrogen atom
and the normal oscillator, and between the hydrogen atom
and the supersymmetric oscillator. The map between the
supersymmetric hydrogen atom and the normal oscillator
is

D =2d —-2-2A,
N=2n"—4+4+A,
L=2]I'"-2+A.

(4.2)

In this case, the oscillator solution is shifted by two units
in L relative to Eq. (2.15). Similarly, the map between the
normal hydrogen atom and the supersymmetric oscillator
is

D=2d —-2-—-2A,
N'=2n—14A,
L'=2]4+1+4+A.

(4.3)

This also represents a shift in L of two units, relative to
4.1).

The last two maps are the diagonals of Fig. 1 and com-
plete its contents.

V. APHYSICAL EXAMPLE

Here, we present an example identifying the corners of
Fig. 1 with physical systems.

Suppose we consider the radial part of the Schrédinger
equation describing the hydrogen atom. Restricting our-
selves to the s orbitals, we can view them as forming the
upper left-hand corner of Fig. 1, with d =3, /=0, and
n=x1.

It may be argued’ that, physically , the supersymmetric
partner of the s-orbital spectrum of hydrogen is the s-
orbital spectrum of lithium. The s orbitals of lithium are
described in this picture by spherical harmonics with / =0
and associated Laguerre polynomials with / =1. We refer
the reader to Ref. 5 for details. Thus, the s-orbital spec-
trum of lithium may be placed in the lower left-hand
corner of Fig. 1, with d =3, I'=1,and n'22.

As may be seen from our diagram, the s-orbital spectra
of hydrogen and lithium can be mapped into many dif-
ferent harmonic oscillators. For our example, let us
choose A=1, so that we are restricted to a two-
dimensional oscillator. Then, any physical system with
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the same equations of motion as a two-dimensional
quantum-mechanical pendulum will provide us with the
upper right-hand corner of our figure.

As an explicit example, we take the twofold degenerate
E vibrational mode of the H;* molecular ion.'? This vi-
bration forms a two-dimensional harmonic oscillator in
the limit in which anharmonic effects and couplings to
other degrees of freedom in the molecular ion can be ig-
nored. Since A=1 and since we took / =0 for the hydro-
gen atom, we must consider the L =1, N21 oscillator
states, where for simplicity we assume the ground-state
configuration for the rotational modes. This spectrum
may be placed in the upper right-hand corner of Fig. 1.

To motivate a possible physical system!? for the lower
right-hand corner of Fig. 1, we first consider the vibra-
tional modes of the molecular ion H;* with L =0, again
assuming a ground-state rotational configuration. Here, it
is known!? that the rotation-vibrational state with N =0
is excluded by the Pauli principle. This is not the case,
however, for the molecular ion D;+ with L =0, because
the nuclear-spin wave function is bosonic rather than fer-
mionic.

Returning to our suggestion for the lower right-hand
corner of the figure, note that since the molecular ion D3+
has a wave function that is bosonic rather than fermionic,
the levels of this system will not be the same as those of
H;*, even disregarding the mass difference. We therefore
suggest that a supersymmetry may be present between
some part of the total spectra of H;* and D3 +.

At this stage, we have provided a physical model for
Fig. 1. The reader may now check that our maps correct-
ly interrelate the spectra we have described.

Other physical examples may readily be found, relating
spectra with different values of / for the Coulomb prob-
lem® to spectra with different values of L for the oscilla-
tor.

VI. D-DIMENSIONAL OSCILLATOR
WITH SPIN-ORBIT COUPLING

Next, we turn to a generalization to D dimensions of
the analysis of Balantekin* on the supersymmetric three-
dimensional oscillator with spin-orbit couplings. First, we
construct the basis for a dynamical supersymmetry alge-
bra such that the Hamiltonian of the system can be writ-
ten in terms of Casimir operators of the superalgebra and
its subalgebras. The Hamiltonian we analyze describes a
D-dimensional simple harmonic oscillator with constant
spin-orbit coupling &:

H=5(P*+R*)+{(2L-S+1D) . 6.1)
This is the D-dimensional generalization of the model 4
of Ref. 4.

To discuss the dynamical supersymmetry associated
with this model, we need to introduce the generators of a
Clifford algebra. If D is even, the generators will be
denoted by I',, p=1,...,D. If D is odd, they will be
denoted by 'y, p=1,...,D —1, and we append in addi-
tion a Dth quantity I' defined by

D—1
Tp=—i [IT,. 6.2)
p=1

The I, satisfy the relationship
{Tp,Tg} =28, .

The quantities ', and, in the case of odd D, the quanti-
ty I'p may be used to construct a representation of the ro-
tation group SO(D). The generators of SO(D) are given
as

(6.3)

Spg=—5i[Tp,Tq], 6.4)
where for D odd the index p now includes the Dth quanti-
ty I'p. For example, if D =4 the I', may be represented
by the Euclidean ¥ matrices, yf; the S,, then are the Eu-
clidean afq matrices.

At this point, we introduce five operators, K, K_,
Ky, F, F_, defined by

t 1
(@pap+7),

~

(=]

Il
.h (ST
1Mo

>
+

I
Nf—
Mo
'ea_,.
*en_+

)
Il

(6.5)

>
|
I
o
Mo
Q
.uh

4

A ]
[

"
+

I
0=
K
e

~
II
(SIS

4L, ,

Mo 1M

where the quantities a;,ap are the usual harmonic-

oscillator raising and lowering operators satisfying

[ap,a]1=5,, - (6.6)

It can be shown that the operators (6.5) form a basis of
the noncompact orthosymplectic superalgebra osp(1 |2),
which has graded commutation relations

[Ki’Fi]::O’ [Ki’F$]=4_'Fi ’

[Ko,Fsl=%3Fs ,
(6.7)
{Fi‘:Fi}=Kt’ {F+’F—}=KO ’

[K+’K—-]="2K0’ [KOrKi]=iKi .

These commutation relations were established in Ref. 4.
The Casimir operator of this superalgebra is

Cylosp(1[2)=A%++4, (6.8)
where ,
A=[F,_,F_]. (6.9)
From Egs. (6.5) we find
D
A=— 3 LSy —+D
pP<9q
D(D—-1)/2
=— 3 L,S,—+D
r=1
=—L'S—+D, (6.10)
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where

¥

Ly, =ilaja,—ala,) . (6.11)

In Eq. (6.10), we have replaced the double indices pg with

a single index 7, taking values r =1, ... ,%D(D —1), us-
ing the formula
r=3(p—1)2D—p)+q—p . (6.12)

Substitution for 4 in Eq. (6.9) yields

Cy(osp(1]2))=+(S+L)*+5D(D —3). (6.13)

The Hamiltonian (6.1) can be expressed in terms of K,
C,(osp(1]2)), and the Casimir operator C,(sp(2)) of the
subalgebra sp(2) given by*

Cy(sp(2)=A2+A=+L*>+-LD(D —4) . (6.14)
We find
H =2Ko+4£C,(0sp(1[2))—4£C,(sp(2)) (6.15)

as given in Ref. 4. The Hamiltonian (6.1) thus exhibits a
dynamical supersymmetry with superalgebra chain

osp(1]2)—sp(2)—>so(2) . (6.16)

Let us turn to a construction of the supersymmetric
quantum mechanics of this system!* in terms of the
spectrum-generating algebra. Following Ref. 4, we intro-
duce the eight operators

Ro=Ko00, Ri=Ki0y,

Vi=V2F.0,, W=V2F.o_, (6.17)
Y= —Aos,
where o and o_ are given by Eq. (3.6), and where
10 1 0
oo=1g 1> 3= |0 _1 (6.18)

These operators satisfy graded commutation relations that
generate the algebra of osp(2 | 2):

[Ro,Vel=25Py, [Ro,Wil=21W,,
[R+,V:1=[Ks,Ws]=0,

[Re,P:1=3Ps, [Re,Wil=FW,,

(Ve Vi)={Wi,Wi)=0, (6.19)
(Vo V_y=(w w_}=0,

(Ve Wi)=R,,

(Vi W_}=Ro—%, (P_,W,}=Ro+?,
[¥.K0]=[Y,K:]=0,

[%.P:]1=5Ps, [T Wil=—3W,
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The quantum-mechanical supersymmetry algebra (3.4)
may be identified as a subalgebra of osp(2]2). If we
choose

Q=V2W,, Q'=v2P_, (6.20)
then
(0,01 =2(Ro+ 1)
Ky—4 0 :
=2| Ko+4 |- (6.21)
The supersymmetric pair of Hamiltonians is then
H, =% fl(a;a,+a,,aj)+(2L-s+ iD)
p=
=2K,+4C;(osp(1]2))—4C,(sp(2)) ,
' (6.22)

H (aja, +a,a;)—(2L-S++D)

=1
=2

7Mc

—

=2K,—4C;(osp(1]2))+4C,(sp(2)) .

At this stage, we are in a position to compare the super-
symmetric quantum mechanics of Eq. (6.22) and that of
Eq. (3.16). Although both systems involve a supersym-
metric oscillator, the supersymmetries are different. The
supersymmetry of Eq. (3.16) acts only on the radial part
of the D-dimensional oscillator. The remaining (D —1)-
dimensional piece is not affected. In contrast, the super-
symmetry of Eq. (6.22) does not involve the radial vari-
able alone. Rather, it relates the full D-dimensional oscil-
lator with spin-orbit coupling to its partner. The distinc-
tion between the two systems is clear if the spin-orbit cou-
pling term in Eq. (6.22), (L-S++D), is taken to zero.
The resulting Hamiltonians H, and H_ are identical,
and the supersymmetry has disappeared.

Furthermore, we emphasize that the realization (6.20)
of supersymmetric quantum mechanics is in terms of
2t X2t matrices, where t is the number of rows or
columns of T,. Since the realization (3.5) uses 2X2 ma-
trices, Egs. (6.22) cannot be written in the form (3.8).
Therefore, the two supersymmetries are quite distinct.

VII. CONCLUSION

In this work, we have provided the reader with a pic-
ture of the relationships between the supersymmetric
quantum-mechanical Coulomb and oscillator problems in
arbitrary dimensions. The resulting scheme is an elegant
intermeshing of the angular momentum structure of the
many Hamiltonians involved. Our discussion of the su-
persymmetric quantum mechanics associated with the D-
dimensional harmonic oscillator with spin-orbit couplings
should alert the reader to the important distinctions be-
tween the different types of supersymmetry that may ap-
pear in a quantum-mechanical problem.
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